mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2025-10-25 17:39:27 +00:00
In an early version of the huffman writing code, we always used 8 bits here, and the comments still reflected that. Since we're now always writing only as many bits as we need (in practice, still almost always 8), the comments are misleading.
319 lines
14 KiB
C++
319 lines
14 KiB
C++
/*
|
|
* Copyright (c) 2024, Nico Weber <thakis@chromium.org>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
// Lossless format: https://developers.google.com/speed/webp/docs/webp_lossless_bitstream_specification
|
|
|
|
#include <AK/BitStream.h>
|
|
#include <AK/Debug.h>
|
|
#include <AK/Endian.h>
|
|
#include <AK/MemoryStream.h>
|
|
#include <LibCompress/DeflateTables.h>
|
|
#include <LibCompress/Huffman.h>
|
|
#include <LibGfx/Bitmap.h>
|
|
#include <LibGfx/ImageFormats/WebPSharedLossless.h>
|
|
#include <LibGfx/ImageFormats/WebPWriterLossless.h>
|
|
|
|
namespace Gfx {
|
|
|
|
NEVER_INLINE static ErrorOr<void> write_image_data(LittleEndianOutputBitStream& bit_stream, Bitmap const& bitmap, PrefixCodeGroup const& prefix_code_group)
|
|
{
|
|
// This is currently the hot loop. Keep performance in mind when you change it.
|
|
for (ARGB32 pixel : bitmap) {
|
|
u8 a = pixel >> 24;
|
|
u8 r = pixel >> 16;
|
|
u8 g = pixel >> 8;
|
|
u8 b = pixel;
|
|
|
|
TRY(prefix_code_group[0].write_symbol(bit_stream, g));
|
|
TRY(prefix_code_group[1].write_symbol(bit_stream, r));
|
|
TRY(prefix_code_group[2].write_symbol(bit_stream, b));
|
|
TRY(prefix_code_group[3].write_symbol(bit_stream, a));
|
|
}
|
|
return {};
|
|
}
|
|
|
|
struct CodeLengthSymbol {
|
|
u8 symbol { 0 };
|
|
u8 count { 0 }; // used for special symbols 16-18
|
|
};
|
|
|
|
// This is very similar to DeflateCompressor::encode_huffman_lengths().
|
|
// But:
|
|
// * size can be larger than 288 for green, is always 256 for r, b, a, and is always 40 for distance codes
|
|
// * code 16 has different semantics, requires last_non_zero_symbol
|
|
static size_t encode_huffman_lengths(ReadonlyBytes lengths, Array<CodeLengthSymbol, 256>& encoded_lengths)
|
|
{
|
|
size_t encoded_count = 0;
|
|
size_t i = 0;
|
|
u8 last_non_zero_symbol = 8; // "If code 16 is used before a non-zero value has been emitted, a value of 8 is repeated."
|
|
while (i < lengths.size()) {
|
|
if (lengths[i] == 0) {
|
|
auto zero_count = 0;
|
|
for (size_t j = i; j < min(lengths.size(), i + 138) && lengths[j] == 0; j++)
|
|
zero_count++;
|
|
|
|
if (zero_count < 3) { // below minimum repeated zero count
|
|
encoded_lengths[encoded_count++].symbol = 0;
|
|
i++;
|
|
continue;
|
|
}
|
|
|
|
if (zero_count <= 10) {
|
|
// "Code 17 emits a streak of zeros [3..10], i.e., 3 + ReadBits(3) times."
|
|
encoded_lengths[encoded_count].symbol = 17;
|
|
encoded_lengths[encoded_count++].count = zero_count;
|
|
} else {
|
|
// "Code 18 emits a streak of zeros of length [11..138], i.e., 11 + ReadBits(7) times."
|
|
encoded_lengths[encoded_count].symbol = 18;
|
|
encoded_lengths[encoded_count++].count = zero_count;
|
|
}
|
|
i += zero_count;
|
|
continue;
|
|
}
|
|
|
|
VERIFY(lengths[i] != 0);
|
|
last_non_zero_symbol = lengths[i];
|
|
encoded_lengths[encoded_count++].symbol = lengths[i++];
|
|
|
|
// "Code 16 repeats the previous non-zero value [3..6] times, i.e., 3 + ReadBits(2) times."
|
|
// This is different from deflate.
|
|
auto copy_count = 0;
|
|
for (size_t j = i; j < min(lengths.size(), i + 6) && lengths[j] == last_non_zero_symbol; j++)
|
|
copy_count++;
|
|
|
|
if (copy_count >= 3) {
|
|
encoded_lengths[encoded_count].symbol = 16;
|
|
encoded_lengths[encoded_count++].count = copy_count;
|
|
i += copy_count;
|
|
continue;
|
|
}
|
|
}
|
|
return encoded_count;
|
|
}
|
|
|
|
static ErrorOr<CanonicalCode> write_simple_code_lengths(LittleEndianOutputBitStream& bit_stream, ReadonlyBytes symbols)
|
|
{
|
|
VERIFY(symbols.size() <= 2);
|
|
|
|
static constexpr Array<u8, 1> empty { 0 };
|
|
if (symbols.size() == 0) {
|
|
// "Another special case is when all prefix code lengths are zeros (an empty prefix code). [...]
|
|
// empty prefix codes can be coded as those containing a single symbol 0."
|
|
symbols = empty;
|
|
}
|
|
|
|
unsigned non_zero_symbol_count = symbols.size();
|
|
|
|
TRY(bit_stream.write_bits(1u, 1u)); // Simple code length code.
|
|
TRY(bit_stream.write_bits(non_zero_symbol_count - 1, 1u)); // num_symbols - 1
|
|
if (symbols[0] <= 1) {
|
|
TRY(bit_stream.write_bits(0u, 1u)); // is_first_8bits: no
|
|
TRY(bit_stream.write_bits(symbols[0], 1u)); // symbol0
|
|
} else {
|
|
TRY(bit_stream.write_bits(1u, 1u)); // is_first_8bits: yes
|
|
TRY(bit_stream.write_bits(symbols[0], 8u)); // symbol0
|
|
}
|
|
if (non_zero_symbol_count > 1)
|
|
TRY(bit_stream.write_bits(symbols[1], 8u)); // symbol1
|
|
|
|
Array<u8, 256> bits_per_symbol {};
|
|
// "When coding a single leaf node [...], all but one code length are zeros, and the single leaf node value
|
|
// is marked with the length of 1 -- even when no bits are consumed when that single leaf node tree is used."
|
|
// CanonicalCode follows that convention too, even when describing simple code lengths.
|
|
bits_per_symbol[symbols[0]] = 1;
|
|
if (non_zero_symbol_count > 1)
|
|
bits_per_symbol[symbols[1]] = 1;
|
|
|
|
return MUST(CanonicalCode::from_bytes(bits_per_symbol));
|
|
}
|
|
|
|
static ErrorOr<CanonicalCode> write_normal_code_lengths(LittleEndianOutputBitStream& bit_stream, Array<u8, 256> const& bit_lengths, size_t alphabet_size)
|
|
{
|
|
// bit_lengths stores how many bits each symbol is encoded with.
|
|
|
|
// Drop trailing zero lengths.
|
|
// This will keep at least three symbols; else we would've called write_simple_code_lengths() instead.
|
|
// This is similar to the loops in Deflate::encode_block_lengths().
|
|
size_t code_count = bit_lengths.size();
|
|
while (bit_lengths[code_count - 1] == 0) {
|
|
code_count--;
|
|
VERIFY(code_count > 2);
|
|
}
|
|
|
|
Array<CodeLengthSymbol, 256> encoded_lengths {};
|
|
auto encoded_lengths_count = encode_huffman_lengths(bit_lengths.span().trim(code_count), encoded_lengths);
|
|
|
|
// The code to compute code length code lengths is very similar to some of the code in DeflateCompressor::flush().
|
|
// count code length frequencies
|
|
Array<u16, 19> code_lengths_frequencies { 0 };
|
|
for (size_t i = 0; i < encoded_lengths_count; i++) {
|
|
VERIFY(code_lengths_frequencies[encoded_lengths[i].symbol] < UINT16_MAX);
|
|
code_lengths_frequencies[encoded_lengths[i].symbol]++;
|
|
}
|
|
|
|
// generate optimal huffman code lengths code lengths
|
|
Array<u8, 19> code_lengths_bit_lengths {};
|
|
Compress::generate_huffman_lengths(code_lengths_bit_lengths, code_lengths_frequencies, 7); // deflate code length huffman can use up to 7 bits per symbol
|
|
// calculate actual code length code lengths count (without trailing zeros)
|
|
auto code_lengths_count = code_lengths_bit_lengths.size();
|
|
while (code_lengths_bit_lengths[kCodeLengthCodeOrder[code_lengths_count - 1]] == 0)
|
|
code_lengths_count--;
|
|
|
|
TRY(bit_stream.write_bits(0u, 1u)); // Normal code length code.
|
|
|
|
// This here isn't needed in Deflate because it always writes EndOfBlock. WebP does not have an EndOfBlock marker, so it needs this check.
|
|
if (code_lengths_count < 4)
|
|
code_lengths_count = 4;
|
|
dbgln_if(WEBP_DEBUG, "writing code_lengths_count: {}", code_lengths_count);
|
|
|
|
// WebP uses a different kCodeLengthCodeOrder than deflate. Other than that, the following is similar to a loop in Compress::write_dynamic_huffman().
|
|
// "int num_code_lengths = 4 + ReadBits(4);"
|
|
TRY(bit_stream.write_bits(code_lengths_count - 4u, 4u));
|
|
|
|
for (size_t i = 0; i < code_lengths_count; i++) {
|
|
TRY(bit_stream.write_bits(code_lengths_bit_lengths[kCodeLengthCodeOrder[i]], 3));
|
|
}
|
|
|
|
// Write code lengths. This is slightly different from deflate too -- deflate writes literal and distance lengths here,
|
|
// while WebP writes one of these codes each for g, r, b, a, and distance.
|
|
if (alphabet_size == encoded_lengths_count) {
|
|
TRY(bit_stream.write_bits(0u, 1u)); // max_symbol is alphabet_size
|
|
} else {
|
|
TRY(bit_stream.write_bits(1u, 1u)); // max_symbol is explicitly coded
|
|
// "int length_nbits = 2 + 2 * ReadBits(3);
|
|
// int max_symbol = 2 + ReadBits(length_nbits);"
|
|
// => length_nbits is at most 2 + 2*7 == 16
|
|
unsigned needed_length_nbits = ceil(log2(encoded_lengths_count - 2));
|
|
VERIFY(needed_length_nbits <= 16);
|
|
needed_length_nbits = ceil_div(needed_length_nbits, 2) * 2;
|
|
TRY(bit_stream.write_bits((needed_length_nbits - 2) / 2, 3u));
|
|
TRY(bit_stream.write_bits(encoded_lengths_count - 2, needed_length_nbits));
|
|
}
|
|
|
|
// The rest is identical to write_dynamic_huffman() again. (Code 16 has different semantics, but that doesn't matter here.)
|
|
auto code_lengths_code = MUST(CanonicalCode::from_bytes(code_lengths_bit_lengths));
|
|
for (size_t i = 0; i < encoded_lengths_count; i++) {
|
|
auto encoded_length = encoded_lengths[i];
|
|
TRY(code_lengths_code.write_symbol(bit_stream, encoded_length.symbol));
|
|
if (encoded_length.symbol == 16) {
|
|
// "Code 16 repeats the previous non-zero value [3..6] times, i.e., 3 + ReadBits(2) times."
|
|
TRY(bit_stream.write_bits<u8>(encoded_length.count - 3, 2));
|
|
} else if (encoded_length.symbol == 17) {
|
|
// "Code 17 emits a streak of zeros [3..10], i.e., 3 + ReadBits(3) times."
|
|
TRY(bit_stream.write_bits<u8>(encoded_length.count - 3, 3));
|
|
} else if (encoded_length.symbol == 18) {
|
|
// "Code 18 emits a streak of zeros of length [11..138], i.e., 11 + ReadBits(7) times."
|
|
TRY(bit_stream.write_bits<u8>(encoded_length.count - 11, 7));
|
|
}
|
|
}
|
|
|
|
return CanonicalCode::from_bytes(bit_lengths.span().trim(code_count));
|
|
}
|
|
|
|
static ErrorOr<void> write_VP8L_image_data(Stream& stream, Bitmap const& bitmap, bool& is_fully_opaque)
|
|
{
|
|
LittleEndianOutputBitStream bit_stream { MaybeOwned<Stream>(stream) };
|
|
|
|
// optional-transform = (%b1 transform optional-transform) / %b0
|
|
TRY(bit_stream.write_bits(0u, 1u)); // No transform for now.
|
|
|
|
// https://developers.google.com/speed/webp/docs/webp_lossless_bitstream_specification#5_image_data
|
|
// spatially-coded-image = color-cache-info meta-prefix data
|
|
|
|
// color-cache-info = %b0
|
|
// color-cache-info =/ (%b1 4BIT) ; 1 followed by color cache size
|
|
TRY(bit_stream.write_bits(0u, 1u)); // No color cache for now.
|
|
|
|
// meta-prefix = %b0 / (%b1 entropy-image)
|
|
TRY(bit_stream.write_bits(0u, 1u)); // No meta prefix for now.
|
|
|
|
// data = prefix-codes lz77-coded-image
|
|
// prefix-codes = prefix-code-group *prefix-codes
|
|
// prefix-code-group =
|
|
// 5prefix-code ; See "Interpretation of Meta Prefix Codes" to
|
|
// ; understand what each of these five prefix
|
|
// ; codes are for.
|
|
|
|
// We're writing a single prefix-code-group.
|
|
// "These codes are (in bitstream order):
|
|
|
|
// Prefix code #1: Used for green channel, backward-reference length, and color cache.
|
|
// Prefix code #2, #3, and #4: Used for red, blue, and alpha channels, respectively.
|
|
// Prefix code #5: Used for backward-reference distance."
|
|
|
|
// We use neither back-references not color cache entries yet.
|
|
// We can make this smarter later on.
|
|
|
|
size_t const color_cache_size = 0;
|
|
constexpr Array alphabet_sizes = to_array<size_t>({ 256 + 24 + static_cast<size_t>(color_cache_size), 256, 256, 256, 40 });
|
|
|
|
// If you add support for color cache: At the moment, CanonicalCodes does not support writing more than 288 symbols.
|
|
if (alphabet_sizes[0] > 288)
|
|
return Error::from_string_literal("Invalid alphabet size");
|
|
|
|
// We do use huffman coding by writing a single prefix-code-group for the entire image.
|
|
// FIXME: Consider using a meta-prefix image and using one prefix-code-group per tile.
|
|
|
|
Array<Array<u16, 256>, 4> symbol_frequencies {};
|
|
for (ARGB32 pixel : bitmap) {
|
|
static constexpr auto saturating_increment = [](u16& value) {
|
|
if (value < UINT16_MAX)
|
|
value++;
|
|
};
|
|
saturating_increment(symbol_frequencies[0][(pixel >> 8) & 0xff]); // green
|
|
saturating_increment(symbol_frequencies[1][(pixel >> 16) & 0xff]); // red
|
|
saturating_increment(symbol_frequencies[2][pixel & 0xff]); // blue
|
|
saturating_increment(symbol_frequencies[3][pixel >> 24]); // alpha
|
|
}
|
|
|
|
Array<Array<u8, 256>, 4> code_lengths {};
|
|
for (int i = 0; i < 4; ++i) {
|
|
// "Code [0..15] indicates literal code lengths." => the maximum bit length is 15.
|
|
Compress::generate_huffman_lengths(code_lengths[i], symbol_frequencies[i], 15);
|
|
}
|
|
|
|
PrefixCodeGroup prefix_code_group;
|
|
for (int i = 0; i < 4; ++i) {
|
|
u8 symbols[2];
|
|
unsigned non_zero_symbol_count = 0;
|
|
for (int j = 0; j < 256; ++j) {
|
|
if (code_lengths[i][j] != 0) {
|
|
if (non_zero_symbol_count < 2)
|
|
symbols[non_zero_symbol_count] = j;
|
|
non_zero_symbol_count++;
|
|
}
|
|
}
|
|
|
|
if (non_zero_symbol_count <= 2)
|
|
prefix_code_group[i] = TRY(write_simple_code_lengths(bit_stream, { symbols, non_zero_symbol_count }));
|
|
else
|
|
prefix_code_group[i] = TRY(write_normal_code_lengths(bit_stream, code_lengths[i], alphabet_sizes[i]));
|
|
|
|
if (i == 3)
|
|
is_fully_opaque = non_zero_symbol_count == 1 && symbols[0] == 0xff;
|
|
}
|
|
|
|
// For code #5, use a simple empty code, since we don't use this yet.
|
|
prefix_code_group[4] = TRY(write_simple_code_lengths(bit_stream, {}));
|
|
|
|
// Image data.
|
|
TRY(write_image_data(bit_stream, bitmap, prefix_code_group));
|
|
|
|
// FIXME: Make ~LittleEndianOutputBitStream do this, or make it VERIFY() that it has happened at least.
|
|
TRY(bit_stream.align_to_byte_boundary());
|
|
TRY(bit_stream.flush_buffer_to_stream());
|
|
|
|
return {};
|
|
}
|
|
|
|
ErrorOr<ByteBuffer> compress_VP8L_image_data(Bitmap const& bitmap, bool& is_fully_opaque)
|
|
{
|
|
AllocatingMemoryStream vp8l_data_stream;
|
|
TRY(write_VP8L_image_data(vp8l_data_stream, bitmap, is_fully_opaque));
|
|
return vp8l_data_stream.read_until_eof();
|
|
}
|
|
|
|
}
|