ladybird/Libraries/LibCore/DateTime.cpp
Tomasz Strejczek 7278a17e87
Some checks are pending
CI / macOS, arm64, Sanitizer_CI, Clang (push) Waiting to run
CI / Linux, x86_64, Fuzzers_CI, Clang (push) Waiting to run
CI / Linux, x86_64, Sanitizer_CI, GNU (push) Waiting to run
CI / Linux, x86_64, Sanitizer_CI, Clang (push) Waiting to run
Package the js repl as a binary artifact / macOS, arm64 (push) Waiting to run
Package the js repl as a binary artifact / Linux, x86_64 (push) Waiting to run
Run test262 and test-wasm / run_and_update_results (push) Waiting to run
Lint Code / lint (push) Waiting to run
Label PRs with merge conflicts / auto-labeler (push) Waiting to run
Push notes / build (push) Waiting to run
LibCore: Remove DateTime::to_string() and to_byte_string()
2025-06-19 18:42:45 -06:00

434 lines
12 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <andreas@ladybird.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/CharacterTypes.h>
#include <AK/DateConstants.h>
#include <AK/GenericLexer.h>
#include <AK/String.h>
#include <AK/StringBuilder.h>
#include <AK/Time.h>
#include <LibCore/DateTime.h>
#include <LibUnicode/TimeZone.h>
#include <errno.h>
#include <time.h>
#ifdef AK_OS_WINDOWS
# define tzname _tzname
# define timegm _mkgmtime
# define localtime_r(time, tm) localtime_s(tm, time)
# define gmtime_r(time, tm) gmtime_s(tm, time)
#endif
namespace Core {
static Optional<StringView> parse_time_zone_name(GenericLexer& lexer)
{
auto const& time_zones = Unicode::available_time_zones();
auto start_position = lexer.tell();
Optional<StringView> canonicalized_time_zone;
lexer.ignore_until([&](auto) {
auto time_zone = lexer.input().substring_view(start_position, lexer.tell() - start_position + 1);
auto it = time_zones.find_if([&](auto const& candidate) { return time_zone.equals_ignoring_ascii_case(candidate); });
if (it == time_zones.end())
return false;
canonicalized_time_zone = *it;
return true;
});
if (canonicalized_time_zone.has_value())
lexer.ignore();
return canonicalized_time_zone;
}
static void apply_time_zone_offset(StringView time_zone, UnixDateTime& time)
{
if (auto offset = Unicode::time_zone_offset(time_zone, time); offset.has_value())
time -= offset->offset;
}
DateTime DateTime::now()
{
return from_timestamp(time(nullptr));
}
DateTime DateTime::create(int year, int month, int day, int hour, int minute, int second)
{
DateTime dt;
dt.set_time(year, month, day, hour, minute, second);
return dt;
}
DateTime DateTime::from_timestamp(time_t timestamp)
{
struct tm tm;
localtime_r(&timestamp, &tm);
DateTime dt;
dt.m_year = tm.tm_year + 1900;
dt.m_month = tm.tm_mon + 1;
dt.m_day = tm.tm_mday;
dt.m_hour = tm.tm_hour;
dt.m_minute = tm.tm_min;
dt.m_second = tm.tm_sec;
dt.m_timestamp = timestamp;
return dt;
}
unsigned DateTime::weekday() const
{
return ::day_of_week(m_year, m_month, m_day);
}
unsigned DateTime::days_in_month() const
{
return ::days_in_month(m_year, m_month);
}
unsigned DateTime::day_of_year() const
{
return ::day_of_year(m_year, m_month, m_day);
}
bool DateTime::is_leap_year() const
{
return ::is_leap_year(m_year);
}
void DateTime::set_time(int year, int month, int day, int hour, int minute, int second)
{
struct tm tm = {};
tm.tm_sec = second;
tm.tm_min = minute;
tm.tm_hour = hour;
tm.tm_mday = day;
tm.tm_mon = month - 1;
tm.tm_year = year - 1900;
tm.tm_isdst = -1;
// mktime() doesn't read tm.tm_wday and tm.tm_yday, no need to fill them in.
m_timestamp = mktime(&tm);
// mktime() normalizes the components to the right ranges (Jan 32 -> Feb 1 etc), so read fields back out from tm.
m_year = tm.tm_year + 1900;
m_month = tm.tm_mon + 1;
m_day = tm.tm_mday;
m_hour = tm.tm_hour;
m_minute = tm.tm_min;
m_second = tm.tm_sec;
}
void DateTime::set_time_only(int hour, int minute, Optional<int> second)
{
set_time(year(), month(), day(), hour, minute, second.has_value() ? second.release_value() : this->second());
}
void DateTime::set_date(Core::DateTime const& other)
{
set_time(other.year(), other.month(), other.day(), hour(), minute(), second());
}
Optional<DateTime> DateTime::parse(StringView format, StringView string)
{
unsigned format_pos = 0;
struct tm tm = {};
tm.tm_isdst = -1;
auto parsing_failed = false;
auto tm_represents_utc_time = false;
Optional<StringView> parsed_time_zone;
GenericLexer string_lexer(string);
auto parse_number = [&] {
auto result = string_lexer.consume_decimal_integer<int>();
if (result.is_error()) {
parsing_failed = true;
return 0;
}
return result.value();
};
auto consume = [&](char c) {
if (!string_lexer.consume_specific(c))
parsing_failed = true;
};
auto consume_specific_ascii_case_insensitive = [&](StringView name) {
auto next_string = string_lexer.peek_string(name.length());
if (next_string.has_value() && next_string->equals_ignoring_ascii_case(name)) {
string_lexer.consume(name.length());
return true;
}
return false;
};
while (format_pos < format.length() && !string_lexer.is_eof()) {
if (format[format_pos] != '%') {
consume(format[format_pos]);
format_pos++;
continue;
}
format_pos++;
if (format_pos == format.length())
return {};
switch (format[format_pos]) {
case 'a': {
auto wday = 0;
for (auto name : short_day_names) {
if (consume_specific_ascii_case_insensitive(name)) {
tm.tm_wday = wday;
break;
}
++wday;
}
if (wday == 7)
return {};
break;
}
case 'A': {
auto wday = 0;
for (auto name : long_day_names) {
if (consume_specific_ascii_case_insensitive(name)) {
tm.tm_wday = wday;
break;
}
++wday;
}
if (wday == 7)
return {};
break;
}
case 'h':
case 'b': {
auto mon = 0;
for (auto name : short_month_names) {
if (consume_specific_ascii_case_insensitive(name)) {
tm.tm_mon = mon;
break;
}
++mon;
}
if (mon == 12)
return {};
break;
}
case 'B': {
auto mon = 0;
for (auto name : long_month_names) {
if (consume_specific_ascii_case_insensitive(name)) {
tm.tm_mon = mon;
break;
}
++mon;
}
if (mon == 12)
return {};
break;
}
case 'C': {
int num = parse_number();
tm.tm_year = (num - 19) * 100;
break;
}
case 'd':
tm.tm_mday = parse_number();
break;
case 'D': {
int mon = parse_number();
consume('/');
int day = parse_number();
consume('/');
int year = parse_number();
tm.tm_mon = mon + 1;
tm.tm_mday = day;
tm.tm_year = (year + 1900) % 100;
break;
}
case 'e':
tm.tm_mday = parse_number();
break;
case 'H':
tm.tm_hour = parse_number();
break;
case 'I': {
int num = parse_number();
tm.tm_hour = num % 12;
break;
}
case 'j':
// a little trickery here... we can get mktime() to figure out mon and mday using out of range values.
// yday is not used so setting it is pointless.
tm.tm_mday = parse_number();
tm.tm_mon = 0;
mktime(&tm);
break;
case 'm': {
int num = parse_number();
tm.tm_mon = num - 1;
break;
}
case 'M':
tm.tm_min = parse_number();
break;
case 'n':
case 't':
string_lexer.consume_while(is_ascii_blank);
break;
case 'r':
case 'p': {
auto ampm = string_lexer.consume(2);
if (ampm == "PM") {
if (tm.tm_hour < 12)
tm.tm_hour += 12;
} else if (ampm != "AM") {
return {};
}
break;
}
case 'R':
tm.tm_hour = parse_number();
consume(':');
tm.tm_min = parse_number();
break;
case 'S':
tm.tm_sec = parse_number();
break;
case 'T':
tm.tm_hour = parse_number();
consume(':');
tm.tm_min = parse_number();
consume(':');
tm.tm_sec = parse_number();
break;
case 'w':
tm.tm_wday = parse_number();
break;
case 'y': {
int year = parse_number();
tm.tm_year = year <= 99 && year > 69 ? 1900 + year : 2000 + year;
break;
}
case 'Y': {
int year = parse_number();
tm.tm_year = year - 1900;
break;
}
case 'z': {
tm_represents_utc_time = true;
if (string_lexer.consume_specific('Z')) {
// UTC time
break;
}
int sign;
if (string_lexer.consume_specific('+'))
sign = -1;
else if (string_lexer.consume_specific('-'))
sign = +1;
else
return {};
auto hours = parse_number();
int minutes;
if (string_lexer.consume_specific(':')) {
minutes = parse_number();
} else {
minutes = hours % 100;
hours = hours / 100;
}
tm.tm_hour += sign * hours;
tm.tm_min += sign * minutes;
break;
}
case 'x': {
tm_represents_utc_time = true;
auto hours = parse_number();
int minutes;
if (string_lexer.consume_specific(':')) {
minutes = parse_number();
} else {
minutes = hours % 100;
hours = hours / 100;
}
tm.tm_hour -= hours;
tm.tm_min -= minutes;
break;
}
case 'X': {
if (!string_lexer.consume_specific('.'))
return {};
auto discarded = parse_number();
(void)discarded; // NOTE: the tm structure does not support sub second precision, so drop this value.
break;
}
case 'Z':
parsed_time_zone = parse_time_zone_name(string_lexer);
if (!parsed_time_zone.has_value())
return {};
tm_represents_utc_time = true;
break;
case '+': {
Optional<char> next_format_character;
if (format_pos + 1 < format.length()) {
next_format_character = format[format_pos + 1];
// Disallow another formatter directly after %+. This is to avoid ambiguity when parsing a string like
// "ignoreJan" with "%+%b", as it would be non-trivial to know that where the %b field begins.
if (next_format_character == '%')
return {};
}
auto discarded = string_lexer.consume_until([&](auto ch) { return ch == next_format_character; });
if (discarded.is_empty())
return {};
break;
}
case '%':
consume('%');
break;
default:
parsing_failed = true;
break;
}
if (parsing_failed)
return {};
format_pos++;
}
if (!string_lexer.is_eof() || format_pos != format.length())
return {};
// If an explicit time zone offset was present, the time in tm was shifted to UTC. If a time zone name was present,
// the time in tm needs to be shifted to UTC. In both cases, convert the result to local time, as that is what is
// expected by `mktime`.
if (tm_represents_utc_time) {
auto utc_time = UnixDateTime::from_seconds_since_epoch(timegm(&tm));
if (parsed_time_zone.has_value())
apply_time_zone_offset(*parsed_time_zone, utc_time);
time_t utc_time_t = utc_time.seconds_since_epoch();
localtime_r(&utc_time_t, &tm);
}
return DateTime::from_timestamp(mktime(&tm));
}
}