ladybird/AK/UnicodeUtils.h
Timothy Flynn 418409aa6f AK: Fix usage of constexpr within Utf16View and related utilities
* Error and ErrorOr are not themelves constexpr, so a function returning
  these types cannot be constexpr.

* The UDL was trying to call Utf16View::validate, which is not constexpr
  itself. The compiler will actually already raise an error if a UTF-16
  literal is invalid, so let's just avoid the call altogether.
2025-07-05 01:25:22 +12:00

212 lines
7.4 KiB
C++

/*
* Copyright (c) 2021, Max Wipfli <mail@maxwipfli.ch>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Concepts.h>
#include <AK/Error.h>
#include <AK/Forward.h>
namespace AK::UnicodeUtils {
constexpr int bytes_to_store_code_point_in_utf8(u32 code_point)
{
if (code_point <= 0x7f)
return 1;
if (code_point <= 0x7ff)
return 2;
if (code_point <= 0xffff)
return 3;
if (code_point <= 0x10ffff)
return 4;
return 0;
}
template<typename Callback>
[[nodiscard]] constexpr int code_point_to_utf8(u32 code_point, Callback callback)
{
if (code_point <= 0x7f) {
callback(static_cast<char>(code_point));
return 1;
} else if (code_point <= 0x07ff) {
callback(static_cast<char>(((code_point >> 6) & 0x1f) | 0xc0));
callback(static_cast<char>(((code_point >> 0) & 0x3f) | 0x80));
return 2;
} else if (code_point <= 0xffff) {
callback(static_cast<char>(((code_point >> 12) & 0x0f) | 0xe0));
callback(static_cast<char>(((code_point >> 6) & 0x3f) | 0x80));
callback(static_cast<char>(((code_point >> 0) & 0x3f) | 0x80));
return 3;
} else if (code_point <= 0x10ffff) {
callback(static_cast<char>(((code_point >> 18) & 0x07) | 0xf0));
callback(static_cast<char>(((code_point >> 12) & 0x3f) | 0x80));
callback(static_cast<char>(((code_point >> 6) & 0x3f) | 0x80));
callback(static_cast<char>(((code_point >> 0) & 0x3f) | 0x80));
return 4;
}
return -1;
}
template<FallibleFunction<char> Callback>
[[nodiscard]] ErrorOr<int> try_code_point_to_utf8(u32 code_point, Callback&& callback)
{
if (code_point <= 0x7f) {
TRY(callback(static_cast<char>(code_point)));
return 1;
}
if (code_point <= 0x07ff) {
TRY(callback(static_cast<char>((((code_point >> 6) & 0x1f) | 0xc0))));
TRY(callback(static_cast<char>((((code_point >> 0) & 0x3f) | 0x80))));
return 2;
}
if (code_point <= 0xffff) {
TRY(callback(static_cast<char>((((code_point >> 12) & 0x0f) | 0xe0))));
TRY(callback(static_cast<char>((((code_point >> 6) & 0x3f) | 0x80))));
TRY(callback(static_cast<char>((((code_point >> 0) & 0x3f) | 0x80))));
return 3;
}
if (code_point <= 0x10ffff) {
TRY(callback(static_cast<char>((((code_point >> 18) & 0x07) | 0xf0))));
TRY(callback(static_cast<char>((((code_point >> 12) & 0x3f) | 0x80))));
TRY(callback(static_cast<char>((((code_point >> 6) & 0x3f) | 0x80))));
TRY(callback(static_cast<char>((((code_point >> 0) & 0x3f) | 0x80))));
return 4;
}
return -1;
}
constexpr inline u16 HIGH_SURROGATE_MIN = 0xd800;
constexpr inline u16 HIGH_SURROGATE_MAX = 0xdbff;
constexpr inline u16 LOW_SURROGATE_MIN = 0xdc00;
constexpr inline u16 LOW_SURROGATE_MAX = 0xdfff;
constexpr inline u32 REPLACEMENT_CODE_POINT = 0xfffd;
constexpr inline u32 FIRST_SUPPLEMENTARY_PLANE_CODE_POINT = 0x10000;
enum class AllowLonelySurrogates {
No,
Yes,
};
[[nodiscard]] constexpr size_t code_unit_length_for_code_point(u32 code_point)
{
return code_point < FIRST_SUPPLEMENTARY_PLANE_CODE_POINT ? 1uz : 2uz;
}
[[nodiscard]] constexpr bool is_utf16_high_surrogate(u16 code_unit)
{
return (code_unit >= HIGH_SURROGATE_MIN) && (code_unit <= HIGH_SURROGATE_MAX);
}
[[nodiscard]] constexpr bool is_utf16_low_surrogate(u16 code_unit)
{
return (code_unit >= LOW_SURROGATE_MIN) && (code_unit <= LOW_SURROGATE_MAX);
}
[[nodiscard]] constexpr u32 decode_utf16_surrogate_pair(u16 high_surrogate, u16 low_surrogate)
{
VERIFY(is_utf16_high_surrogate(high_surrogate));
VERIFY(is_utf16_low_surrogate(low_surrogate));
return ((high_surrogate - HIGH_SURROGATE_MIN) << 10) + (low_surrogate - LOW_SURROGATE_MIN) + FIRST_SUPPLEMENTARY_PLANE_CODE_POINT;
}
template<typename Callback>
[[nodiscard]] constexpr size_t code_point_to_utf16(u32 code_point, Callback callback)
{
if (code_point < FIRST_SUPPLEMENTARY_PLANE_CODE_POINT) {
callback(static_cast<char16_t>(code_point));
return 1uz;
}
if (code_point <= 0x10ffff) {
code_point -= FIRST_SUPPLEMENTARY_PLANE_CODE_POINT;
auto code_unit = static_cast<u16>(HIGH_SURROGATE_MIN | (code_point >> 10));
callback(static_cast<char16_t>(code_unit));
code_unit = static_cast<u16>(LOW_SURROGATE_MIN | (code_point & 0x3ff));
callback(static_cast<char16_t>(code_unit));
return 2uz;
}
VERIFY_NOT_REACHED();
}
template<FallibleFunction<char16_t> Callback>
ALWAYS_INLINE ErrorOr<size_t> try_code_point_to_utf16(u32 code_point, Callback callback)
{
if (code_point < FIRST_SUPPLEMENTARY_PLANE_CODE_POINT) {
TRY(callback(static_cast<char16_t>(code_point)));
return 1uz;
}
if (code_point <= 0x10ffff) {
code_point -= FIRST_SUPPLEMENTARY_PLANE_CODE_POINT;
auto code_unit = static_cast<u16>(HIGH_SURROGATE_MIN | (code_point >> 10));
TRY(callback(static_cast<char16_t>(code_unit)));
code_unit = static_cast<u16>(LOW_SURROGATE_MIN | (code_point & 0x3ff));
TRY(callback(static_cast<char16_t>(code_unit)));
return 2uz;
}
VERIFY_NOT_REACHED();
}
/**
* Compute the maximum number of UTF-8 bytes needed to store a given UTF-16 string, accounting for unmatched UTF-16 surrogates.
* This function will overcount by at most 33%; 2 bytes for every valid UTF-16 codepoint between U+100000 and U+10FFFF.
*/
[[nodiscard]] static inline size_t maximum_utf8_length_from_utf16(ReadonlySpan<char16_t> code_units)
{
// # UTF-8 code point -> no. UTF-8 bytes needed
// U+0000 - U+007F => 1 UTF-8 bytes
// U+0080 - U+07FF => 2 UTF-8 bytes
// U+0800 - U+FFFF => 3 UTF-8 bytes
// U+010000 - U+10FFFF => 4 UTF-8 bytes
// # UTF-16 code unit -> no. UTF-8 bytes needed
// 0x0000 - 0x007f [U+000000 - U+00007F] = 1 UTF-8 bytes
// 0x0080 - 0x07ff [U+000080 - U+0007FF] = 2 UTF-8 bytes
// 0x0800 - 0xd7ff [U+000800 - U+00FFFF] = 3 UTF-8 bytes
// 0xd800 - 0xdbff [U+010000 - U+10FFFF] = 4 UTF-8 bytes to encode valid UTF-16 code units,
// or 3 UTF-8 bytes to encode the unmatched surrogate code unit.
// 0xdc00 - 0xdfff [U+010000 - U+10FFFF] = 0 UTF-8 bytes to encode valid UTF-16 code units (because it is already accounted for in 0xdc00 - 0xdfff),
// or 3 UTF-8 bytes to encode the unmatched surrogate code unit.
// 0xe000 - 0xffff [U+00E000 - U+00FFFF] = 3 UTF-8 bytes
// # UTF-16 code unit -> actual length added.
// 0x0000 - 0x007f = 1
// 0x0080 - 0x07ff = 2
// 0x0800 - 0xd7ff = 3
// 0xd800 - 0xdbff = 3
// ^ If the next code unit is 0xdc00 - 0xdfff, they will combined sum to 6, which is greater than the 4 required.
// Otherwise, 3 bytes are needed to encode U+D800 - U+DBFF.
// 0xdc00 - 0xdfff = 3
// ^ If the previous code unit was, 0xd800 - 0xdbff, this will ensure that the combined sum is greater than 4.
// Otherwise, 3 bytes are needed to encode U+DC00 - U+DFFF.
// 0xe000 - 0xffff = 3
size_t maximum_utf8_length = 0;
// NOTE: This loop is designed to be easy to vectorize.
for (auto code_unit : code_units) {
maximum_utf8_length += 1;
maximum_utf8_length += code_unit > 0x007f;
maximum_utf8_length += code_unit > 0x07ff;
}
return maximum_utf8_length;
}
}
#if USING_AK_GLOBALLY
using AK::UnicodeUtils::AllowLonelySurrogates;
#endif