mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2025-10-22 16:09:23 +00:00
In the future there will be different methods of creating these use-time easing functions (e.g. from `KeywordStyleValue`s)
259 lines
11 KiB
C++
259 lines
11 KiB
C++
/*
|
||
* Copyright (c) 2025, Callum Law <callumlaw1709@outlook.com>
|
||
*
|
||
* SPDX-License-Identifier: BSD-2-Clause
|
||
*/
|
||
|
||
#include "EasingFunction.h"
|
||
#include <AK/BinarySearch.h>
|
||
#include <LibWeb/CSS/StyleValues/EasingStyleValue.h>
|
||
|
||
namespace Web::CSS {
|
||
|
||
// https://drafts.csswg.org/css-easing/#linear-easing-function-output
|
||
double LinearEasingFunction::evaluate_at(double input_progress, bool before_flag) const
|
||
{
|
||
// To calculate linear easing output progress for a given linear easing function func,
|
||
// an input progress value inputProgress, and an optional before flag (defaulting to false),
|
||
// perform the following:
|
||
|
||
// 1. Let points be func’s control points.
|
||
|
||
// 2. If points holds only a single item, return the output progress value of that item.
|
||
if (control_points.size() == 1)
|
||
return control_points[0].output;
|
||
|
||
// 3. If inputProgress matches the input progress value of the first point in points,
|
||
// and the before flag is true, return the first point’s output progress value.
|
||
if (input_progress == control_points[0].input.value() && before_flag)
|
||
return control_points[0].output;
|
||
|
||
// 4. If inputProgress matches the input progress value of at least one point in points,
|
||
// return the output progress value of the last such point.
|
||
auto maybe_match = control_points.last_matching([&](auto& stop) { return input_progress == stop.input; });
|
||
if (maybe_match.has_value())
|
||
return maybe_match->output;
|
||
|
||
// 5. Otherwise, find two control points in points, A and B, which will be used for interpolation:
|
||
ControlPoint A;
|
||
ControlPoint B;
|
||
|
||
if (input_progress < control_points[0].input.value()) {
|
||
// 1. If inputProgress is smaller than any input progress value in points,
|
||
// let A and B be the first two items in points.
|
||
// If A and B have the same input progress value, return A’s output progress value.
|
||
A = control_points[0];
|
||
B = control_points[1];
|
||
if (A.input == B.input.value())
|
||
return A.output;
|
||
} else if (input_progress > control_points.last().input.value()) {
|
||
// 2. If inputProgress is larger than any input progress value in points,
|
||
// let A and B be the last two items in points.
|
||
// If A and B have the same input progress value, return B’s output progress value.
|
||
A = control_points[control_points.size() - 2];
|
||
B = control_points[control_points.size() - 1];
|
||
if (A.input == B.input.value())
|
||
return B.output;
|
||
} else {
|
||
// 3. Otherwise, let A be the last control point whose input progress value is smaller than inputProgress,
|
||
// and let B be the first control point whose input progress value is larger than inputProgress.
|
||
A = control_points.last_matching([&](ControlPoint const& stop) { return stop.input.value() < input_progress; }).value();
|
||
B = control_points.first_matching([&](ControlPoint const& stop) { return stop.input.value() > input_progress; }).value();
|
||
}
|
||
|
||
// 6. Linearly interpolate (or extrapolate) inputProgress along the line defined by A and B, and return the result.
|
||
auto factor = (input_progress - A.input.value()) / (B.input.value() - A.input.value());
|
||
return A.output + factor * (B.output - A.output);
|
||
}
|
||
|
||
// https://www.w3.org/TR/css-easing-1/#cubic-bezier-algo
|
||
double CubicBezierEasingFunction::evaluate_at(double input_progress, bool) const
|
||
{
|
||
constexpr static auto cubic_bezier_at = [](double x1, double x2, double t) {
|
||
auto a = 1.0 - 3.0 * x2 + 3.0 * x1;
|
||
auto b = 3.0 * x2 - 6.0 * x1;
|
||
auto c = 3.0 * x1;
|
||
|
||
auto t2 = t * t;
|
||
auto t3 = t2 * t;
|
||
|
||
return (a * t3) + (b * t2) + (c * t);
|
||
};
|
||
|
||
// For input progress values outside the range [0, 1], the curve is extended infinitely using tangent of the curve
|
||
// at the closest endpoint as follows:
|
||
|
||
// - For input progress values less than zero,
|
||
if (input_progress < 0.0) {
|
||
// 1. If the x value of P1 is greater than zero, use a straight line that passes through P1 and P0 as the
|
||
// tangent.
|
||
if (x1 > 0.0)
|
||
return y1 / x1 * input_progress;
|
||
|
||
// 2. Otherwise, if the x value of P2 is greater than zero, use a straight line that passes through P2 and P0 as
|
||
// the tangent.
|
||
if (x2 > 0.0)
|
||
return y2 / x2 * input_progress;
|
||
|
||
// 3. Otherwise, let the output progress value be zero for all input progress values in the range [-∞, 0).
|
||
return 0.0;
|
||
}
|
||
|
||
// - For input progress values greater than one,
|
||
if (input_progress > 1.0) {
|
||
// 1. If the x value of P2 is less than one, use a straight line that passes through P2 and P3 as the tangent.
|
||
if (x2 < 1.0)
|
||
return (1.0 - y2) / (1.0 - x2) * (input_progress - 1.0) + 1.0;
|
||
|
||
// 2. Otherwise, if the x value of P1 is less than one, use a straight line that passes through P1 and P3 as the
|
||
// tangent.
|
||
if (x1 < 1.0)
|
||
return (1.0 - y1) / (1.0 - x1) * (input_progress - 1.0) + 1.0;
|
||
|
||
// 3. Otherwise, let the output progress value be one for all input progress values in the range (1, ∞].
|
||
return 1.0;
|
||
}
|
||
|
||
// Note: The spec does not specify the precise algorithm for calculating values in the range [0, 1]:
|
||
// "The evaluation of this curve is covered in many sources such as [FUND-COMP-GRAPHICS]."
|
||
|
||
auto x = input_progress;
|
||
|
||
auto solve = [&](auto t) {
|
||
auto x = cubic_bezier_at(x1, x2, t);
|
||
auto y = cubic_bezier_at(y1, y2, t);
|
||
return CachedSample { x, y, t };
|
||
};
|
||
|
||
if (m_cached_x_samples.is_empty())
|
||
m_cached_x_samples.append(solve(0.));
|
||
|
||
size_t nearby_index = 0;
|
||
if (auto found = binary_search(m_cached_x_samples, x, &nearby_index, [](auto x, auto& sample) {
|
||
if (x - sample.x >= NumericLimits<double>::epsilon())
|
||
return 1;
|
||
if (x - sample.x <= NumericLimits<double>::epsilon())
|
||
return -1;
|
||
return 0;
|
||
}))
|
||
return found->y;
|
||
|
||
if (nearby_index == m_cached_x_samples.size() || nearby_index + 1 == m_cached_x_samples.size()) {
|
||
// Produce more samples until we have enough.
|
||
auto last_t = m_cached_x_samples.last().t;
|
||
auto last_x = m_cached_x_samples.last().x;
|
||
while (last_x <= x && last_t < 1.0) {
|
||
last_t += 1. / 60.;
|
||
auto solution = solve(last_t);
|
||
m_cached_x_samples.append(solution);
|
||
last_x = solution.x;
|
||
}
|
||
|
||
if (auto found = binary_search(m_cached_x_samples, x, &nearby_index, [](auto x, auto& sample) {
|
||
if (x - sample.x >= NumericLimits<double>::epsilon())
|
||
return 1;
|
||
if (x - sample.x <= NumericLimits<double>::epsilon())
|
||
return -1;
|
||
return 0;
|
||
}))
|
||
return found->y;
|
||
}
|
||
|
||
// We have two samples on either side of the x value we want, so we can linearly interpolate between them.
|
||
auto& sample1 = m_cached_x_samples[nearby_index];
|
||
auto& sample2 = m_cached_x_samples[nearby_index + 1];
|
||
auto factor = (x - sample1.x) / (sample2.x - sample1.x);
|
||
return sample1.y + factor * (sample2.y - sample1.y);
|
||
}
|
||
|
||
// https://www.w3.org/TR/css-easing-1/#step-easing-algo
|
||
double StepsEasingFunction::evaluate_at(double input_progress, bool before_flag) const
|
||
{
|
||
auto current_step = floor(input_progress * interval_count);
|
||
|
||
// 2. If the step position property is one of:
|
||
// - jump-start,
|
||
// - jump-both,
|
||
// increment current step by one.
|
||
if (position == StepPosition::JumpStart || position == StepPosition::Start || position == StepPosition::JumpBoth)
|
||
current_step += 1;
|
||
|
||
// 3. If both of the following conditions are true:
|
||
// - the before flag is set, and
|
||
// - input progress value × steps mod 1 equals zero (that is, if input progress value × steps is integral), then
|
||
// decrement current step by one.
|
||
auto step_progress = input_progress * interval_count;
|
||
if (before_flag && trunc(step_progress) == step_progress)
|
||
current_step -= 1;
|
||
|
||
// 4. If input progress value ≥ 0 and current step < 0, let current step be zero.
|
||
if (input_progress >= 0.0 && current_step < 0.0)
|
||
current_step = 0.0;
|
||
|
||
// 5. Calculate jumps based on the step position as follows:
|
||
|
||
// jump-start or jump-end -> steps
|
||
// jump-none -> steps - 1
|
||
// jump-both -> steps + 1
|
||
auto jumps = interval_count;
|
||
if (position == StepPosition::JumpNone) {
|
||
jumps--;
|
||
} else if (position == StepPosition::JumpBoth) {
|
||
jumps++;
|
||
}
|
||
|
||
// 6. If input progress value ≤ 1 and current step > jumps, let current step be jumps.
|
||
if (input_progress <= 1.0 && current_step > jumps)
|
||
current_step = jumps;
|
||
|
||
// 7. The output progress value is current step / jumps.
|
||
return current_step / jumps;
|
||
}
|
||
|
||
EasingFunction EasingFunction::from_style_value(StyleValue const& style_value)
|
||
{
|
||
if (style_value.is_easing()) {
|
||
return style_value.as_easing().function().visit(
|
||
[](EasingStyleValue::Linear const& linear) -> EasingFunction {
|
||
Vector<LinearEasingFunction::ControlPoint> resolved_control_points;
|
||
|
||
for (auto const& control_point : linear.stops)
|
||
resolved_control_points.append({ control_point.input, control_point.output });
|
||
|
||
return LinearEasingFunction { resolved_control_points, linear.to_string(SerializationMode::ResolvedValue) };
|
||
},
|
||
[](EasingStyleValue::CubicBezier const& cubic_bezier) -> EasingFunction {
|
||
auto resolved_x1 = clamp(cubic_bezier.x1.resolved({}).value_or(0.0), 0.0, 1.0);
|
||
auto resolved_y1 = cubic_bezier.y1.resolved({}).value_or(0.0);
|
||
auto resolved_x2 = clamp(cubic_bezier.x2.resolved({}).value_or(0.0), 0.0, 1.0);
|
||
auto resolved_y2 = cubic_bezier.y2.resolved({}).value_or(0.0);
|
||
|
||
return CubicBezierEasingFunction { resolved_x1, resolved_y1, resolved_x2, resolved_y2, cubic_bezier.to_string(SerializationMode::Normal) };
|
||
},
|
||
[](EasingStyleValue::Steps const& steps) -> EasingFunction {
|
||
auto resolved_interval_count = max(steps.number_of_intervals.resolved({}).value_or(1), steps.position == StepPosition::JumpNone ? 2 : 1);
|
||
|
||
return StepsEasingFunction { resolved_interval_count, steps.position, steps.to_string(SerializationMode::ResolvedValue) };
|
||
});
|
||
}
|
||
|
||
VERIFY_NOT_REACHED();
|
||
}
|
||
|
||
double EasingFunction::evaluate_at(double input_progress, bool before_flag) const
|
||
{
|
||
return visit(
|
||
[&](auto const& function) {
|
||
return function.evaluate_at(input_progress, before_flag);
|
||
});
|
||
}
|
||
|
||
String EasingFunction::to_string() const
|
||
{
|
||
return visit(
|
||
[](auto const& function) {
|
||
return function.stringified;
|
||
});
|
||
}
|
||
|
||
}
|