mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2025-04-25 22:08:59 +00:00
Previously we would fail to generate any hunks if the old or the new file was empty. We now do, with the original/target line index set to 0, as specified by POSIX.
124 lines
3.6 KiB
C++
124 lines
3.6 KiB
C++
/*
|
|
* Copyright (c) 2021, Mustafa Quraish <mustafa@serenityos.org>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include "Generator.h"
|
|
|
|
namespace Diff {
|
|
|
|
Vector<Hunk> from_text(StringView old_text, StringView new_text)
|
|
{
|
|
auto old_lines = old_text.lines();
|
|
auto new_lines = new_text.lines();
|
|
|
|
/**
|
|
* This is a simple implementation of the Longest Common Subsequence algorithm (over
|
|
* the lines of the text as opposed to the characters). A Dynamic programming approach
|
|
* is used here.
|
|
*/
|
|
|
|
enum class Direction {
|
|
Down, // Added a new line
|
|
Right, // Removed a line
|
|
Diagonal, // Line remained the same
|
|
};
|
|
|
|
// A single cell in the DP-matrix. Cell (i, j) represents the longest common
|
|
// sub-sequence of lines between old_lines[0 : i] and new_lines[0 : j].
|
|
struct Cell {
|
|
size_t length;
|
|
Direction direction;
|
|
};
|
|
|
|
auto dp_matrix = Vector<Cell>();
|
|
dp_matrix.resize((old_lines.size() + 1) * (new_lines.size() + 1));
|
|
|
|
auto dp = [&dp_matrix, width = old_lines.size() + 1](size_t i, size_t j) -> Cell& {
|
|
return dp_matrix[i + width * j];
|
|
};
|
|
|
|
// Initialize the first row and column
|
|
for (size_t i = 0; i <= old_lines.size(); ++i)
|
|
dp(i, new_lines.size()) = { 0, Direction::Right };
|
|
|
|
for (size_t j = 0; j <= new_lines.size(); ++j)
|
|
dp(old_lines.size(), 0) = { 0, Direction::Down };
|
|
|
|
// Fill in the rest of the DP table
|
|
for (int i = old_lines.size() - 1; i >= 0; --i) {
|
|
for (int j = new_lines.size() - 1; j >= 0; --j) {
|
|
if (old_lines[i] == new_lines[j]) {
|
|
dp(i, j) = { dp(i + 1, j + 1).length + 1, Direction::Diagonal };
|
|
} else {
|
|
auto down = dp(i, j + 1).length;
|
|
auto right = dp(i + 1, j).length;
|
|
if (down > right)
|
|
dp(i, j) = { down, Direction::Down };
|
|
else
|
|
dp(i, j) = { right, Direction::Right };
|
|
}
|
|
}
|
|
}
|
|
|
|
Vector<Hunk> hunks;
|
|
Hunk cur_hunk;
|
|
bool in_hunk = false;
|
|
|
|
auto update_hunk = [&](size_t i, size_t j, Direction direction) {
|
|
if (!in_hunk) {
|
|
in_hunk = true;
|
|
cur_hunk = { i, j, {}, {} };
|
|
}
|
|
if (direction == Direction::Down) {
|
|
cur_hunk.added_lines.append(new_lines[j]);
|
|
} else if (direction == Direction::Right) {
|
|
cur_hunk.removed_lines.append(old_lines[i]);
|
|
}
|
|
};
|
|
|
|
auto flush_hunk = [&]() {
|
|
if (in_hunk) {
|
|
if (cur_hunk.added_lines.size() > 0)
|
|
cur_hunk.target_start_line++;
|
|
if (cur_hunk.removed_lines.size() > 0)
|
|
cur_hunk.original_start_line++;
|
|
hunks.append(cur_hunk);
|
|
in_hunk = false;
|
|
}
|
|
};
|
|
|
|
size_t i = 0;
|
|
size_t j = 0;
|
|
|
|
while (i < old_lines.size() && j < new_lines.size()) {
|
|
auto& cell = dp(i, j);
|
|
if (cell.direction == Direction::Down) {
|
|
update_hunk(i, j, cell.direction);
|
|
++j;
|
|
} else if (cell.direction == Direction::Right) {
|
|
update_hunk(i, j, cell.direction);
|
|
++i;
|
|
} else {
|
|
++i;
|
|
++j;
|
|
flush_hunk();
|
|
}
|
|
}
|
|
|
|
while (i < old_lines.size()) {
|
|
update_hunk(i, new_lines.is_empty() ? 0 : new_lines.size() - 1, Direction::Right); // Remove a line
|
|
++i;
|
|
}
|
|
while (j < new_lines.size()) {
|
|
update_hunk(old_lines.is_empty() ? 0 : old_lines.size() - 1, j, Direction::Down); // Add a line
|
|
++j;
|
|
}
|
|
|
|
flush_hunk();
|
|
|
|
return hunks;
|
|
}
|
|
|
|
}
|