ladybird/Kernel/Memory/AnonymousVMObject.cpp
Andreas Kling a930877f31 Kernel: Mape quickmap functions VERIFY that MM lock is held
The quickmap_page() and unquickmap_page() functions are used to map a
single physical page at a kernel virtual address for temporary access.

These use the per-CPU quickmap buffer in the page tables, and access to
this is guarded by the MM lock. To prevent bugs, quickmap_page() should
not *take* the MM lock, but rather verify that it is already held!

This exposed two situations where we were using quickmap without holding
the MM lock during page fault handling. This patch is forced to fix
these issues (which is great!) :^)
2021-08-23 00:02:09 +02:00

393 lines
14 KiB
C++

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <Kernel/Arch/x86/SmapDisabler.h>
#include <Kernel/Debug.h>
#include <Kernel/Memory/AnonymousVMObject.h>
#include <Kernel/Memory/MemoryManager.h>
#include <Kernel/Memory/PhysicalPage.h>
#include <Kernel/Process.h>
namespace Kernel::Memory {
KResultOr<NonnullRefPtr<VMObject>> AnonymousVMObject::try_clone()
{
// We need to acquire our lock so we copy a sane state
SpinlockLocker lock(m_lock);
if (is_purgeable() && is_volatile()) {
// If this object is purgeable+volatile, create a new zero-filled purgeable+volatile
// object, effectively "pre-purging" it in the child process.
auto maybe_clone = try_create_purgeable_with_size(size(), AllocationStrategy::None);
if (maybe_clone.is_error())
return maybe_clone.error();
auto clone = maybe_clone.release_value();
clone->m_volatile = true;
return clone;
}
// We're the parent. Since we're about to become COW we need to
// commit the number of pages that we need to potentially allocate
// so that the parent is still guaranteed to be able to have all
// non-volatile memory available.
size_t new_cow_pages_needed = page_count();
dbgln_if(COMMIT_DEBUG, "Cloning {:p}, need {} committed cow pages", this, new_cow_pages_needed);
auto committed_pages = MM.commit_user_physical_pages(new_cow_pages_needed);
if (!committed_pages.has_value())
return ENOMEM;
// Create or replace the committed cow pages. When cloning a previously
// cloned vmobject, we want to essentially "fork", leaving us and the
// new clone with one set of shared committed cow pages, and the original
// one would keep the one it still has. This ensures that the original
// one and this one, as well as the clone have sufficient resources
// to cow all pages as needed
auto new_shared_committed_cow_pages = try_create<SharedCommittedCowPages>(committed_pages.release_value());
if (!new_shared_committed_cow_pages)
return ENOMEM;
auto maybe_clone = adopt_ref_if_nonnull(new (nothrow) AnonymousVMObject(*this, new_shared_committed_cow_pages.release_nonnull()));
if (!maybe_clone)
return ENOMEM;
auto clone = maybe_clone.release_nonnull();
m_shared_committed_cow_pages = move(new_shared_committed_cow_pages);
// Both original and clone become COW. So create a COW map for ourselves
// or reset all pages to be copied again if we were previously cloned
ensure_or_reset_cow_map();
if (m_unused_committed_pages.has_value() && !m_unused_committed_pages->is_empty()) {
// The parent vmobject didn't use up all committed pages. When
// cloning (fork) we will overcommit. For this purpose we drop all
// lazy-commit references and replace them with shared zero pages.
for (size_t i = 0; i < page_count(); i++) {
auto& page = clone->m_physical_pages[i];
if (page && page->is_lazy_committed_page()) {
page = MM.shared_zero_page();
}
}
}
return clone;
}
KResultOr<NonnullRefPtr<AnonymousVMObject>> AnonymousVMObject::try_create_with_size(size_t size, AllocationStrategy strategy)
{
Optional<CommittedPhysicalPageSet> committed_pages;
if (strategy == AllocationStrategy::Reserve || strategy == AllocationStrategy::AllocateNow) {
committed_pages = MM.commit_user_physical_pages(ceil_div(size, static_cast<size_t>(PAGE_SIZE)));
if (!committed_pages.has_value())
return ENOMEM;
}
return adopt_nonnull_ref_or_enomem(new (nothrow) AnonymousVMObject(size, strategy, move(committed_pages)));
}
KResultOr<NonnullRefPtr<AnonymousVMObject>> AnonymousVMObject::try_create_physically_contiguous_with_size(size_t size)
{
auto contiguous_physical_pages = MM.allocate_contiguous_supervisor_physical_pages(size);
if (contiguous_physical_pages.is_empty())
return ENOMEM;
return adopt_nonnull_ref_or_enomem(new (nothrow) AnonymousVMObject(contiguous_physical_pages.span()));
}
KResultOr<NonnullRefPtr<AnonymousVMObject>> AnonymousVMObject::try_create_purgeable_with_size(size_t size, AllocationStrategy strategy)
{
Optional<CommittedPhysicalPageSet> committed_pages;
if (strategy == AllocationStrategy::Reserve || strategy == AllocationStrategy::AllocateNow) {
committed_pages = MM.commit_user_physical_pages(ceil_div(size, static_cast<size_t>(PAGE_SIZE)));
if (!committed_pages.has_value())
return ENOMEM;
}
auto vmobject = adopt_ref_if_nonnull(new (nothrow) AnonymousVMObject(size, strategy, move(committed_pages)));
if (!vmobject)
return ENOMEM;
vmobject->m_purgeable = true;
return vmobject.release_nonnull();
}
KResultOr<NonnullRefPtr<AnonymousVMObject>> AnonymousVMObject::try_create_with_physical_pages(Span<NonnullRefPtr<PhysicalPage>> physical_pages)
{
return adopt_nonnull_ref_or_enomem(new (nothrow) AnonymousVMObject(physical_pages));
}
KResultOr<NonnullRefPtr<AnonymousVMObject>> AnonymousVMObject::try_create_for_physical_range(PhysicalAddress paddr, size_t size)
{
if (paddr.offset(size) < paddr) {
dbgln("Shenanigans! try_create_for_physical_range({}, {}) would wrap around", paddr, size);
// Since we can't wrap around yet, let's pretend to OOM.
return ENOMEM;
}
return adopt_nonnull_ref_or_enomem(new (nothrow) AnonymousVMObject(paddr, size));
}
AnonymousVMObject::AnonymousVMObject(size_t size, AllocationStrategy strategy, Optional<CommittedPhysicalPageSet> committed_pages)
: VMObject(size)
, m_unused_committed_pages(move(committed_pages))
{
if (strategy == AllocationStrategy::AllocateNow) {
// Allocate all pages right now. We know we can get all because we committed the amount needed
for (size_t i = 0; i < page_count(); ++i)
physical_pages()[i] = m_unused_committed_pages->take_one();
} else {
auto& initial_page = (strategy == AllocationStrategy::Reserve) ? MM.lazy_committed_page() : MM.shared_zero_page();
for (size_t i = 0; i < page_count(); ++i)
physical_pages()[i] = initial_page;
}
}
AnonymousVMObject::AnonymousVMObject(PhysicalAddress paddr, size_t size)
: VMObject(size)
{
VERIFY(paddr.page_base() == paddr);
for (size_t i = 0; i < page_count(); ++i)
physical_pages()[i] = PhysicalPage::create(paddr.offset(i * PAGE_SIZE), MayReturnToFreeList::No);
}
AnonymousVMObject::AnonymousVMObject(Span<NonnullRefPtr<PhysicalPage>> physical_pages)
: VMObject(physical_pages.size() * PAGE_SIZE)
{
for (size_t i = 0; i < physical_pages.size(); ++i) {
m_physical_pages[i] = physical_pages[i];
}
}
AnonymousVMObject::AnonymousVMObject(AnonymousVMObject const& other, NonnullRefPtr<SharedCommittedCowPages> shared_committed_cow_pages)
: VMObject(other)
, m_shared_committed_cow_pages(move(shared_committed_cow_pages))
, m_purgeable(other.m_purgeable)
{
ensure_cow_map();
}
AnonymousVMObject::~AnonymousVMObject()
{
}
size_t AnonymousVMObject::purge()
{
SpinlockLocker lock(m_lock);
if (!is_purgeable() || !is_volatile())
return 0;
size_t total_pages_purged = 0;
for (auto& page : m_physical_pages) {
VERIFY(page);
if (page->is_shared_zero_page())
continue;
page = MM.shared_zero_page();
++total_pages_purged;
}
m_was_purged = true;
for_each_region([](Region& region) {
region.remap();
});
return total_pages_purged;
}
KResult AnonymousVMObject::set_volatile(bool is_volatile, bool& was_purged)
{
VERIFY(is_purgeable());
SpinlockLocker locker(m_lock);
was_purged = m_was_purged;
if (m_volatile == is_volatile)
return KSuccess;
if (is_volatile) {
// When a VMObject is made volatile, it gives up all of its committed memory.
// Any physical pages already allocated remain in the VMObject for now, but the kernel is free to take them at any moment.
for (auto& page : m_physical_pages) {
if (page && page->is_lazy_committed_page())
page = MM.shared_zero_page();
}
m_unused_committed_pages = {};
m_shared_committed_cow_pages = nullptr;
if (!m_cow_map.is_null())
m_cow_map = {};
m_volatile = true;
m_was_purged = false;
for_each_region([&](auto& region) { region.remap(); });
return KSuccess;
}
// When a VMObject is made non-volatile, we try to commit however many pages are not currently available.
// If that fails, we return false to indicate that memory allocation failed.
size_t committed_pages_needed = 0;
for (auto& page : m_physical_pages) {
VERIFY(page);
if (page->is_shared_zero_page())
++committed_pages_needed;
}
if (!committed_pages_needed) {
m_volatile = false;
return KSuccess;
}
m_unused_committed_pages = MM.commit_user_physical_pages(committed_pages_needed);
if (!m_unused_committed_pages.has_value())
return ENOMEM;
for (auto& page : m_physical_pages) {
if (page->is_shared_zero_page())
page = MM.lazy_committed_page();
}
m_volatile = false;
m_was_purged = false;
for_each_region([&](auto& region) { region.remap(); });
return KSuccess;
}
NonnullRefPtr<PhysicalPage> AnonymousVMObject::allocate_committed_page(Badge<Region>)
{
return m_unused_committed_pages->take_one();
}
Bitmap& AnonymousVMObject::ensure_cow_map()
{
if (m_cow_map.is_null())
m_cow_map = Bitmap { page_count(), true };
return m_cow_map;
}
void AnonymousVMObject::ensure_or_reset_cow_map()
{
if (m_cow_map.is_null())
ensure_cow_map();
else
m_cow_map.fill(true);
}
bool AnonymousVMObject::should_cow(size_t page_index, bool is_shared) const
{
auto& page = physical_pages()[page_index];
if (page && (page->is_shared_zero_page() || page->is_lazy_committed_page()))
return true;
if (is_shared)
return false;
return !m_cow_map.is_null() && m_cow_map.get(page_index);
}
void AnonymousVMObject::set_should_cow(size_t page_index, bool cow)
{
ensure_cow_map().set(page_index, cow);
}
size_t AnonymousVMObject::cow_pages() const
{
if (m_cow_map.is_null())
return 0;
return m_cow_map.count_slow(true);
}
PageFaultResponse AnonymousVMObject::handle_cow_fault(size_t page_index, VirtualAddress vaddr)
{
VERIFY_INTERRUPTS_DISABLED();
SpinlockLocker lock(m_lock);
if (is_volatile()) {
// A COW fault in a volatile region? Userspace is writing to volatile memory, this is a bug. Crash.
dbgln("COW fault in volatile region, will crash.");
return PageFaultResponse::ShouldCrash;
}
auto& page_slot = physical_pages()[page_index];
// If we were sharing committed COW pages with another process, and the other process
// has exhausted the supply, we can stop counting the shared pages.
if (m_shared_committed_cow_pages && m_shared_committed_cow_pages->is_empty())
m_shared_committed_cow_pages = nullptr;
if (page_slot->ref_count() == 1) {
dbgln_if(PAGE_FAULT_DEBUG, " >> It's a COW page but nobody is sharing it anymore. Remap r/w");
set_should_cow(page_index, false);
if (m_shared_committed_cow_pages) {
m_shared_committed_cow_pages->uncommit_one();
if (m_shared_committed_cow_pages->is_empty())
m_shared_committed_cow_pages = nullptr;
}
return PageFaultResponse::Continue;
}
RefPtr<PhysicalPage> page;
if (m_shared_committed_cow_pages) {
dbgln_if(PAGE_FAULT_DEBUG, " >> It's a committed COW page and it's time to COW!");
page = m_shared_committed_cow_pages->take_one();
} else {
dbgln_if(PAGE_FAULT_DEBUG, " >> It's a COW page and it's time to COW!");
page = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No);
if (page.is_null()) {
dmesgln("MM: handle_cow_fault was unable to allocate a physical page");
return PageFaultResponse::OutOfMemory;
}
}
dbgln_if(PAGE_FAULT_DEBUG, " >> COW {} <- {}", page->paddr(), page_slot->paddr());
{
SpinlockLocker mm_locker(s_mm_lock);
u8* dest_ptr = MM.quickmap_page(*page);
SmapDisabler disabler;
void* fault_at;
if (!safe_memcpy(dest_ptr, vaddr.as_ptr(), PAGE_SIZE, fault_at)) {
if ((u8*)fault_at >= dest_ptr && (u8*)fault_at <= dest_ptr + PAGE_SIZE)
dbgln(" >> COW: error copying page {}/{} to {}/{}: failed to write to page at {}",
page_slot->paddr(), vaddr, page->paddr(), VirtualAddress(dest_ptr), VirtualAddress(fault_at));
else if ((u8*)fault_at >= vaddr.as_ptr() && (u8*)fault_at <= vaddr.as_ptr() + PAGE_SIZE)
dbgln(" >> COW: error copying page {}/{} to {}/{}: failed to read from page at {}",
page_slot->paddr(), vaddr, page->paddr(), VirtualAddress(dest_ptr), VirtualAddress(fault_at));
else
VERIFY_NOT_REACHED();
}
MM.unquickmap_page();
}
page_slot = move(page);
set_should_cow(page_index, false);
return PageFaultResponse::Continue;
}
AnonymousVMObject::SharedCommittedCowPages::SharedCommittedCowPages(CommittedPhysicalPageSet&& committed_pages)
: m_committed_pages(move(committed_pages))
{
}
AnonymousVMObject::SharedCommittedCowPages::~SharedCommittedCowPages()
{
}
NonnullRefPtr<PhysicalPage> AnonymousVMObject::SharedCommittedCowPages::take_one()
{
SpinlockLocker locker(m_lock);
return m_committed_pages.take_one();
}
void AnonymousVMObject::SharedCommittedCowPages::uncommit_one()
{
SpinlockLocker locker(m_lock);
m_committed_pages.uncommit_one();
}
}