ladybird/Userland/Libraries/LibWasm/AbstractMachine/Operators.h
Diego Frias 9cc3e7d32d LibWasm: Fix SIMD shuffle and swizzle
`swizzle` had the wrong operands, and the vector masking boolean logic
was incorrect in the internal `shuffle_or_0` implementation. `shuffle`
was previously implemented as a dynamic swizzle, when it uses an
immediate operand for lane indices in the spec.
2024-07-24 23:23:09 +02:00

1157 lines
33 KiB
C++

/*
* Copyright (c) 2021-2023, Ali Mohammad Pur <mpfard@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/BitCast.h>
#include <AK/BuiltinWrappers.h>
#include <AK/Result.h>
#include <AK/SIMD.h>
#include <AK/SIMDExtras.h>
#include <AK/StringView.h>
#include <AK/Types.h>
#include <LibWasm/Types.h>
#include <limits.h>
#include <math.h>
namespace Wasm::Operators {
using namespace AK::SIMD;
#define DEFINE_BINARY_OPERATOR(Name, operation) \
struct Name { \
template<typename Lhs, typename Rhs> \
auto operator()(Lhs lhs, Rhs rhs) const \
{ \
return lhs operation rhs; \
} \
\
static StringView name() \
{ \
return #operation##sv; \
} \
}
DEFINE_BINARY_OPERATOR(Equals, ==);
DEFINE_BINARY_OPERATOR(NotEquals, !=);
DEFINE_BINARY_OPERATOR(GreaterThan, >);
DEFINE_BINARY_OPERATOR(LessThan, <);
DEFINE_BINARY_OPERATOR(LessThanOrEquals, <=);
DEFINE_BINARY_OPERATOR(GreaterThanOrEquals, >=);
DEFINE_BINARY_OPERATOR(Add, +);
DEFINE_BINARY_OPERATOR(Subtract, -);
DEFINE_BINARY_OPERATOR(Multiply, *);
DEFINE_BINARY_OPERATOR(BitAnd, &);
DEFINE_BINARY_OPERATOR(BitOr, |);
DEFINE_BINARY_OPERATOR(BitXor, ^);
#undef DEFINE_BINARY_OPERATOR
struct Divide {
template<typename Lhs, typename Rhs>
auto operator()(Lhs lhs, Rhs rhs) const
{
if constexpr (IsFloatingPoint<Lhs>) {
return lhs / rhs;
} else {
Checked value(lhs);
value /= rhs;
if (value.has_overflow())
return AK::ErrorOr<Lhs, StringView>("Integer division overflow"sv);
return AK::ErrorOr<Lhs, StringView>(value.value());
}
}
static StringView name() { return "/"sv; }
};
struct Modulo {
template<typename Lhs, typename Rhs>
auto operator()(Lhs lhs, Rhs rhs) const
{
if (rhs == 0)
return AK::ErrorOr<Lhs, StringView>("Integer division overflow"sv);
if constexpr (IsSigned<Lhs>) {
if (rhs == -1)
return AK::ErrorOr<Lhs, StringView>(0); // Spec weirdness right here, signed division overflow is ignored.
}
return AK::ErrorOr<Lhs, StringView>(lhs % rhs);
}
static StringView name() { return "%"sv; }
};
struct Average {
template<typename Lhs, typename Rhs>
auto operator()(Lhs lhs, Rhs rhs) const
{
return static_cast<Lhs>((lhs + rhs + 1) / 2);
}
static StringView name() { return "avgr"sv; }
};
struct Q15Mul {
template<typename Lhs, typename Rhs>
auto operator()(Lhs lhs, Rhs rhs) const
{
return (lhs * rhs + 0x4000) >> 15;
}
static StringView name() { return "q15mul"sv; }
};
struct BitShiftLeft {
template<typename Lhs, typename Rhs>
auto operator()(Lhs lhs, Rhs rhs) const { return lhs << (rhs % (sizeof(lhs) * 8)); }
static StringView name() { return "<<"sv; }
};
struct BitShiftRight {
template<typename Lhs, typename Rhs>
auto operator()(Lhs lhs, Rhs rhs) const { return lhs >> (rhs % (sizeof(lhs) * 8)); }
static StringView name() { return ">>"sv; }
};
struct BitAndNot {
template<typename Lhs, typename Rhs>
auto operator()(Lhs lhs, Rhs rhs) const { return lhs & ~rhs; }
static StringView name() { return "andnot"sv; }
};
struct BitNot {
template<typename Lhs>
auto operator()(Lhs lhs) const { return ~lhs; }
static StringView name() { return "~"sv; }
};
struct BitRotateLeft {
template<typename Lhs, typename Rhs>
auto operator()(Lhs lhs, Rhs rhs) const
{
// generates a single 'rol' instruction if shift is positive
// otherwise generate a `ror`
auto const mask = CHAR_BIT * sizeof(Lhs) - 1;
rhs &= mask;
return (lhs << rhs) | (lhs >> ((-rhs) & mask));
}
static StringView name() { return "rotate_left"sv; }
};
struct BitRotateRight {
template<typename Lhs, typename Rhs>
auto operator()(Lhs lhs, Rhs rhs) const
{
// generates a single 'ror' instruction if shift is positive
// otherwise generate a `rol`
auto const mask = CHAR_BIT * sizeof(Lhs) - 1;
rhs &= mask;
return (lhs >> rhs) | (lhs << ((-rhs) & mask));
}
static StringView name() { return "rotate_right"sv; }
};
template<size_t VectorSize, template<typename> typename SetSign = MakeSigned>
struct VectorAllTrue {
auto operator()(u128 c) const
{
using ElementType = NativeIntegralType<128 / VectorSize>;
auto any_false = bit_cast<Native128ByteVectorOf<ElementType, SetSign>>(c) == 0;
return bit_cast<u128>(any_false) == 0;
}
static StringView name()
{
switch (VectorSize) {
case 16:
return "vec(8x16).all_true"sv;
case 8:
return "vec(16x8).all_true"sv;
case 4:
return "vec(32x4).all_true"sv;
case 2:
return "vec(64x2).all_true"sv;
default:
VERIFY_NOT_REACHED();
}
}
};
template<size_t VectorSize>
struct VectorShiftLeft {
auto operator()(u128 lhs, i32 rhs) const
{
auto shift_value = rhs % (sizeof(lhs) * 8 / VectorSize);
return bit_cast<u128>(bit_cast<Native128ByteVectorOf<NativeIntegralType<128 / VectorSize>, MakeUnsigned>>(lhs) << shift_value);
}
static StringView name()
{
switch (VectorSize) {
case 16:
return "vec(8x16)<<"sv;
case 8:
return "vec(16x8)<<"sv;
case 4:
return "vec(32x4)<<"sv;
case 2:
return "vec(64x2)<<"sv;
default:
VERIFY_NOT_REACHED();
}
}
};
template<size_t VectorSize, template<typename> typename SetSign>
struct VectorShiftRight {
auto operator()(u128 lhs, i32 rhs) const
{
auto shift_value = rhs % (sizeof(lhs) * 8 / VectorSize);
return bit_cast<u128>(bit_cast<Native128ByteVectorOf<SetSign<NativeIntegralType<128 / VectorSize>>, SetSign>>(lhs) >> shift_value);
}
static StringView name()
{
switch (VectorSize) {
case 16:
return "vec(8x16)>>"sv;
case 8:
return "vec(16x8)>>"sv;
case 4:
return "vec(32x4)>>"sv;
case 2:
return "vec(64x2)>>"sv;
default:
VERIFY_NOT_REACHED();
}
}
};
struct VectorSwizzle {
auto operator()(u128 c1, u128 c2) const
{
// https://webassembly.github.io/spec/core/bikeshed/#-mathsfi8x16hrefsyntax-instr-vecmathsfswizzle%E2%91%A0
auto i = bit_cast<Native128ByteVectorOf<i8, MakeSigned>>(c1);
auto j = bit_cast<Native128ByteVectorOf<i8, MakeSigned>>(c2);
auto result = shuffle_or_0(i, j);
return bit_cast<u128>(result);
}
static StringView name() { return "vec(8x16).swizzle"sv; }
};
template<size_t VectorSize, template<typename> typename SetSign>
struct VectorExtractLane {
size_t lane;
auto operator()(u128 c) const
{
auto result = bit_cast<Native128ByteVectorOf<NativeIntegralType<128 / VectorSize>, SetSign>>(c);
return result[lane];
}
static StringView name()
{
switch (VectorSize) {
case 16:
return "vec(8x16).extract_lane"sv;
case 8:
return "vec(16x8).extract_lane"sv;
case 4:
return "vec(32x4).extract_lane"sv;
case 2:
return "vec(64x2).extract_lane"sv;
default:
VERIFY_NOT_REACHED();
}
}
};
template<size_t VectorSize>
struct VectorExtractLaneFloat {
size_t lane;
auto operator()(u128 c) const
{
auto result = bit_cast<NativeFloatingVectorType<128 / VectorSize, VectorSize>>(c);
return result[lane];
}
static StringView name()
{
switch (VectorSize) {
case 16:
return "vec(8x16).extract_lane"sv;
case 8:
return "vec(16x8).extract_lane"sv;
case 4:
return "vec(32x4).extract_lane"sv;
case 2:
return "vec(64x2).extract_lane"sv;
default:
VERIFY_NOT_REACHED();
}
}
};
template<size_t VectorSize, typename TrueValueType = NativeIntegralType<128 / VectorSize>>
struct VectorReplaceLane {
size_t lane;
using ValueType = Conditional<IsFloatingPoint<TrueValueType>, NativeFloatingType<128 / VectorSize>, NativeIntegralType<128 / VectorSize>>;
auto operator()(u128 c, TrueValueType value) const
{
auto result = bit_cast<Native128ByteVectorOf<ValueType, MakeUnsigned>>(c);
result[lane] = static_cast<ValueType>(value);
return bit_cast<u128>(result);
}
static StringView name()
{
switch (VectorSize) {
case 16:
return "vec(8x16).replace_lane"sv;
case 8:
return "vec(16x8).replace_lane"sv;
case 4:
return "vec(32x4).replace_lane"sv;
case 2:
return "vec(64x2).replace_lane"sv;
default:
VERIFY_NOT_REACHED();
}
}
};
template<size_t VectorSize, typename Op, template<typename> typename SetSign = MakeSigned>
struct VectorCmpOp {
auto operator()(u128 c1, u128 c2) const
{
using ElementType = NativeIntegralType<128 / VectorSize>;
auto result = bit_cast<Native128ByteVectorOf<ElementType, SetSign>>(c1);
auto other = bit_cast<Native128ByteVectorOf<ElementType, SetSign>>(c2);
Op op;
for (size_t i = 0; i < VectorSize; ++i) {
SetSign<ElementType> lhs = result[i];
SetSign<ElementType> rhs = other[i];
result[i] = op(lhs, rhs) ? static_cast<MakeUnsigned<ElementType>>(-1) : 0;
}
return bit_cast<u128>(result);
}
static StringView name()
{
switch (VectorSize) {
case 16:
return "vec(8x16).cmp"sv;
case 8:
return "vec(16x8).cmp"sv;
case 4:
return "vec(32x4).cmp"sv;
case 2:
return "vec(64x2).cmp"sv;
default:
VERIFY_NOT_REACHED();
}
}
};
template<size_t VectorSize, typename Op>
struct VectorFloatCmpOp {
auto operator()(u128 c1, u128 c2) const
{
auto first = bit_cast<NativeFloatingVectorType<128, VectorSize, NativeFloatingType<128 / VectorSize>>>(c1);
auto other = bit_cast<NativeFloatingVectorType<128, VectorSize, NativeFloatingType<128 / VectorSize>>>(c2);
using ElementType = NativeIntegralType<128 / VectorSize>;
Native128ByteVectorOf<ElementType, MakeUnsigned> result;
Op op;
for (size_t i = 0; i < VectorSize; ++i)
result[i] = op(first[i], other[i]) ? static_cast<ElementType>(-1) : 0;
return bit_cast<u128>(result);
}
static StringView name()
{
switch (VectorSize) {
case 4:
return "vecf(32x4).cmp"sv;
case 2:
return "vecf(64x2).cmp"sv;
default:
VERIFY_NOT_REACHED();
}
}
};
struct Minimum {
template<typename Lhs, typename Rhs>
auto operator()(Lhs lhs, Rhs rhs) const
{
if constexpr (IsFloatingPoint<Lhs> || IsFloatingPoint<Rhs>) {
if (isnan(lhs) || isnan(rhs)) {
return isnan(lhs) ? lhs : rhs;
}
if (lhs == 0 && rhs == 0) {
return signbit(lhs) ? lhs : rhs;
}
}
return min(lhs, rhs);
}
static StringView name() { return "minimum"sv; }
};
struct Maximum {
template<typename Lhs, typename Rhs>
auto operator()(Lhs lhs, Rhs rhs) const
{
if constexpr (IsFloatingPoint<Lhs> || IsFloatingPoint<Rhs>) {
if (isnan(lhs) || isnan(rhs)) {
return isnan(lhs) ? lhs : rhs;
}
if (lhs == 0 && rhs == 0) {
return signbit(lhs) ? rhs : lhs;
}
}
return max(lhs, rhs);
}
static StringView name() { return "maximum"sv; }
};
struct PseudoMinimum {
template<typename Lhs, typename Rhs>
auto operator()(Lhs lhs, Rhs rhs) const
{
return rhs < lhs ? rhs : lhs;
}
static StringView name() { return "pseudo_minimum"sv; }
};
struct PseudoMaximum {
template<typename Lhs, typename Rhs>
auto operator()(Lhs lhs, Rhs rhs) const
{
return lhs < rhs ? rhs : lhs;
}
static StringView name() { return "pseudo_maximum"sv; }
};
struct CopySign {
template<typename Lhs, typename Rhs>
auto operator()(Lhs lhs, Rhs rhs) const
{
if constexpr (IsSame<Lhs, float>)
return copysignf(lhs, rhs);
else if constexpr (IsSame<Lhs, double>)
return copysign(lhs, rhs);
else
static_assert(DependentFalse<Lhs, Rhs>, "Invalid types to CopySign");
}
static StringView name() { return "copysign"sv; }
};
// Unary
struct EqualsZero {
template<typename Lhs>
auto operator()(Lhs lhs) const { return lhs == 0; }
static StringView name() { return "== 0"sv; }
};
struct CountLeadingZeros {
template<typename Lhs>
i32 operator()(Lhs lhs) const
{
if (lhs == 0)
return sizeof(Lhs) * CHAR_BIT;
if constexpr (sizeof(Lhs) == 4 || sizeof(Lhs) == 8)
return count_leading_zeroes(MakeUnsigned<Lhs>(lhs));
else
VERIFY_NOT_REACHED();
}
static StringView name() { return "clz"sv; }
};
struct CountTrailingZeros {
template<typename Lhs>
i32 operator()(Lhs lhs) const
{
if (lhs == 0)
return sizeof(Lhs) * CHAR_BIT;
if constexpr (sizeof(Lhs) == 4 || sizeof(Lhs) == 8)
return count_trailing_zeroes(MakeUnsigned<Lhs>(lhs));
else
VERIFY_NOT_REACHED();
}
static StringView name() { return "ctz"sv; }
};
struct PopCount {
template<typename Lhs>
auto operator()(Lhs lhs) const
{
if constexpr (sizeof(Lhs) == 1 || sizeof(Lhs) == 2 || sizeof(Lhs) == 4 || sizeof(Lhs) == 8)
return popcount(MakeUnsigned<Lhs>(lhs));
else
VERIFY_NOT_REACHED();
}
static StringView name() { return "popcnt"sv; }
};
struct Absolute {
template<typename Lhs>
Lhs operator()(Lhs lhs) const
{
if constexpr (IsFloatingPoint<Lhs>)
return AK::abs(lhs);
if constexpr (IsSigned<Lhs>) {
if (lhs == NumericLimits<Lhs>::min())
return NumericLimits<Lhs>::min(); // Return the negation of _i_ modulo 2^N: https://www.w3.org/TR/wasm-core-2/#-hrefop-iabsmathrmiabs_n-i step 3
}
return AK::abs(lhs);
}
static StringView name() { return "abs"sv; }
};
struct Negate {
template<typename Lhs>
Lhs operator()(Lhs lhs) const
{
if constexpr (IsFloatingPoint<Lhs>)
return -lhs;
if constexpr (IsSigned<Lhs>) {
if (lhs == NumericLimits<Lhs>::min())
return NumericLimits<Lhs>::min(); // Return the negation of _i_ modulo 2^N: https://www.w3.org/TR/wasm-core-2/#-hrefop-iabsmathrmiabs_n-i step 3
}
return -lhs;
}
static StringView name() { return "== 0"sv; }
};
struct Ceil {
template<typename Lhs>
auto operator()(Lhs lhs) const
{
if constexpr (IsSame<Lhs, float>)
return ceilf(lhs);
else if constexpr (IsSame<Lhs, double>)
return ceil(lhs);
else
VERIFY_NOT_REACHED();
}
static StringView name() { return "ceil"sv; }
};
template<size_t VectorSize, typename Op, template<typename> typename SetSign = MakeSigned>
struct VectorIntegerExtOpPairwise {
auto operator()(u128 c) const
{
using VectorResult = NativeVectorType<128 / VectorSize, VectorSize, SetSign>;
using VectorInput = NativeVectorType<128 / (VectorSize * 2), VectorSize * 2, SetSign>;
auto vector = bit_cast<VectorInput>(c);
VectorResult result;
Op op;
// FIXME: Find a way to not loop here
for (size_t i = 0; i < VectorSize; ++i) {
result[i] = op(vector[i * 2], vector[(i * 2) + 1]);
}
return bit_cast<u128>(result);
}
static StringView name()
{
switch (VectorSize) {
case 8:
return "vec(16x8).ext_op_pairwise(8x16)"sv;
case 4:
return "vec(32x4).ext_op_pairwise(16x8)"sv;
case 2:
return "vec(64x2).ext_op_pairwise(32x4)"sv;
default:
VERIFY_NOT_REACHED();
}
}
};
enum class VectorExt {
High,
Low,
};
template<size_t VectorSize, VectorExt Mode, template<typename> typename SetSign = MakeSigned>
struct VectorIntegerExt {
auto operator()(u128 c) const
{
using VectorResult = NativeVectorType<128 / VectorSize, VectorSize, SetSign>;
using VectorInput = NativeVectorType<128 / (VectorSize * 2), VectorSize * 2, SetSign>;
auto vector = bit_cast<VectorInput>(c);
VectorResult result;
// FIXME: Find a way to not loop here
for (size_t i = 0; i < VectorSize; ++i) {
if constexpr (Mode == VectorExt::High)
result[i] = vector[VectorSize + i];
else if constexpr (Mode == VectorExt::Low)
result[i] = vector[i];
else
VERIFY_NOT_REACHED();
}
return bit_cast<u128>(result);
}
static StringView name()
{
switch (VectorSize) {
case 8:
return "vec(16x8).ext(8x16)"sv;
case 4:
return "vec(32x4).ext(16x8)"sv;
case 2:
return "vec(64x2).ext(32x4)"sv;
default:
VERIFY_NOT_REACHED();
}
}
};
template<size_t VectorSize, typename Op, VectorExt Mode, template<typename> typename SetSign = MakeSigned>
struct VectorIntegerExtOp {
auto operator()(u128 lhs, u128 rhs) const
{
using VectorResult = NativeVectorType<128 / VectorSize, VectorSize, SetSign>;
using VectorInput = NativeVectorType<128 / (VectorSize * 2), VectorSize * 2, SetSign>;
auto first = bit_cast<VectorInput>(lhs);
auto second = bit_cast<VectorInput>(rhs);
VectorResult result;
Op op;
using ResultType = SetSign<NativeIntegralType<128 / VectorSize>>;
// FIXME: Find a way to not loop here
for (size_t i = 0; i < VectorSize; ++i) {
if constexpr (Mode == VectorExt::High) {
ResultType a = first[VectorSize + i];
ResultType b = second[VectorSize + i];
result[i] = op(a, b);
} else if constexpr (Mode == VectorExt::Low) {
ResultType a = first[i];
ResultType b = second[i];
result[i] = op(a, b);
} else
VERIFY_NOT_REACHED();
}
return bit_cast<u128>(result);
}
static StringView name()
{
switch (VectorSize) {
case 8:
return "vec(16x8).ext_op(8x16)"sv;
case 4:
return "vec(32x4).ext_op(16x8)"sv;
case 2:
return "vec(64x2).ext_op(32x4)"sv;
default:
VERIFY_NOT_REACHED();
}
}
};
template<size_t VectorSize, typename Op, template<typename> typename SetSign = MakeSigned>
struct VectorIntegerBinaryOp {
auto operator()(u128 lhs, u128 rhs) const
{
using VectorType = NativeVectorType<128 / VectorSize, VectorSize, SetSign>;
auto first = bit_cast<VectorType>(lhs);
auto second = bit_cast<VectorType>(rhs);
VectorType result;
Op op;
// FIXME: Find a way to not loop here
for (size_t i = 0; i < VectorSize; ++i) {
result[i] = op(first[i], second[i]);
}
return bit_cast<u128>(result);
}
static StringView name()
{
switch (VectorSize) {
case 16:
return "vec(8x16).binary_op"sv;
case 8:
return "vec(16x8).binary_op"sv;
case 4:
return "vec(32x4).binary_op"sv;
case 2:
return "vec(64x2).binary_op"sv;
default:
VERIFY_NOT_REACHED();
}
}
};
template<size_t VectorSize>
struct VectorBitmask {
auto operator()(u128 lhs) const
{
using VectorType = NativeVectorType<128 / VectorSize, VectorSize, MakeSigned>;
auto value = bit_cast<VectorType>(lhs);
u32 result = 0;
for (size_t i = 0; i < VectorSize; ++i)
result |= static_cast<u32>(value[i] < 0) << i;
return result;
}
static StringView name() { return "bitmask"sv; }
};
template<size_t VectorSize>
struct VectorDotProduct {
auto operator()(u128 lhs, u128 rhs) const
{
using VectorInput = NativeVectorType<128 / (VectorSize * 2), VectorSize * 2, MakeSigned>;
using VectorResult = NativeVectorType<128 / VectorSize, VectorSize, MakeSigned>;
auto v1 = bit_cast<VectorInput>(lhs);
auto v2 = bit_cast<VectorInput>(rhs);
VectorResult result;
using ResultType = MakeUnsigned<NativeIntegralType<128 / VectorSize>>;
for (size_t i = 0; i < VectorSize; ++i) {
ResultType low = v1[i * 2] * v2[i * 2];
ResultType high = v1[(i * 2) + 1] * v2[(i * 2) + 1];
result[i] = low + high;
}
return bit_cast<u128>(result);
}
static StringView name() { return "dot"sv; }
};
template<size_t VectorSize, typename Element>
struct VectorNarrow {
auto operator()(u128 lhs, u128 rhs) const
{
using VectorInput = NativeVectorType<128 / (VectorSize / 2), VectorSize / 2, MakeSigned>;
using VectorResult = NativeVectorType<128 / VectorSize, VectorSize, MakeUnsigned>;
auto v1 = bit_cast<VectorInput>(lhs);
auto v2 = bit_cast<VectorInput>(rhs);
VectorResult result;
for (size_t i = 0; i < (VectorSize / 2); ++i) {
if (v1[i] <= NumericLimits<Element>::min())
result[i] = NumericLimits<Element>::min();
else if (v1[i] >= NumericLimits<Element>::max())
result[i] = NumericLimits<Element>::max();
else
result[i] = v1[i];
}
for (size_t i = 0; i < (VectorSize / 2); ++i) {
if (v2[i] <= NumericLimits<Element>::min())
result[i + VectorSize / 2] = NumericLimits<Element>::min();
else if (v2[i] >= NumericLimits<Element>::max())
result[i + VectorSize / 2] = NumericLimits<Element>::max();
else
result[i + VectorSize / 2] = v2[i];
}
return bit_cast<u128>(result);
}
static StringView name() { return "narrow"sv; }
};
template<size_t VectorSize, typename Op, template<typename> typename SetSign = MakeSigned>
struct VectorIntegerUnaryOp {
auto operator()(u128 lhs) const
{
using VectorType = NativeVectorType<128 / VectorSize, VectorSize, SetSign>;
auto value = bit_cast<VectorType>(lhs);
VectorType result;
Op op;
// FIXME: Find a way to not loop here
for (size_t i = 0; i < VectorSize; ++i) {
result[i] = op(value[i]);
}
return bit_cast<u128>(result);
}
static StringView name()
{
switch (VectorSize) {
case 16:
return "vec(8x16).unary_op"sv;
case 8:
return "vec(16x8).unary_op"sv;
case 4:
return "vec(32x4).unary_op"sv;
case 2:
return "vec(64x2).unary_op"sv;
default:
VERIFY_NOT_REACHED();
}
}
};
template<size_t VectorSize, typename Op>
struct VectorFloatBinaryOp {
auto operator()(u128 lhs, u128 rhs) const
{
using VectorType = NativeFloatingVectorType<128, VectorSize, NativeFloatingType<128 / VectorSize>>;
auto first = bit_cast<VectorType>(lhs);
auto second = bit_cast<VectorType>(rhs);
VectorType result;
Op op;
for (size_t i = 0; i < VectorSize; ++i) {
result[i] = op(first[i], second[i]);
}
return bit_cast<u128>(result);
}
static StringView name()
{
switch (VectorSize) {
case 4:
return "vecf(32x4).binary_op"sv;
case 2:
return "vecf(64x2).binary_op"sv;
default:
VERIFY_NOT_REACHED();
}
}
};
template<size_t VectorSize, typename Op>
struct VectorFloatUnaryOp {
auto operator()(u128 lhs) const
{
using VectorType = NativeFloatingVectorType<128, VectorSize, NativeFloatingType<128 / VectorSize>>;
auto value = bit_cast<VectorType>(lhs);
VectorType result;
Op op;
for (size_t i = 0; i < VectorSize; ++i) {
result[i] = op(value[i]);
}
return bit_cast<u128>(result);
}
static StringView name()
{
switch (VectorSize) {
case 4:
return "vecf(32x4).unary_op"sv;
case 2:
return "vecf(64x2).unary_op"sv;
default:
VERIFY_NOT_REACHED();
}
}
};
template<size_t ResultSize, size_t InputSize, typename ResultType, typename InputType, typename Op>
struct VectorConvertOp {
auto operator()(u128 lhs) const
{
using VectorInput = NativeVectorType<128 / InputSize, InputSize, MakeUnsigned>;
using VectorResult = NativeVectorType<128 / ResultSize, ResultSize, MakeUnsigned>;
auto value = bit_cast<VectorInput>(lhs);
VectorResult result;
Op op;
auto size = min(InputSize, ResultSize);
for (size_t i = 0; i < size; ++i)
result[i] = bit_cast<ResultType>(op(bit_cast<InputType>(value[i])));
// FIXME: We shouldn't need this, but the auto-vectorizer sometimes doesn't see that we
// need to pad with zeroes when InputSize < ResultSize (i.e. converting from f64x2 -> f32x4).
// So we put this here to make sure. Putting [[clang::optnone]] over this function resolves
// this issue, but that would be pretty unacceptable...
if constexpr (InputSize < ResultSize) {
constexpr size_t remaining = ResultSize - InputSize;
for (size_t i = 0; i < remaining; ++i)
result[i + InputSize] = 0;
}
return bit_cast<u128>(result);
}
static StringView name()
{
switch (ResultSize) {
case 4:
return "vec(32x4).cvt_op"sv;
case 2:
return "vec(64x2).cvt_op"sv;
default:
VERIFY_NOT_REACHED();
}
}
};
struct Floor {
template<typename Lhs>
auto operator()(Lhs lhs) const
{
if constexpr (IsSame<Lhs, float>)
return floorf(lhs);
else if constexpr (IsSame<Lhs, double>)
return floor(lhs);
else
VERIFY_NOT_REACHED();
}
static StringView name() { return "floor"sv; }
};
struct Truncate {
template<typename Lhs>
auto operator()(Lhs lhs) const
{
if constexpr (IsSame<Lhs, float>)
return truncf(lhs);
else if constexpr (IsSame<Lhs, double>)
return trunc(lhs);
else
VERIFY_NOT_REACHED();
}
static StringView name() { return "truncate"sv; }
};
struct NearbyIntegral {
template<typename Lhs>
auto operator()(Lhs lhs) const
{
if constexpr (IsSame<Lhs, float>)
return nearbyintf(lhs);
else if constexpr (IsSame<Lhs, double>)
return nearbyint(lhs);
else
VERIFY_NOT_REACHED();
}
static StringView name() { return "round"sv; }
};
struct SquareRoot {
template<typename Lhs>
auto operator()(Lhs lhs) const
{
if constexpr (IsSame<Lhs, float>)
return sqrtf(lhs);
else if constexpr (IsSame<Lhs, double>)
return sqrt(lhs);
else
VERIFY_NOT_REACHED();
}
static StringView name() { return "sqrt"sv; }
};
template<typename Result>
struct Wrap {
template<typename Lhs>
Result operator()(Lhs lhs) const
{
return static_cast<MakeUnsigned<Result>>(bit_cast<MakeUnsigned<Lhs>>(lhs));
}
static StringView name() { return "wrap"sv; }
};
template<typename ResultT>
struct CheckedTruncate {
template<typename Lhs>
AK::ErrorOr<ResultT, StringView> operator()(Lhs lhs) const
{
if (isnan(lhs) || isinf(lhs)) // "undefined", let's just trap.
return "Truncation undefined behavior"sv;
Lhs truncated;
if constexpr (IsSame<float, Lhs>)
truncated = truncf(lhs);
else if constexpr (IsSame<double, Lhs>)
truncated = trunc(lhs);
else
VERIFY_NOT_REACHED();
// FIXME: This function assumes that all values of ResultT are representable in Lhs
// the assumption comes from the fact that this was used exclusively by LibJS,
// which only considers values that are all representable in 'double'.
if (!AK::is_within_range<ResultT>(truncated))
return "Truncation out of range"sv;
return static_cast<ResultT>(truncated);
}
static StringView name() { return "truncate.checked"sv; }
};
template<typename ResultT>
struct Extend {
template<typename Lhs>
ResultT operator()(Lhs lhs) const
{
return lhs;
}
static StringView name() { return "extend"sv; }
};
template<typename ResultT>
struct Convert {
template<typename Lhs>
ResultT operator()(Lhs lhs) const
{
auto interpretation = bit_cast<Lhs>(lhs);
return static_cast<ResultT>(interpretation);
}
static StringView name() { return "convert"sv; }
};
template<typename ResultT>
struct Reinterpret {
template<typename Lhs>
ResultT operator()(Lhs lhs) const
{
return bit_cast<ResultT>(lhs);
}
static StringView name() { return "reinterpret"sv; }
};
struct Promote {
double operator()(float lhs) const
{
if (isnan(lhs))
return nan(""); // FIXME: Ensure canonical NaN remains canonical
return static_cast<double>(lhs);
}
static StringView name() { return "promote"sv; }
};
struct Demote {
float operator()(double lhs) const
{
if (isnan(lhs))
return nanf(""); // FIXME: Ensure canonical NaN remains canonical
if (isinf(lhs))
return copysignf(__builtin_huge_valf(), lhs);
return static_cast<float>(lhs);
}
static StringView name() { return "demote"sv; }
};
template<typename InitialType>
struct SignExtend {
template<typename Lhs>
Lhs operator()(Lhs lhs) const
{
auto unsigned_representation = bit_cast<MakeUnsigned<Lhs>>(lhs);
auto truncated_unsigned_representation = static_cast<MakeUnsigned<InitialType>>(unsigned_representation);
auto initial_value = bit_cast<InitialType>(truncated_unsigned_representation);
return static_cast<Lhs>(initial_value);
}
static StringView name() { return "extend"sv; }
};
template<typename ResultT>
struct SaturatingTruncate {
template<typename Lhs>
ResultT operator()(Lhs lhs) const
{
if (isnan(lhs))
return 0;
if (isinf(lhs)) {
if (lhs < 0)
return NumericLimits<ResultT>::min();
return NumericLimits<ResultT>::max();
}
// FIXME: This assumes that all values in ResultT are representable in 'double'.
// that assumption is not correct, which makes this function yield incorrect values
// for 'edge' values of type i64.
constexpr auto convert = []<typename ConvertT>(ConvertT truncated_value) {
if (truncated_value < NumericLimits<ResultT>::min())
return NumericLimits<ResultT>::min();
if constexpr (IsSame<ConvertT, float>) {
if (truncated_value >= static_cast<ConvertT>(NumericLimits<ResultT>::max()))
return NumericLimits<ResultT>::max();
} else {
if (static_cast<double>(truncated_value) >= static_cast<double>(NumericLimits<ResultT>::max()))
return NumericLimits<ResultT>::max();
}
return static_cast<ResultT>(truncated_value);
};
if constexpr (IsSame<Lhs, float>)
return convert(truncf(lhs));
else
return convert(trunc(lhs));
}
static StringView name() { return "truncate.saturating"sv; }
};
template<typename ResultT, typename Op>
struct SaturatingOp {
template<typename Lhs, typename Rhs>
ResultT operator()(Lhs lhs, Rhs rhs) const
{
Op op;
double result = op(lhs, rhs);
if (result <= static_cast<double>(NumericLimits<ResultT>::min())) {
return NumericLimits<ResultT>::min();
}
if (result >= static_cast<double>(NumericLimits<ResultT>::max())) {
return NumericLimits<ResultT>::max();
}
return static_cast<ResultT>(result);
}
static StringView name() { return "saturating_op"sv; }
};
}