mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2025-07-25 18:32:36 +00:00
Some checks are pending
CI / Lagom (arm64, Sanitizer_CI, false, macos-15, macOS, Clang) (push) Waiting to run
CI / Lagom (x86_64, Fuzzers_CI, false, ubuntu-24.04, Linux, Clang) (push) Waiting to run
CI / Lagom (x86_64, Sanitizer_CI, false, ubuntu-24.04, Linux, GNU) (push) Waiting to run
CI / Lagom (x86_64, Sanitizer_CI, true, ubuntu-24.04, Linux, Clang) (push) Waiting to run
Build Dev Container Image / build (push) Waiting to run
Package the js repl as a binary artifact / build-and-package (arm64, macos-15, macOS, macOS-universal2) (push) Waiting to run
Package the js repl as a binary artifact / build-and-package (x86_64, ubuntu-24.04, Linux, Linux-x86_64) (push) Waiting to run
Run test262 and test-wasm / run_and_update_results (push) Waiting to run
Lint Code / lint (push) Waiting to run
Label PRs with merge conflicts / auto-labeler (push) Waiting to run
Push notes / build (push) Waiting to run
Replace the implementation of maths in `UnsignedBigInteger` and `SignedBigInteger` with LibTomMath. This gives benefits in terms of less code to maintain, correctness and speed. These changes also remove now-unsued methods and improve the error propagation for functions allocating lots of memory. Additionally, the new implementation is always trimmed and won't have dangling zeros when exporting it.
240 lines
12 KiB
C++
240 lines
12 KiB
C++
/*
|
|
* Copyright (c) 2022, Ben Wiederhake <BenWiederhake.GitHub@gmx.de>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/StringView.h>
|
|
#include <AK/Time.h>
|
|
#include <LibCrypto/ASN1/ASN1.h>
|
|
#include <LibCrypto/ASN1/DER.h>
|
|
#include <LibTest/TestCase.h>
|
|
|
|
#define EXPECT_DATETIME(sv, y, mo, d, h, mi, s) \
|
|
EXPECT_EQ(Crypto::ASN1::parse_utc_time(sv).value(), UnixDateTime::from_unix_time_parts(y, mo, d, h, mi, s, 0))
|
|
|
|
TEST_CASE(test_utc_boring)
|
|
{
|
|
// YYMMDDhhmm[ss]Z
|
|
EXPECT_DATETIME("010101010101Z"sv, 2001, 1, 1, 1, 1, 1);
|
|
EXPECT_DATETIME("010203040506Z"sv, 2001, 2, 3, 4, 5, 6);
|
|
EXPECT_DATETIME("020406081012Z"sv, 2002, 4, 6, 8, 10, 12);
|
|
EXPECT_DATETIME("0204060810Z"sv, 2002, 4, 6, 8, 10, 0);
|
|
EXPECT_DATETIME("220911220000Z"sv, 2022, 9, 11, 22, 0, 0);
|
|
}
|
|
|
|
TEST_CASE(test_utc_year_rollover)
|
|
{
|
|
// YYMMDDhhmm[ss]Z
|
|
EXPECT_DATETIME("000101010101Z"sv, 2000, 1, 1, 1, 1, 1);
|
|
EXPECT_DATETIME("010101010101Z"sv, 2001, 1, 1, 1, 1, 1);
|
|
EXPECT_DATETIME("020101010101Z"sv, 2002, 1, 1, 1, 1, 1);
|
|
// ...
|
|
EXPECT_DATETIME("480101010101Z"sv, 2048, 1, 1, 1, 1, 1);
|
|
EXPECT_DATETIME("490101010101Z"sv, 2049, 1, 1, 1, 1, 1);
|
|
// This Y2050-problem is hardcoded in the spec. Oh no.
|
|
EXPECT_DATETIME("500101010101Z"sv, 1950, 1, 1, 1, 1, 1);
|
|
EXPECT_DATETIME("510101010101Z"sv, 1951, 1, 1, 1, 1, 1);
|
|
// ...
|
|
EXPECT_DATETIME("970101010101Z"sv, 1997, 1, 1, 1, 1, 1);
|
|
EXPECT_DATETIME("980101010101Z"sv, 1998, 1, 1, 1, 1, 1);
|
|
EXPECT_DATETIME("990101010101Z"sv, 1999, 1, 1, 1, 1, 1);
|
|
}
|
|
|
|
TEST_CASE(test_utc_offset)
|
|
{
|
|
// YYMMDDhhmm[ss](+|-)hhmm
|
|
// We don't yet support storing the offset anywhere and instead just assume that the offset is just +0000.
|
|
EXPECT_DATETIME("010101010101+0000"sv, 2001, 1, 1, 1, 1, 1);
|
|
EXPECT_DATETIME("010203040506+0000"sv, 2001, 2, 3, 4, 5, 6);
|
|
EXPECT_DATETIME("020406081012+0000"sv, 2002, 4, 6, 8, 10, 12);
|
|
EXPECT_DATETIME("0204060810+0000"sv, 2002, 4, 6, 8, 10, 0);
|
|
EXPECT_DATETIME("220911220000+0000"sv, 2022, 9, 11, 22, 0, 0);
|
|
// Designed to fail once we support offsets:
|
|
EXPECT_DATETIME("220911220000+0600"sv, 2022, 9, 11, 22, 0, 0);
|
|
}
|
|
|
|
TEST_CASE(test_utc_missing_z)
|
|
{
|
|
// YYMMDDhhmm[ss]
|
|
// We don't actually need to parse this correctly; rejecting these inputs is fine.
|
|
// This test just makes sure that we don't crash.
|
|
(void)Crypto::ASN1::parse_utc_time("010101010101"sv);
|
|
(void)Crypto::ASN1::parse_utc_time("010203040506"sv);
|
|
(void)Crypto::ASN1::parse_utc_time("020406081012"sv);
|
|
(void)Crypto::ASN1::parse_utc_time("0204060810"sv);
|
|
(void)Crypto::ASN1::parse_utc_time("220911220000"sv);
|
|
}
|
|
|
|
#undef EXPECT_DATETIME
|
|
#define EXPECT_DATETIME(sv, y, mo, d, h, mi, s, ms) \
|
|
EXPECT_EQ(Crypto::ASN1::parse_generalized_time(sv).value(), UnixDateTime::from_unix_time_parts(y, mo, d, h, mi, s, ms))
|
|
|
|
TEST_CASE(test_generalized_boring)
|
|
{
|
|
// YYYYMMDDhh[mm[ss[.fff]]]
|
|
EXPECT_DATETIME("20010101010101Z"sv, 2001, 1, 1, 1, 1, 1, 0);
|
|
EXPECT_DATETIME("20010203040506Z"sv, 2001, 2, 3, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("20020406081012Z"sv, 2002, 4, 6, 8, 10, 12, 0);
|
|
EXPECT_DATETIME("200204060810Z"sv, 2002, 4, 6, 8, 10, 0, 0);
|
|
EXPECT_DATETIME("2002040608Z"sv, 2002, 4, 6, 8, 0, 0, 0);
|
|
EXPECT_DATETIME("20020406081012.567Z"sv, 2002, 4, 6, 8, 10, 12, 567);
|
|
EXPECT_DATETIME("20220911220000Z"sv, 2022, 9, 11, 22, 0, 0, 0);
|
|
}
|
|
|
|
TEST_CASE(test_generalized_offset)
|
|
{
|
|
// YYYYMMDDhh[mm[ss[.fff]]](+|-)hhmm
|
|
// We don't yet support storing the offset anywhere and instead just assume that the offset is just +0000.
|
|
EXPECT_DATETIME("20010101010101+0000"sv, 2001, 1, 1, 1, 1, 1, 0);
|
|
EXPECT_DATETIME("20010203040506+0000"sv, 2001, 2, 3, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("20020406081012+0000"sv, 2002, 4, 6, 8, 10, 12, 0);
|
|
EXPECT_DATETIME("200204060810+0000"sv, 2002, 4, 6, 8, 10, 0, 0);
|
|
EXPECT_DATETIME("2002040608+0000"sv, 2002, 4, 6, 8, 0, 0, 0);
|
|
EXPECT_DATETIME("20020406081012.567+0000"sv, 2002, 4, 6, 8, 10, 12, 567);
|
|
EXPECT_DATETIME("20220911220000+0000"sv, 2022, 9, 11, 22, 0, 0, 0);
|
|
// Designed to fail once we support offsets:
|
|
EXPECT_DATETIME("20220911220000+0600"sv, 2022, 9, 11, 22, 0, 0, 0);
|
|
}
|
|
|
|
TEST_CASE(test_generalized_missing_z)
|
|
{
|
|
// YYYYMMDDhh[mm[ss[.fff]]]
|
|
EXPECT_DATETIME("20010101010101"sv, 2001, 1, 1, 1, 1, 1, 0);
|
|
EXPECT_DATETIME("20010203040506"sv, 2001, 2, 3, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("20020406081012"sv, 2002, 4, 6, 8, 10, 12, 0);
|
|
EXPECT_DATETIME("200204060810"sv, 2002, 4, 6, 8, 10, 0, 0);
|
|
EXPECT_DATETIME("2002040608"sv, 2002, 4, 6, 8, 0, 0, 0);
|
|
EXPECT_DATETIME("20020406081012.567"sv, 2002, 4, 6, 8, 10, 12, 567);
|
|
EXPECT_DATETIME("20220911220000"sv, 2022, 9, 11, 22, 0, 0, 0);
|
|
}
|
|
|
|
TEST_CASE(test_generalized_unusual_year)
|
|
{
|
|
// Towards the positive
|
|
EXPECT_DATETIME("20010203040506Z"sv, 2001, 2, 3, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("20110203040506Z"sv, 2011, 2, 3, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("21010203040506Z"sv, 2101, 2, 3, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("30010203040506Z"sv, 3001, 2, 3, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("40010203040506Z"sv, 4001, 2, 3, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("90010203040506Z"sv, 9001, 2, 3, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("99990203040506Z"sv, 9999, 2, 3, 4, 5, 6, 0);
|
|
|
|
// Towards zero
|
|
EXPECT_DATETIME("20010203040506Z"sv, 2001, 2, 3, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("19990203040506Z"sv, 1999, 2, 3, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("19500203040506Z"sv, 1950, 2, 3, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("19010203040506Z"sv, 1901, 2, 3, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("18010203040506Z"sv, 1801, 2, 3, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("15010203040506Z"sv, 1501, 2, 3, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("10010203040506Z"sv, 1001, 2, 3, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("01010203040506Z"sv, 101, 2, 3, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("00110203040506Z"sv, 11, 2, 3, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("00010203040506Z"sv, 1, 2, 3, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("00000203040506Z"sv, 0, 2, 3, 4, 5, 6, 0);
|
|
|
|
// Problematic dates
|
|
EXPECT_DATETIME("20200229040506Z"sv, 2020, 2, 29, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("20000229040506Z"sv, 2000, 2, 29, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("24000229040506Z"sv, 2400, 2, 29, 4, 5, 6, 0);
|
|
}
|
|
|
|
TEST_CASE(test_generalized_nonexistent_dates)
|
|
{
|
|
// The following dates don't exist. I'm not sure what the "correct" result is,
|
|
// but we need to make sure that we don't crash.
|
|
(void)Crypto::ASN1::parse_generalized_time("20210229040506Z"sv); // Not a leap year (not divisible by 4)
|
|
(void)Crypto::ASN1::parse_generalized_time("21000229040506Z"sv); // Not a leap year (divisible by 100)
|
|
(void)Crypto::ASN1::parse_generalized_time("20220230040506Z"sv); // Never exists
|
|
(void)Crypto::ASN1::parse_generalized_time("20220631040506Z"sv); // Never exists
|
|
(void)Crypto::ASN1::parse_generalized_time("20220732040506Z"sv); // Never exists
|
|
|
|
// https://www.timeanddate.com/calendar/julian-gregorian-switch.html
|
|
(void)Crypto::ASN1::parse_generalized_time("15821214040506Z"sv); // Gregorian switch; France
|
|
(void)Crypto::ASN1::parse_generalized_time("15821011040506Z"sv); // Gregorian switch; Italy, Poland, Portugal, Spain
|
|
(void)Crypto::ASN1::parse_generalized_time("15830105040506Z"sv); // Gregorian switch; Germany (Catholic)
|
|
(void)Crypto::ASN1::parse_generalized_time("15831011040506Z"sv); // Gregorian switch; Austria
|
|
(void)Crypto::ASN1::parse_generalized_time("15871026040506Z"sv); // Gregorian switch; Hungary
|
|
(void)Crypto::ASN1::parse_generalized_time("16100826040506Z"sv); // Gregorian switch; Germany (old Prussia)
|
|
(void)Crypto::ASN1::parse_generalized_time("17000223040506Z"sv); // Gregorian switch; Germany (Protestant)
|
|
(void)Crypto::ASN1::parse_generalized_time("17520908040506Z"sv); // Gregorian switch; US, Canada, UK
|
|
(void)Crypto::ASN1::parse_generalized_time("18711225040506Z"sv); // Gregorian switch; Japan
|
|
(void)Crypto::ASN1::parse_generalized_time("19160407040506Z"sv); // Gregorian switch; Bulgaria
|
|
(void)Crypto::ASN1::parse_generalized_time("19180207040506Z"sv); // Gregorian switch; Estonia, Russia
|
|
(void)Crypto::ASN1::parse_generalized_time("19230222040506Z"sv); // Gregorian switch; Greece
|
|
(void)Crypto::ASN1::parse_generalized_time("19261224040506Z"sv); // Gregorian switch; Turkey
|
|
}
|
|
|
|
TEST_CASE(test_encoder_primitives)
|
|
{
|
|
auto roundtrip_value = [](auto value) {
|
|
Crypto::ASN1::Encoder encoder;
|
|
MUST(encoder.write(value));
|
|
auto encoded = encoder.finish();
|
|
Crypto::ASN1::Decoder decoder(encoded);
|
|
auto decoded = MUST(decoder.read<decltype(value)>());
|
|
EXPECT_EQ(decoded, value);
|
|
};
|
|
|
|
roundtrip_value(false);
|
|
roundtrip_value(true);
|
|
|
|
roundtrip_value(Crypto::UnsignedBigInteger { 0 });
|
|
roundtrip_value(Crypto::UnsignedBigInteger { 1 });
|
|
roundtrip_value(TRY_OR_FAIL(Crypto::UnsignedBigInteger { 2 }.shift_left(128)));
|
|
roundtrip_value(TRY_OR_FAIL(Crypto::UnsignedBigInteger { 2 }.shift_left(256)));
|
|
|
|
roundtrip_value(Vector { 1, 2, 840, 113549, 1, 1, 1 });
|
|
roundtrip_value(Vector { 1, 2, 840, 113549, 1, 1, 11 });
|
|
|
|
roundtrip_value(ByteString { "Hello, World!\n" });
|
|
|
|
roundtrip_value(nullptr);
|
|
|
|
roundtrip_value(Crypto::ASN1::BitStringView { { { 0x00, 0x01, 0x02, 0x03 } }, 3 });
|
|
}
|
|
|
|
TEST_CASE(test_encoder_constructed)
|
|
{
|
|
Crypto::ASN1::Encoder encoder;
|
|
/*
|
|
* RSAPrivateKey ::= SEQUENCE {
|
|
* version Version, -- Version ::= INTEGER { two-prime(0), multi(1) }
|
|
* modulus INTEGER, -- n
|
|
* publicExponent INTEGER, -- e
|
|
* privateExponent INTEGER, -- d
|
|
* prime1 INTEGER, -- p
|
|
* prime2 INTEGER, -- q
|
|
* exponent1 INTEGER, -- d mod (p-1)
|
|
* exponent2 INTEGER, -- d mod (q-1)
|
|
* coefficient INTEGER, -- (inverse of q) mod p
|
|
* otherPrimeInfos OtherPrimeInfos OPTIONAL
|
|
* }
|
|
*/
|
|
(void)encoder.write_constructed(Crypto::ASN1::Class::Universal, Crypto::ASN1::Kind::Sequence, [&] {
|
|
MUST(encoder.write(0u)); // version
|
|
MUST(encoder.write(0x1234u)); // modulus
|
|
MUST(encoder.write(0x10001u)); // publicExponent
|
|
MUST(encoder.write(0x5678u)); // privateExponent
|
|
MUST(encoder.write(0x9abcu)); // prime1
|
|
MUST(encoder.write(0xdef0u)); // prime2
|
|
MUST(encoder.write(0x1234u)); // exponent1
|
|
MUST(encoder.write(0x5678u)); // exponent2
|
|
MUST(encoder.write(0x9abcu)); // coefficient
|
|
});
|
|
auto encoded = encoder.finish();
|
|
Crypto::ASN1::Decoder decoder(encoded);
|
|
MUST(decoder.enter()); // Sequence
|
|
EXPECT_EQ(MUST(decoder.read<Crypto::UnsignedBigInteger>()), 0u); // version
|
|
EXPECT_EQ(MUST(decoder.read<Crypto::UnsignedBigInteger>()), 0x1234u); // modulus
|
|
EXPECT_EQ(MUST(decoder.read<Crypto::UnsignedBigInteger>()), 0x10001u); // publicExponent
|
|
EXPECT_EQ(MUST(decoder.read<Crypto::UnsignedBigInteger>()), 0x5678u); // privateExponent
|
|
EXPECT_EQ(MUST(decoder.read<Crypto::UnsignedBigInteger>()), 0x9abcu); // prime1
|
|
EXPECT_EQ(MUST(decoder.read<Crypto::UnsignedBigInteger>()), 0xdef0u); // prime2
|
|
EXPECT_EQ(MUST(decoder.read<Crypto::UnsignedBigInteger>()), 0x1234u); // exponent1
|
|
EXPECT_EQ(MUST(decoder.read<Crypto::UnsignedBigInteger>()), 0x5678u); // exponent2
|
|
EXPECT_EQ(MUST(decoder.read<Crypto::UnsignedBigInteger>()), 0x9abcu); // coefficient
|
|
EXPECT(decoder.eof()); // no otherPrimeInfos
|
|
MUST(decoder.leave()); // Sequence
|
|
EXPECT(decoder.eof()); // no other data
|
|
}
|