ladybird/Libraries/LibCrypto/PK/RSA.cpp
devgianlu 4e747f525a
Some checks are pending
CI / Linux, x86_64, Fuzzers_CI, Clang (push) Waiting to run
CI / macOS, arm64, Sanitizer_CI, Clang (push) Waiting to run
CI / Linux, x86_64, Sanitizer_CI, GNU (push) Waiting to run
CI / Linux, x86_64, Sanitizer_CI, Clang (push) Waiting to run
Package the js repl as a binary artifact / Linux, arm64 (push) Waiting to run
Package the js repl as a binary artifact / macOS, arm64 (push) Waiting to run
Package the js repl as a binary artifact / Linux, x86_64 (push) Waiting to run
Run test262 and test-wasm / run_and_update_results (push) Waiting to run
Lint Code / lint (push) Waiting to run
Label PRs with merge conflicts / auto-labeler (push) Waiting to run
Push notes / build (push) Waiting to run
LibCrypto+LibWeb: Check RSA keys validity on SubtleCrypto import_key
Fix various TODO by checking the validity of RSA keys when they are
imported.

Also add some internal tests since WPT doesn't seem to provide them.
2025-06-25 12:21:28 +12:00

583 lines
21 KiB
C++

/*
* Copyright (c) 2020, Ali Mohammad Pur <mpfard@serenityos.org>
* Copyright (c) 2025, Altomani Gianluca <altomanigianluca@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/ByteBuffer.h>
#include <AK/Debug.h>
#include <AK/Random.h>
#include <LibCrypto/ASN1/ASN1.h>
#include <LibCrypto/ASN1/DER.h>
#include <LibCrypto/ASN1/PEM.h>
#include <LibCrypto/Certificate/Certificate.h>
#include <LibCrypto/OpenSSL.h>
#include <LibCrypto/PK/RSA.h>
#include <openssl/core_names.h>
#include <openssl/evp.h>
#include <openssl/param_build.h>
#include <openssl/rsa.h>
namespace Crypto::PK {
ErrorOr<RSA::KeyPairType> RSA::parse_rsa_key(ReadonlyBytes der, bool is_private, Vector<StringView> current_scope)
{
KeyPairType keypair;
ASN1::Decoder decoder(der);
if (is_private) {
// RSAPrivateKey ::= SEQUENCE {
// version Version,
// modulus INTEGER,
// publicExponent INTEGER,
// privateExponent INTEGER,
// prime1 INTEGER,
// prime2 INTEGER,
// exponent1 INTEGER,
// exponent2 INTEGER,
// coefficient INTEGER,
// otherPrimeInfos OtherPrimeInfos OPTIONAL
// }
ENTER_TYPED_SCOPE(Sequence, "RSAPrivateKey");
PUSH_SCOPE("version");
READ_OBJECT(Integer, Crypto::UnsignedBigInteger, version);
POP_SCOPE();
if (version != 0) {
ERROR_WITH_SCOPE(TRY(String::formatted("Invalid version value at {}", current_scope)));
}
PUSH_SCOPE("modulus");
READ_OBJECT(Integer, Crypto::UnsignedBigInteger, modulus);
POP_SCOPE();
PUSH_SCOPE("publicExponent");
READ_OBJECT(Integer, Crypto::UnsignedBigInteger, public_exponent);
POP_SCOPE();
PUSH_SCOPE("privateExponent");
READ_OBJECT(Integer, Crypto::UnsignedBigInteger, private_exponent);
POP_SCOPE();
PUSH_SCOPE("prime1");
READ_OBJECT(Integer, Crypto::UnsignedBigInteger, prime1);
POP_SCOPE();
PUSH_SCOPE("prime2");
READ_OBJECT(Integer, Crypto::UnsignedBigInteger, prime2);
POP_SCOPE();
PUSH_SCOPE("exponent1");
READ_OBJECT(Integer, Crypto::UnsignedBigInteger, exponent1);
POP_SCOPE();
PUSH_SCOPE("exponent2");
READ_OBJECT(Integer, Crypto::UnsignedBigInteger, exponent2);
POP_SCOPE();
PUSH_SCOPE("coefficient");
READ_OBJECT(Integer, Crypto::UnsignedBigInteger, coefficient);
POP_SCOPE();
keypair.private_key = {
modulus,
private_exponent,
public_exponent,
prime1,
prime2,
exponent1,
exponent2,
coefficient,
};
keypair.public_key = { modulus, public_exponent };
EXIT_SCOPE();
return keypair;
} else {
// RSAPublicKey ::= SEQUENCE {
// modulus INTEGER,
// publicExponent INTEGER
// }
ENTER_TYPED_SCOPE(Sequence, "RSAPublicKey");
PUSH_SCOPE("modulus");
READ_OBJECT(Integer, Crypto::UnsignedBigInteger, modulus);
POP_SCOPE();
PUSH_SCOPE("publicExponent");
READ_OBJECT(Integer, Crypto::UnsignedBigInteger, public_exponent);
POP_SCOPE();
keypair.public_key = { move(modulus), move(public_exponent) };
EXIT_SCOPE();
return keypair;
}
}
ErrorOr<RSA::KeyPairType> RSA::generate_key_pair(size_t bits, UnsignedBigInteger e)
{
auto ctx = TRY(OpenSSL_PKEY_CTX::wrap(EVP_PKEY_CTX_new_from_name(nullptr, "RSA", nullptr)));
OPENSSL_TRY(EVP_PKEY_keygen_init(ctx.ptr()));
auto e_bn = TRY(unsigned_big_integer_to_openssl_bignum(e));
auto* params_bld = OPENSSL_TRY_PTR(OSSL_PARAM_BLD_new());
ScopeGuard const free_params_bld = [&] { OSSL_PARAM_BLD_free(params_bld); };
OPENSSL_TRY(OSSL_PARAM_BLD_push_size_t(params_bld, OSSL_PKEY_PARAM_RSA_BITS, bits));
OPENSSL_TRY(OSSL_PARAM_BLD_push_BN(params_bld, OSSL_PKEY_PARAM_RSA_E, e_bn.ptr()));
auto* params = OSSL_PARAM_BLD_to_param(params_bld);
ScopeGuard const free_params = [&] { OSSL_PARAM_free(params); };
OPENSSL_TRY(EVP_PKEY_CTX_set_params(ctx.ptr(), params));
auto key = TRY(OpenSSL_PKEY::create());
auto* key_ptr = key.ptr();
OPENSSL_TRY(EVP_PKEY_generate(ctx.ptr(), &key_ptr));
#define OPENSSL_GET_KEY_PARAM(param, openssl_name) \
auto param##_bn = TRY(OpenSSL_BN::create()); \
auto* param##_bn_ptr = param##_bn.ptr(); \
OPENSSL_TRY(EVP_PKEY_get_bn_param(key.ptr(), openssl_name, &param##_bn_ptr)); \
auto param = TRY(openssl_bignum_to_unsigned_big_integer(param##_bn));
OPENSSL_GET_KEY_PARAM(n, OSSL_PKEY_PARAM_RSA_N);
OPENSSL_GET_KEY_PARAM(d, OSSL_PKEY_PARAM_RSA_D);
OPENSSL_GET_KEY_PARAM(p, OSSL_PKEY_PARAM_RSA_FACTOR1);
OPENSSL_GET_KEY_PARAM(q, OSSL_PKEY_PARAM_RSA_FACTOR2);
OPENSSL_GET_KEY_PARAM(dp, OSSL_PKEY_PARAM_RSA_EXPONENT1);
OPENSSL_GET_KEY_PARAM(dq, OSSL_PKEY_PARAM_RSA_EXPONENT2);
OPENSSL_GET_KEY_PARAM(qinv, OSSL_PKEY_PARAM_RSA_COEFFICIENT1);
#undef OPENSSL_GET_KEY_PARAM
RSAKeyPair<PublicKeyType, PrivateKeyType> keys {
{ n, e },
{ n, d, e, p, q, dp, dq, qinv }
};
return keys;
}
#define OPENSSL_SET_KEY_PARAM_NOT_ZERO(param, openssl_name, value) \
auto param##_bn = TRY(unsigned_big_integer_to_openssl_bignum(value)); \
if (!value.is_zero()) { \
OPENSSL_TRY(OSSL_PARAM_BLD_push_BN(params_bld, openssl_name, param##_bn.ptr())); \
}
static ErrorOr<OpenSSL_PKEY> public_key_to_openssl_pkey(RSAPublicKey const& public_key)
{
auto ctx = TRY(OpenSSL_PKEY_CTX::wrap(EVP_PKEY_CTX_new_from_name(nullptr, "RSA", nullptr)));
OPENSSL_TRY(EVP_PKEY_fromdata_init(ctx.ptr()));
auto* params_bld = OPENSSL_TRY_PTR(OSSL_PARAM_BLD_new());
ScopeGuard const free_params_bld = [&] { OSSL_PARAM_BLD_free(params_bld); };
OPENSSL_SET_KEY_PARAM_NOT_ZERO(n, OSSL_PKEY_PARAM_RSA_N, public_key.modulus());
OPENSSL_SET_KEY_PARAM_NOT_ZERO(e, OSSL_PKEY_PARAM_RSA_E, public_key.public_exponent());
auto* params = OSSL_PARAM_BLD_to_param(params_bld);
ScopeGuard const free_params = [&] { OSSL_PARAM_free(params); };
auto key = TRY(OpenSSL_PKEY::create());
auto* key_ptr = key.ptr();
OPENSSL_TRY(EVP_PKEY_fromdata(ctx.ptr(), &key_ptr, EVP_PKEY_PUBLIC_KEY, params));
return key;
}
static ErrorOr<OpenSSL_PKEY> private_key_to_openssl_pkey(RSAPrivateKey const& private_key)
{
auto ctx = TRY(OpenSSL_PKEY_CTX::wrap(EVP_PKEY_CTX_new_from_name(nullptr, "RSA", nullptr)));
OPENSSL_TRY(EVP_PKEY_fromdata_init(ctx.ptr()));
auto* params_bld = OPENSSL_TRY_PTR(OSSL_PARAM_BLD_new());
ScopeGuard const free_params_bld = [&] { OSSL_PARAM_BLD_free(params_bld); };
OPENSSL_SET_KEY_PARAM_NOT_ZERO(n, OSSL_PKEY_PARAM_RSA_N, private_key.modulus());
OPENSSL_SET_KEY_PARAM_NOT_ZERO(e, OSSL_PKEY_PARAM_RSA_E, private_key.public_exponent());
OPENSSL_SET_KEY_PARAM_NOT_ZERO(d, OSSL_PKEY_PARAM_RSA_D, private_key.private_exponent());
OPENSSL_SET_KEY_PARAM_NOT_ZERO(p, OSSL_PKEY_PARAM_RSA_FACTOR1, private_key.prime1());
OPENSSL_SET_KEY_PARAM_NOT_ZERO(q, OSSL_PKEY_PARAM_RSA_FACTOR2, private_key.prime2());
OPENSSL_SET_KEY_PARAM_NOT_ZERO(dp, OSSL_PKEY_PARAM_RSA_EXPONENT1, private_key.exponent1());
OPENSSL_SET_KEY_PARAM_NOT_ZERO(dq, OSSL_PKEY_PARAM_RSA_EXPONENT2, private_key.exponent2());
OPENSSL_SET_KEY_PARAM_NOT_ZERO(qinv, OSSL_PKEY_PARAM_RSA_COEFFICIENT1, private_key.coefficient());
auto* params = OSSL_PARAM_BLD_to_param(params_bld);
ScopeGuard const free_params = [&] { OSSL_PARAM_free(params); };
auto key = TRY(OpenSSL_PKEY::create());
auto* key_ptr = key.ptr();
OPENSSL_TRY(EVP_PKEY_fromdata(ctx.ptr(), &key_ptr, EVP_PKEY_KEYPAIR, params));
return key;
}
#undef OPENSSL_SET_KEY_PARAM_NOT_ZERO
// https://www.rfc-editor.org/rfc/rfc3447.html#section-3.1
ErrorOr<bool> RSAPublicKey::is_valid() const
{
// In a valid RSA public key, the RSA modulus n is a product of u
// distinct odd primes r_i, i = 1, 2, ..., u, where u >= 2, and the RSA
// public exponent e is an integer between 3 and n - 1 satisfying GCD(e,
// \lambda(n)) = 1, where \lambda(n) = LCM(r_1 - 1, ..., r_u - 1).
if (!m_public_exponent.is_odd())
return false;
if (m_public_exponent < 3 || m_public_exponent >= m_modulus)
return false;
return true;
}
// https://www.rfc-editor.org/rfc/rfc3447.html#section-3.2
ErrorOr<bool> RSAPrivateKey::is_valid() const
{
if (!m_public_exponent.is_odd())
return false;
if (m_public_exponent < 3 || m_public_exponent >= m_modulus)
return false;
if (!m_prime_1.is_zero() && !m_prime_2.is_zero() && !m_exponent_1.is_zero() && !m_exponent_2.is_zero() && !m_coefficient.is_zero()) {
// In a valid RSA private key with the second representation, the two
// factors p and q are the first two prime factors of the RSA modulus n
// (i.e., r_1 and r_2), the CRT exponents dP and dQ are positive
// integers less than p and q respectively satisfying
// e * dP == 1 (mod (p-1))
// e * dQ == 1 (mod (q-1)) ,
// and the CRT coefficient qInv is a positive integer less than p
// satisfying
// q * qInv == 1 (mod p).
// If u > 2, the representation will include one or more triplets (r_i,
// d_i, t_i), i = 3, ..., u. The factors r_i are the additional prime
// factors of the RSA modulus n. Each CRT exponent d_i (i = 3, ..., u)
// satisfies
// e * d_i == 1 (mod (r_i - 1)).
// Each CRT coefficient t_i (i = 3, ..., u) is a positive integer less
// than r_i satisfying
// R_i * t_i == 1 (mod r_i) ,
// where R_i = r_1 * r_2 * ... * r_(i-1).
if (m_exponent_1 >= m_prime_1 || m_exponent_2 >= m_prime_2 || m_coefficient >= m_prime_1)
return false;
if (m_prime_1.multiplied_by(m_prime_2) != m_modulus)
return false;
auto tmp_bn = TRY(OpenSSL_BN::create());
auto e = TRY(unsigned_big_integer_to_openssl_bignum(m_public_exponent)),
p = TRY(unsigned_big_integer_to_openssl_bignum(m_prime_1)),
q = TRY(unsigned_big_integer_to_openssl_bignum(m_prime_2));
auto dp = TRY(unsigned_big_integer_to_openssl_bignum(m_exponent_1)),
dq = TRY(unsigned_big_integer_to_openssl_bignum(m_exponent_2));
auto* bn_ctx = OPENSSL_TRY_PTR(BN_CTX_new());
ScopeGuard const free_bn_ctx = [&] { BN_CTX_free(bn_ctx); };
auto p1 = TRY(OpenSSL_BN::create());
OPENSSL_TRY(BN_sub(p1.ptr(), p.ptr(), BN_value_one()));
OPENSSL_TRY(BN_mod_mul(tmp_bn.ptr(), e.ptr(), dp.ptr(), p1.ptr(), bn_ctx));
if (!BN_is_one(tmp_bn.ptr()))
return false;
auto q1 = TRY(OpenSSL_BN::create());
OPENSSL_TRY(BN_sub(q1.ptr(), q.ptr(), BN_value_one()));
OPENSSL_TRY(BN_mod_mul(tmp_bn.ptr(), e.ptr(), dq.ptr(), q1.ptr(), bn_ctx));
if (!BN_is_one(tmp_bn.ptr()))
return false;
auto q_inv = TRY(unsigned_big_integer_to_openssl_bignum(m_coefficient));
OPENSSL_TRY(BN_mod_mul(tmp_bn.ptr(), q.ptr(), q_inv.ptr(), p.ptr(), bn_ctx));
if (!BN_is_one(tmp_bn.ptr()))
return false;
if (!m_private_exponent.is_zero()) {
if (m_private_exponent >= m_modulus)
return false;
auto lambda = TRY(m_prime_1.minus(1)).lcm(TRY(m_prime_2.minus(1)));
auto lambda_bn = TRY(unsigned_big_integer_to_openssl_bignum(lambda));
auto d = TRY(unsigned_big_integer_to_openssl_bignum(m_private_exponent));
OPENSSL_TRY(BN_mod_mul(tmp_bn.ptr(), d.ptr(), e.ptr(), lambda_bn.ptr(), bn_ctx));
if (!BN_is_one(tmp_bn.ptr()))
return false;
}
return true;
}
if (!m_modulus.is_zero() && !m_private_exponent.is_zero()) {
// In a valid RSA private key with the first representation, the RSA
// modulus n is the same as in the corresponding RSA public key and is
// the product of u distinct odd primes r_i, i = 1, 2, ..., u, where u
// >= 2. The RSA private exponent d is a positive integer less than n
// satisfying
// e * d == 1 (mod \lambda(n)),
// where e is the corresponding RSA public exponent and \lambda(n) is
// defined as in Section 3.1.
if (m_private_exponent >= m_modulus)
return false;
return true;
}
return false;
}
ErrorOr<void> RSA::configure(OpenSSL_PKEY_CTX& ctx)
{
OPENSSL_TRY(EVP_PKEY_CTX_set_rsa_padding(ctx.ptr(), RSA_NO_PADDING));
return {};
}
ErrorOr<ByteBuffer> RSA::encrypt(ReadonlyBytes in)
{
auto key = TRY(public_key_to_openssl_pkey(m_public_key));
auto ctx = TRY(OpenSSL_PKEY_CTX::wrap(EVP_PKEY_CTX_new_from_pkey(nullptr, key.ptr(), nullptr)));
OPENSSL_TRY(EVP_PKEY_encrypt_init(ctx.ptr()));
TRY(configure(ctx));
size_t out_size = 0;
OPENSSL_TRY(EVP_PKEY_encrypt(ctx.ptr(), nullptr, &out_size, in.data(), in.size()));
auto out = TRY(ByteBuffer::create_uninitialized(out_size));
OPENSSL_TRY(EVP_PKEY_encrypt(ctx.ptr(), out.data(), &out_size, in.data(), in.size()));
return out.slice(0, out_size);
}
ErrorOr<ByteBuffer> RSA::decrypt(ReadonlyBytes in)
{
auto key = TRY(private_key_to_openssl_pkey(m_private_key));
auto ctx = TRY(OpenSSL_PKEY_CTX::wrap(EVP_PKEY_CTX_new_from_pkey(nullptr, key.ptr(), nullptr)));
OPENSSL_TRY(EVP_PKEY_decrypt_init(ctx.ptr()));
TRY(configure(ctx));
size_t out_size = 0;
OPENSSL_TRY(EVP_PKEY_decrypt(ctx.ptr(), nullptr, &out_size, in.data(), in.size()));
auto out = TRY(ByteBuffer::create_uninitialized(out_size));
OPENSSL_TRY(EVP_PKEY_decrypt(ctx.ptr(), out.data(), &out_size, in.data(), in.size()));
return out.slice(0, out_size);
}
ErrorOr<ByteBuffer> RSA::sign(ReadonlyBytes message)
{
auto key = TRY(private_key_to_openssl_pkey(m_private_key));
auto ctx = TRY(OpenSSL_PKEY_CTX::wrap(EVP_PKEY_CTX_new_from_pkey(nullptr, key.ptr(), nullptr)));
OPENSSL_TRY(EVP_PKEY_sign_init(ctx.ptr()));
TRY(configure(ctx));
size_t signature_size = 0;
OPENSSL_TRY(EVP_PKEY_sign(ctx.ptr(), nullptr, &signature_size, message.data(), message.size()));
auto signature = TRY(ByteBuffer::create_uninitialized(signature_size));
OPENSSL_TRY(EVP_PKEY_sign(ctx.ptr(), signature.data(), &signature_size, message.data(), message.size()));
return signature.slice(0, signature_size);
}
ErrorOr<bool> RSA::verify(ReadonlyBytes message, ReadonlyBytes signature)
{
auto key = TRY(public_key_to_openssl_pkey(m_public_key));
auto ctx = TRY(OpenSSL_PKEY_CTX::wrap(EVP_PKEY_CTX_new_from_pkey(nullptr, key.ptr(), nullptr)));
OPENSSL_TRY(EVP_PKEY_verify_init(ctx.ptr()));
TRY(configure(ctx));
auto ret = EVP_PKEY_verify(ctx.ptr(), signature.data(), signature.size(), message.data(), message.size());
if (ret == 1)
return true;
if (ret == 0)
return false;
OPENSSL_TRY(ret);
VERIFY_NOT_REACHED();
}
void RSA::import_private_key(ReadonlyBytes bytes, bool pem)
{
ByteBuffer decoded_bytes;
if (pem) {
auto decoded = decode_pem(bytes);
if (decoded.type == PEMType::RSAPrivateKey) {
decoded_bytes = decoded.data;
} else if (decoded.type == PEMType::PrivateKey) {
ASN1::Decoder decoder(decoded.data);
auto maybe_key = Certificate::parse_private_key_info(decoder, {});
if (maybe_key.is_error()) {
dbgln("Failed to parse private key info: {}", maybe_key.error());
VERIFY_NOT_REACHED();
}
m_private_key = maybe_key.release_value().rsa;
return;
} else {
dbgln("Expected a PEM encoded private key");
VERIFY_NOT_REACHED();
}
}
auto maybe_key = parse_rsa_key(decoded_bytes, true, {});
if (maybe_key.is_error()) {
dbgln("Failed to parse RSA private key: {}", maybe_key.error());
VERIFY_NOT_REACHED();
}
m_private_key = maybe_key.release_value().private_key;
}
void RSA::import_public_key(ReadonlyBytes bytes, bool pem)
{
ByteBuffer decoded_bytes;
if (pem) {
auto decoded = decode_pem(bytes);
if (decoded.type == PEMType::RSAPublicKey) {
decoded_bytes = decoded.data;
} else if (decoded.type == PEMType::PublicKey) {
ASN1::Decoder decoder(decoded.data);
auto maybe_key = Certificate::parse_subject_public_key_info(decoder, {});
if (maybe_key.is_error()) {
dbgln("Failed to parse subject public key info: {}", maybe_key.error());
VERIFY_NOT_REACHED();
}
m_public_key = maybe_key.release_value().rsa;
return;
} else {
dbgln("Expected a PEM encoded public key");
VERIFY_NOT_REACHED();
}
}
auto maybe_key = parse_rsa_key(decoded_bytes, false, {});
if (maybe_key.is_error()) {
dbgln("Failed to parse RSA public key: {}", maybe_key.error());
VERIFY_NOT_REACHED();
}
m_public_key = maybe_key.release_value().public_key;
}
ErrorOr<EVP_MD const*> hash_kind_to_hash_type(Hash::HashKind hash_kind)
{
switch (hash_kind) {
case Hash::HashKind::None:
return nullptr;
case Hash::HashKind::BLAKE2b:
return EVP_blake2b512();
case Hash::HashKind::MD5:
return EVP_md5();
case Hash::HashKind::SHA1:
return EVP_sha1();
case Hash::HashKind::SHA256:
return EVP_sha256();
case Hash::HashKind::SHA384:
return EVP_sha384();
case Hash::HashKind::SHA512:
return EVP_sha512();
default:
return Error::from_string_literal("Unsupported hash kind");
}
}
ErrorOr<bool> RSA_EMSA::verify(ReadonlyBytes message, ReadonlyBytes signature)
{
auto key = TRY(public_key_to_openssl_pkey(m_public_key));
auto const* hash_type = TRY(hash_kind_to_hash_type(m_hash_kind));
auto ctx = TRY(OpenSSL_MD_CTX::create());
auto key_ctx = TRY(OpenSSL_PKEY_CTX::wrap(EVP_PKEY_CTX_new(key.ptr(), nullptr)));
EVP_MD_CTX_set_pkey_ctx(ctx.ptr(), key_ctx.ptr());
OPENSSL_TRY(EVP_DigestVerifyInit(ctx.ptr(), nullptr, hash_type, nullptr, key.ptr()));
TRY(configure(key_ctx));
auto res = EVP_DigestVerify(ctx.ptr(), signature.data(), signature.size(), message.data(), message.size());
if (res == 1)
return true;
if (res == 0)
return false;
OPENSSL_TRY(res);
VERIFY_NOT_REACHED();
}
ErrorOr<ByteBuffer> RSA_EMSA::sign(ReadonlyBytes message)
{
auto key = TRY(private_key_to_openssl_pkey(m_private_key));
auto const* hash_type = TRY(hash_kind_to_hash_type(m_hash_kind));
auto ctx = TRY(OpenSSL_MD_CTX::create());
auto key_ctx = TRY(OpenSSL_PKEY_CTX::wrap(EVP_PKEY_CTX_new(key.ptr(), nullptr)));
EVP_MD_CTX_set_pkey_ctx(ctx.ptr(), key_ctx.ptr());
OPENSSL_TRY(EVP_DigestSignInit(ctx.ptr(), nullptr, hash_type, nullptr, key.ptr()));
TRY(configure(key_ctx));
size_t signature_size = 0;
OPENSSL_TRY(EVP_DigestSign(ctx.ptr(), nullptr, &signature_size, message.data(), message.size()));
auto signature = TRY(ByteBuffer::create_uninitialized(signature_size));
OPENSSL_TRY(EVP_DigestSign(ctx.ptr(), signature.data(), &signature_size, message.data(), message.size()));
return signature.slice(0, signature_size);
}
ErrorOr<void> RSA_PKCS1_EME::configure(OpenSSL_PKEY_CTX& ctx)
{
OPENSSL_TRY(EVP_PKEY_CTX_set_rsa_padding(ctx.ptr(), RSA_PKCS1_PADDING));
return {};
}
ErrorOr<void> RSA_PKCS1_EMSA::configure(OpenSSL_PKEY_CTX& ctx)
{
OPENSSL_TRY(EVP_PKEY_CTX_set_rsa_padding(ctx.ptr(), RSA_PKCS1_PADDING));
return {};
}
ErrorOr<void> RSA_OAEP_EME::configure(OpenSSL_PKEY_CTX& ctx)
{
OPENSSL_TRY(EVP_PKEY_CTX_set_rsa_padding(ctx.ptr(), RSA_PKCS1_OAEP_PADDING));
OPENSSL_TRY(EVP_PKEY_CTX_set_rsa_oaep_md(ctx.ptr(), TRY(hash_kind_to_hash_type(m_hash_kind))));
OPENSSL_TRY(EVP_PKEY_CTX_set_rsa_mgf1_md(ctx.ptr(), TRY(hash_kind_to_hash_type(m_hash_kind))));
if (m_label.has_value() && !m_label->is_empty()) {
// https://docs.openssl.org/3.0/man3/EVP_PKEY_CTX_ctrl/#rsa-parameters
// The library takes ownership of the label so the caller should not free the original memory pointed to by label.
auto* label = OPENSSL_malloc(m_label->size());
memcpy(label, m_label->data(), m_label->size());
OPENSSL_TRY(EVP_PKEY_CTX_set0_rsa_oaep_label(ctx.ptr(), label, m_label->size()));
}
return {};
}
ErrorOr<void> RSA_PSS_EMSA::configure(OpenSSL_PKEY_CTX& ctx)
{
OPENSSL_TRY(EVP_PKEY_CTX_set_rsa_padding(ctx.ptr(), RSA_PKCS1_PSS_PADDING));
OPENSSL_TRY(EVP_PKEY_CTX_set_rsa_mgf1_md(ctx.ptr(), TRY(hash_kind_to_hash_type(m_hash_kind))));
OPENSSL_TRY(EVP_PKEY_CTX_set_rsa_pss_saltlen(ctx.ptr(), m_salt_length.value_or(RSA_PSS_SALTLEN_MAX)));
return {};
}
}