ladybird/Userland/Libraries/LibJS/Bytecode/Generator.h
Luke Wilde c0fadfb9b7 LibJS/Bytecode: Implement break/continue labels
This is done by keeping track of all the labels that apply to a given
break/continue scope alongside their bytecode target. When a
break/continue with a label is generated, we scan from the most inner
scope to the most outer scope looking for the label, performing any
necessary unwinds on the way. Once the label is found, it is then
jumped to.
2022-06-13 07:13:03 +04:30

225 lines
7.9 KiB
C++

/*
* Copyright (c) 2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/NonnullOwnPtrVector.h>
#include <AK/OwnPtr.h>
#include <AK/SinglyLinkedList.h>
#include <LibJS/Bytecode/BasicBlock.h>
#include <LibJS/Bytecode/CodeGenerationError.h>
#include <LibJS/Bytecode/Executable.h>
#include <LibJS/Bytecode/IdentifierTable.h>
#include <LibJS/Bytecode/Label.h>
#include <LibJS/Bytecode/Op.h>
#include <LibJS/Bytecode/Register.h>
#include <LibJS/Bytecode/StringTable.h>
#include <LibJS/Forward.h>
#include <LibJS/Runtime/FunctionKind.h>
namespace JS::Bytecode {
class Generator {
public:
enum class SurroundingScopeKind {
Global,
Function,
Block,
};
static CodeGenerationErrorOr<NonnullOwnPtr<Executable>> generate(ASTNode const&, FunctionKind = FunctionKind::Normal);
Register allocate_register();
void ensure_enough_space(size_t size)
{
// Make sure there's always enough space for a single jump at the end.
if (!m_current_basic_block->can_grow(size + sizeof(Op::Jump))) {
auto& new_block = make_block();
emit<Op::Jump>().set_targets(
Label { new_block },
{});
switch_to_basic_block(new_block);
}
}
template<typename OpType, typename... Args>
OpType& emit(Args&&... args)
{
VERIFY(!is_current_block_terminated());
// If the block doesn't have enough space, switch to another block
if constexpr (!OpType::IsTerminator)
ensure_enough_space(sizeof(OpType));
void* slot = next_slot();
grow(sizeof(OpType));
new (slot) OpType(forward<Args>(args)...);
if constexpr (OpType::IsTerminator)
m_current_basic_block->terminate({});
return *static_cast<OpType*>(slot);
}
template<typename OpType, typename... Args>
OpType& emit_with_extra_register_slots(size_t extra_register_slots, Args&&... args)
{
VERIFY(!is_current_block_terminated());
// If the block doesn't have enough space, switch to another block
if constexpr (!OpType::IsTerminator)
ensure_enough_space(sizeof(OpType) + extra_register_slots * sizeof(Register));
void* slot = next_slot();
grow(sizeof(OpType) + extra_register_slots * sizeof(Register));
new (slot) OpType(forward<Args>(args)...);
if constexpr (OpType::IsTerminator)
m_current_basic_block->terminate({});
return *static_cast<OpType*>(slot);
}
CodeGenerationErrorOr<void> emit_load_from_reference(JS::ASTNode const&);
CodeGenerationErrorOr<void> emit_store_to_reference(JS::ASTNode const&);
CodeGenerationErrorOr<void> emit_delete_reference(JS::ASTNode const&);
void begin_continuable_scope(Label continue_target, Vector<FlyString> const& language_label_set);
void end_continuable_scope();
void begin_breakable_scope(Label breakable_target, Vector<FlyString> const& language_label_set);
void end_breakable_scope();
[[nodiscard]] Label nearest_continuable_scope() const;
[[nodiscard]] Label nearest_breakable_scope() const;
void switch_to_basic_block(BasicBlock& block)
{
m_current_basic_block = &block;
}
[[nodiscard]] BasicBlock& current_block() { return *m_current_basic_block; }
BasicBlock& make_block(String name = {})
{
if (name.is_empty())
name = String::number(m_next_block++);
m_root_basic_blocks.append(BasicBlock::create(name));
return m_root_basic_blocks.last();
}
bool is_current_block_terminated() const
{
return m_current_basic_block->is_terminated();
}
StringTableIndex intern_string(String string)
{
return m_string_table->insert(move(string));
}
IdentifierTableIndex intern_identifier(FlyString string)
{
return m_identifier_table->insert(move(string));
}
bool is_in_generator_or_async_function() const { return m_enclosing_function_kind == FunctionKind::Async || m_enclosing_function_kind == FunctionKind::Generator; }
bool is_in_generator_function() const { return m_enclosing_function_kind == FunctionKind::Generator; }
bool is_in_async_function() const { return m_enclosing_function_kind == FunctionKind::Async; }
enum class BindingMode {
Lexical,
Var,
Global,
};
struct LexicalScope {
SurroundingScopeKind kind;
BindingMode mode;
HashTable<IdentifierTableIndex> known_bindings;
};
void register_binding(IdentifierTableIndex identifier, BindingMode mode = BindingMode::Lexical)
{
m_variable_scopes.last_matching([&](auto& x) { return x.mode == BindingMode::Global || x.mode == mode; })->known_bindings.set(identifier);
}
bool has_binding(IdentifierTableIndex identifier, Optional<BindingMode> const& specific_binding_mode = {})
{
for (auto index = m_variable_scopes.size(); index > 0; --index) {
auto& scope = m_variable_scopes[index - 1];
if (scope.mode != BindingMode::Global && specific_binding_mode.value_or(scope.mode) != scope.mode)
continue;
if (scope.known_bindings.contains(identifier))
return true;
}
return false;
}
void begin_variable_scope(BindingMode mode = BindingMode::Lexical, SurroundingScopeKind kind = SurroundingScopeKind::Block);
void end_variable_scope();
enum class BlockBoundaryType {
Break,
Continue,
Unwind,
LeaveLexicalEnvironment,
LeaveVariableEnvironment,
};
template<typename OpType>
void perform_needed_unwinds(bool is_break_node = false) requires(OpType::IsTerminator)
{
Optional<BlockBoundaryType> boundary_to_stop_at;
if constexpr (IsSame<OpType, Bytecode::Op::Return> || IsSame<OpType, Bytecode::Op::Yield>)
VERIFY(!is_break_node);
else if constexpr (IsSame<OpType, Bytecode::Op::Throw>)
boundary_to_stop_at = BlockBoundaryType::Unwind;
else
boundary_to_stop_at = is_break_node ? BlockBoundaryType::Break : BlockBoundaryType::Continue;
for (size_t i = m_boundaries.size(); i > 0; --i) {
auto boundary = m_boundaries[i - 1];
if (boundary_to_stop_at.has_value() && boundary == *boundary_to_stop_at)
break;
if (boundary == BlockBoundaryType::Unwind)
emit<Bytecode::Op::LeaveUnwindContext>();
else if (boundary == BlockBoundaryType::LeaveLexicalEnvironment)
emit<Bytecode::Op::LeaveEnvironment>(Bytecode::Op::EnvironmentMode::Lexical);
else if (boundary == BlockBoundaryType::LeaveVariableEnvironment)
emit<Bytecode::Op::LeaveEnvironment>(Bytecode::Op::EnvironmentMode::Var);
}
}
Label perform_needed_unwinds_for_labelled_break_and_return_target_block(FlyString const& break_label);
Label perform_needed_unwinds_for_labelled_continue_and_return_target_block(FlyString const& continue_label);
void start_boundary(BlockBoundaryType type) { m_boundaries.append(type); }
void end_boundary(BlockBoundaryType type)
{
VERIFY(m_boundaries.last() == type);
m_boundaries.take_last();
}
private:
Generator();
~Generator() = default;
void grow(size_t);
void* next_slot();
struct LabelableScope {
Label bytecode_target;
Vector<FlyString> language_label_set;
};
BasicBlock* m_current_basic_block { nullptr };
NonnullOwnPtrVector<BasicBlock> m_root_basic_blocks;
NonnullOwnPtr<StringTable> m_string_table;
NonnullOwnPtr<IdentifierTable> m_identifier_table;
u32 m_next_register { 2 };
u32 m_next_block { 1 };
FunctionKind m_enclosing_function_kind { FunctionKind::Normal };
Vector<LabelableScope> m_continuable_scopes;
Vector<LabelableScope> m_breakable_scopes;
Vector<LexicalScope> m_variable_scopes;
Vector<BlockBoundaryType> m_boundaries;
};
}