ladybird/Libraries/LibCrypto/Cipher/Mode/KW.h
devgianlu 1d94d678b3 LibCrypto: Implement AES-KW
Add the AES-KW (Key Wrap) implementation as of
https://www.rfc-editor.org/rfc/rfc3394#section-4.2.

Tests are taken from section 4 of RFC3394.
2024-12-17 11:00:14 +01:00

132 lines
4.4 KiB
C++

/*
* Copyright (c) 2024, Altomani Gianluca <altomanigianluca@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/ByteBuffer.h>
#include <AK/Error.h>
#include <LibCrypto/Cipher/Mode/Mode.h>
#include <LibCrypto/Verification.h>
namespace Crypto::Cipher {
template<typename T>
class KW : public Mode<T> {
public:
constexpr static size_t IVSizeInBits = 128;
constexpr static u8 default_iv[8] = { 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6 };
virtual ~KW() = default;
template<typename... Args>
explicit constexpr KW(Args... args)
: Mode<T>(args...)
{
}
virtual ByteString class_name() const override
{
StringBuilder builder;
builder.append(this->cipher().class_name());
builder.append("_KW"sv);
return builder.to_byte_string();
}
virtual size_t IV_length() const override
{
return IVSizeInBits / 8;
}
// FIXME: This overload throws away the validation, think up a better way to return more than a single bytebuffer.
virtual void encrypt(ReadonlyBytes in, Bytes& out, [[maybe_unused]] ReadonlyBytes ivec = {}, [[maybe_unused]] Bytes* ivec_out = nullptr) override
{
this->wrap(in, out);
}
virtual void decrypt(ReadonlyBytes in, Bytes& out, [[maybe_unused]] ReadonlyBytes ivec = {}) override
{
this->unwrap(in, out);
}
void wrap(ReadonlyBytes in, Bytes& out)
{
// The plaintext consists of n 64-bit blocks, containing the key data being wrapped.
VERIFY(in.size() % 8 == 0);
VERIFY(out.size() >= in.size() + 8);
auto& cipher = this->cipher();
auto iv = MUST(ByteBuffer::copy(default_iv, 8));
auto data = MUST(ByteBuffer::copy(in));
auto data_blocks = data.size() / 8;
// For j = 0 to 5
for (size_t j = 0; j < 6; ++j) {
// For i=1 to n
for (size_t i = 0; i < data_blocks; ++i) {
// B = AES(K, A | R[i])
m_cipher_block.bytes().overwrite(0, iv.data(), 8);
m_cipher_block.bytes().overwrite(8, data.data() + i * 8, 8);
cipher.encrypt_block(m_cipher_block, m_cipher_block);
// A = MSB(64, B) ^ t where t = (n*j)+i
u64 a = AK::convert_between_host_and_big_endian(ByteReader::load64(m_cipher_block.bytes().data())) ^ ((data_blocks * j) + i + 1);
ByteReader::store(iv.data(), AK::convert_between_host_and_big_endian(a));
// R[i] = LSB(64, B)
data.overwrite(i * 8, m_cipher_block.bytes().data() + 8, 8);
}
}
out.overwrite(0, iv.data(), 8);
out.overwrite(8, data.data(), data.size());
}
VerificationConsistency unwrap(ReadonlyBytes in, Bytes& out)
{
// The inputs to the unwrap process are the KEK and (n+1) 64-bit blocks
// of ciphertext consisting of previously wrapped key.
VERIFY(in.size() % 8 == 0);
VERIFY(in.size() > 8);
// It returns n blocks of plaintext consisting of the n 64 - bit blocks of the decrypted key data.
VERIFY(out.size() >= in.size() - 8);
auto& cipher = this->cipher();
auto iv = MUST(ByteBuffer::copy(in.slice(0, 8)));
auto data = MUST(ByteBuffer::copy(in.slice(8, in.size() - 8)));
auto data_blocks = data.size() / 8;
// For j = 5 to 0
for (size_t j = 6; j > 0; --j) {
// For i = n to 1
for (size_t i = data_blocks; i > 0; --i) {
// B = AES-1(K, (A ^ t) | R[i]) where t = n*j+i
u64 a = AK::convert_between_host_and_big_endian(ByteReader::load64(iv.data())) ^ ((data_blocks * (j - 1)) + i);
ByteReader::store(m_cipher_block.bytes().data(), AK::convert_between_host_and_big_endian(a));
m_cipher_block.bytes().overwrite(8, data.data() + ((i - 1) * 8), 8);
cipher.decrypt_block(m_cipher_block, m_cipher_block);
// A = MSB(64, B)
iv.overwrite(0, m_cipher_block.bytes().data(), 8);
// R[i] = LSB(64, B)
data.overwrite((i - 1) * 8, m_cipher_block.bytes().data() + 8, 8);
}
}
if (ReadonlyBytes { default_iv, 8 } != iv.bytes())
return VerificationConsistency::Inconsistent;
out.overwrite(0, data.data(), data.size());
return VerificationConsistency::Consistent;
}
private:
typename T::BlockType m_cipher_block {};
};
}