mirror of
				https://github.com/LadybirdBrowser/ladybird.git
				synced 2025-10-25 09:30:01 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			240 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			240 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2022, Ben Wiederhake <BenWiederhake.GitHub@gmx.de>
 | |
|  *
 | |
|  * SPDX-License-Identifier: BSD-2-Clause
 | |
|  */
 | |
| 
 | |
| #include <AK/StringView.h>
 | |
| #include <AK/Time.h>
 | |
| #include <LibCrypto/ASN1/ASN1.h>
 | |
| #include <LibCrypto/ASN1/DER.h>
 | |
| #include <LibTest/TestCase.h>
 | |
| 
 | |
| #define EXPECT_DATETIME(sv, y, mo, d, h, mi, s) \
 | |
|     EXPECT_EQ(Crypto::ASN1::parse_utc_time(sv).value(), UnixDateTime::from_unix_time_parts(y, mo, d, h, mi, s, 0))
 | |
| 
 | |
| TEST_CASE(test_utc_boring)
 | |
| {
 | |
|     // YYMMDDhhmm[ss]Z
 | |
|     EXPECT_DATETIME("010101010101Z"sv, 2001, 1, 1, 1, 1, 1);
 | |
|     EXPECT_DATETIME("010203040506Z"sv, 2001, 2, 3, 4, 5, 6);
 | |
|     EXPECT_DATETIME("020406081012Z"sv, 2002, 4, 6, 8, 10, 12);
 | |
|     EXPECT_DATETIME("0204060810Z"sv, 2002, 4, 6, 8, 10, 0);
 | |
|     EXPECT_DATETIME("220911220000Z"sv, 2022, 9, 11, 22, 0, 0);
 | |
| }
 | |
| 
 | |
| TEST_CASE(test_utc_year_rollover)
 | |
| {
 | |
|     // YYMMDDhhmm[ss]Z
 | |
|     EXPECT_DATETIME("000101010101Z"sv, 2000, 1, 1, 1, 1, 1);
 | |
|     EXPECT_DATETIME("010101010101Z"sv, 2001, 1, 1, 1, 1, 1);
 | |
|     EXPECT_DATETIME("020101010101Z"sv, 2002, 1, 1, 1, 1, 1);
 | |
|     // ...
 | |
|     EXPECT_DATETIME("480101010101Z"sv, 2048, 1, 1, 1, 1, 1);
 | |
|     EXPECT_DATETIME("490101010101Z"sv, 2049, 1, 1, 1, 1, 1);
 | |
|     // This Y2050-problem is hardcoded in the spec. Oh no.
 | |
|     EXPECT_DATETIME("500101010101Z"sv, 1950, 1, 1, 1, 1, 1);
 | |
|     EXPECT_DATETIME("510101010101Z"sv, 1951, 1, 1, 1, 1, 1);
 | |
|     // ...
 | |
|     EXPECT_DATETIME("970101010101Z"sv, 1997, 1, 1, 1, 1, 1);
 | |
|     EXPECT_DATETIME("980101010101Z"sv, 1998, 1, 1, 1, 1, 1);
 | |
|     EXPECT_DATETIME("990101010101Z"sv, 1999, 1, 1, 1, 1, 1);
 | |
| }
 | |
| 
 | |
| TEST_CASE(test_utc_offset)
 | |
| {
 | |
|     // YYMMDDhhmm[ss](+|-)hhmm
 | |
|     // We don't yet support storing the offset anywhere and instead just assume that the offset is just +0000.
 | |
|     EXPECT_DATETIME("010101010101+0000"sv, 2001, 1, 1, 1, 1, 1);
 | |
|     EXPECT_DATETIME("010203040506+0000"sv, 2001, 2, 3, 4, 5, 6);
 | |
|     EXPECT_DATETIME("020406081012+0000"sv, 2002, 4, 6, 8, 10, 12);
 | |
|     EXPECT_DATETIME("0204060810+0000"sv, 2002, 4, 6, 8, 10, 0);
 | |
|     EXPECT_DATETIME("220911220000+0000"sv, 2022, 9, 11, 22, 0, 0);
 | |
|     // Designed to fail once we support offsets:
 | |
|     EXPECT_DATETIME("220911220000+0600"sv, 2022, 9, 11, 22, 0, 0);
 | |
| }
 | |
| 
 | |
| TEST_CASE(test_utc_missing_z)
 | |
| {
 | |
|     // YYMMDDhhmm[ss]
 | |
|     // We don't actually need to parse this correctly; rejecting these inputs is fine.
 | |
|     // This test just makes sure that we don't crash.
 | |
|     (void)Crypto::ASN1::parse_utc_time("010101010101"sv);
 | |
|     (void)Crypto::ASN1::parse_utc_time("010203040506"sv);
 | |
|     (void)Crypto::ASN1::parse_utc_time("020406081012"sv);
 | |
|     (void)Crypto::ASN1::parse_utc_time("0204060810"sv);
 | |
|     (void)Crypto::ASN1::parse_utc_time("220911220000"sv);
 | |
| }
 | |
| 
 | |
| #undef EXPECT_DATETIME
 | |
| #define EXPECT_DATETIME(sv, y, mo, d, h, mi, s, ms) \
 | |
|     EXPECT_EQ(Crypto::ASN1::parse_generalized_time(sv).value(), UnixDateTime::from_unix_time_parts(y, mo, d, h, mi, s, ms))
 | |
| 
 | |
| TEST_CASE(test_generalized_boring)
 | |
| {
 | |
|     // YYYYMMDDhh[mm[ss[.fff]]]
 | |
|     EXPECT_DATETIME("20010101010101Z"sv, 2001, 1, 1, 1, 1, 1, 0);
 | |
|     EXPECT_DATETIME("20010203040506Z"sv, 2001, 2, 3, 4, 5, 6, 0);
 | |
|     EXPECT_DATETIME("20020406081012Z"sv, 2002, 4, 6, 8, 10, 12, 0);
 | |
|     EXPECT_DATETIME("200204060810Z"sv, 2002, 4, 6, 8, 10, 0, 0);
 | |
|     EXPECT_DATETIME("2002040608Z"sv, 2002, 4, 6, 8, 0, 0, 0);
 | |
|     EXPECT_DATETIME("20020406081012.567Z"sv, 2002, 4, 6, 8, 10, 12, 567);
 | |
|     EXPECT_DATETIME("20220911220000Z"sv, 2022, 9, 11, 22, 0, 0, 0);
 | |
| }
 | |
| 
 | |
| TEST_CASE(test_generalized_offset)
 | |
| {
 | |
|     // YYYYMMDDhh[mm[ss[.fff]]](+|-)hhmm
 | |
|     // We don't yet support storing the offset anywhere and instead just assume that the offset is just +0000.
 | |
|     EXPECT_DATETIME("20010101010101+0000"sv, 2001, 1, 1, 1, 1, 1, 0);
 | |
|     EXPECT_DATETIME("20010203040506+0000"sv, 2001, 2, 3, 4, 5, 6, 0);
 | |
|     EXPECT_DATETIME("20020406081012+0000"sv, 2002, 4, 6, 8, 10, 12, 0);
 | |
|     EXPECT_DATETIME("200204060810+0000"sv, 2002, 4, 6, 8, 10, 0, 0);
 | |
|     EXPECT_DATETIME("2002040608+0000"sv, 2002, 4, 6, 8, 0, 0, 0);
 | |
|     EXPECT_DATETIME("20020406081012.567+0000"sv, 2002, 4, 6, 8, 10, 12, 567);
 | |
|     EXPECT_DATETIME("20220911220000+0000"sv, 2022, 9, 11, 22, 0, 0, 0);
 | |
|     // Designed to fail once we support offsets:
 | |
|     EXPECT_DATETIME("20220911220000+0600"sv, 2022, 9, 11, 22, 0, 0, 0);
 | |
| }
 | |
| 
 | |
| TEST_CASE(test_generalized_missing_z)
 | |
| {
 | |
|     // YYYYMMDDhh[mm[ss[.fff]]]
 | |
|     EXPECT_DATETIME("20010101010101"sv, 2001, 1, 1, 1, 1, 1, 0);
 | |
|     EXPECT_DATETIME("20010203040506"sv, 2001, 2, 3, 4, 5, 6, 0);
 | |
|     EXPECT_DATETIME("20020406081012"sv, 2002, 4, 6, 8, 10, 12, 0);
 | |
|     EXPECT_DATETIME("200204060810"sv, 2002, 4, 6, 8, 10, 0, 0);
 | |
|     EXPECT_DATETIME("2002040608"sv, 2002, 4, 6, 8, 0, 0, 0);
 | |
|     EXPECT_DATETIME("20020406081012.567"sv, 2002, 4, 6, 8, 10, 12, 567);
 | |
|     EXPECT_DATETIME("20220911220000"sv, 2022, 9, 11, 22, 0, 0, 0);
 | |
| }
 | |
| 
 | |
| TEST_CASE(test_generalized_unusual_year)
 | |
| {
 | |
|     // Towards the positive
 | |
|     EXPECT_DATETIME("20010203040506Z"sv, 2001, 2, 3, 4, 5, 6, 0);
 | |
|     EXPECT_DATETIME("20110203040506Z"sv, 2011, 2, 3, 4, 5, 6, 0);
 | |
|     EXPECT_DATETIME("21010203040506Z"sv, 2101, 2, 3, 4, 5, 6, 0);
 | |
|     EXPECT_DATETIME("30010203040506Z"sv, 3001, 2, 3, 4, 5, 6, 0);
 | |
|     EXPECT_DATETIME("40010203040506Z"sv, 4001, 2, 3, 4, 5, 6, 0);
 | |
|     EXPECT_DATETIME("90010203040506Z"sv, 9001, 2, 3, 4, 5, 6, 0);
 | |
|     EXPECT_DATETIME("99990203040506Z"sv, 9999, 2, 3, 4, 5, 6, 0);
 | |
| 
 | |
|     // Towards zero
 | |
|     EXPECT_DATETIME("20010203040506Z"sv, 2001, 2, 3, 4, 5, 6, 0);
 | |
|     EXPECT_DATETIME("19990203040506Z"sv, 1999, 2, 3, 4, 5, 6, 0);
 | |
|     EXPECT_DATETIME("19500203040506Z"sv, 1950, 2, 3, 4, 5, 6, 0);
 | |
|     EXPECT_DATETIME("19010203040506Z"sv, 1901, 2, 3, 4, 5, 6, 0);
 | |
|     EXPECT_DATETIME("18010203040506Z"sv, 1801, 2, 3, 4, 5, 6, 0);
 | |
|     EXPECT_DATETIME("15010203040506Z"sv, 1501, 2, 3, 4, 5, 6, 0);
 | |
|     EXPECT_DATETIME("10010203040506Z"sv, 1001, 2, 3, 4, 5, 6, 0);
 | |
|     EXPECT_DATETIME("01010203040506Z"sv, 101, 2, 3, 4, 5, 6, 0);
 | |
|     EXPECT_DATETIME("00110203040506Z"sv, 11, 2, 3, 4, 5, 6, 0);
 | |
|     EXPECT_DATETIME("00010203040506Z"sv, 1, 2, 3, 4, 5, 6, 0);
 | |
|     EXPECT_DATETIME("00000203040506Z"sv, 0, 2, 3, 4, 5, 6, 0);
 | |
| 
 | |
|     // Problematic dates
 | |
|     EXPECT_DATETIME("20200229040506Z"sv, 2020, 2, 29, 4, 5, 6, 0);
 | |
|     EXPECT_DATETIME("20000229040506Z"sv, 2000, 2, 29, 4, 5, 6, 0);
 | |
|     EXPECT_DATETIME("24000229040506Z"sv, 2400, 2, 29, 4, 5, 6, 0);
 | |
| }
 | |
| 
 | |
| TEST_CASE(test_generalized_nonexistent_dates)
 | |
| {
 | |
|     // The following dates don't exist. I'm not sure what the "correct" result is,
 | |
|     // but we need to make sure that we don't crash.
 | |
|     (void)Crypto::ASN1::parse_generalized_time("20210229040506Z"sv); // Not a leap year (not divisible by 4)
 | |
|     (void)Crypto::ASN1::parse_generalized_time("21000229040506Z"sv); // Not a leap year (divisible by 100)
 | |
|     (void)Crypto::ASN1::parse_generalized_time("20220230040506Z"sv); // Never exists
 | |
|     (void)Crypto::ASN1::parse_generalized_time("20220631040506Z"sv); // Never exists
 | |
|     (void)Crypto::ASN1::parse_generalized_time("20220732040506Z"sv); // Never exists
 | |
| 
 | |
|     // https://www.timeanddate.com/calendar/julian-gregorian-switch.html
 | |
|     (void)Crypto::ASN1::parse_generalized_time("15821214040506Z"sv); // Gregorian switch; France
 | |
|     (void)Crypto::ASN1::parse_generalized_time("15821011040506Z"sv); // Gregorian switch; Italy, Poland, Portugal, Spain
 | |
|     (void)Crypto::ASN1::parse_generalized_time("15830105040506Z"sv); // Gregorian switch; Germany (Catholic)
 | |
|     (void)Crypto::ASN1::parse_generalized_time("15831011040506Z"sv); // Gregorian switch; Austria
 | |
|     (void)Crypto::ASN1::parse_generalized_time("15871026040506Z"sv); // Gregorian switch; Hungary
 | |
|     (void)Crypto::ASN1::parse_generalized_time("16100826040506Z"sv); // Gregorian switch; Germany (old Prussia)
 | |
|     (void)Crypto::ASN1::parse_generalized_time("17000223040506Z"sv); // Gregorian switch; Germany (Protestant)
 | |
|     (void)Crypto::ASN1::parse_generalized_time("17520908040506Z"sv); // Gregorian switch; US, Canada, UK
 | |
|     (void)Crypto::ASN1::parse_generalized_time("18711225040506Z"sv); // Gregorian switch; Japan
 | |
|     (void)Crypto::ASN1::parse_generalized_time("19160407040506Z"sv); // Gregorian switch; Bulgaria
 | |
|     (void)Crypto::ASN1::parse_generalized_time("19180207040506Z"sv); // Gregorian switch; Estonia, Russia
 | |
|     (void)Crypto::ASN1::parse_generalized_time("19230222040506Z"sv); // Gregorian switch; Greece
 | |
|     (void)Crypto::ASN1::parse_generalized_time("19261224040506Z"sv); // Gregorian switch; Turkey
 | |
| }
 | |
| 
 | |
| TEST_CASE(test_encoder_primitives)
 | |
| {
 | |
|     auto roundtrip_value = [](auto value) {
 | |
|         Crypto::ASN1::Encoder encoder;
 | |
|         MUST(encoder.write(value));
 | |
|         auto encoded = encoder.finish();
 | |
|         Crypto::ASN1::Decoder decoder(encoded);
 | |
|         auto decoded = MUST(decoder.read<decltype(value)>());
 | |
|         EXPECT_EQ(decoded, value);
 | |
|     };
 | |
| 
 | |
|     roundtrip_value(false);
 | |
|     roundtrip_value(true);
 | |
| 
 | |
|     roundtrip_value(Crypto::UnsignedBigInteger { 0 });
 | |
|     roundtrip_value(Crypto::UnsignedBigInteger { 1 });
 | |
|     roundtrip_value(Crypto::UnsignedBigInteger { 2 }.shift_left(128));
 | |
|     roundtrip_value(Crypto::UnsignedBigInteger { 2 }.shift_left(256));
 | |
| 
 | |
|     roundtrip_value(Vector { 1, 2, 840, 113549, 1, 1, 1 });
 | |
|     roundtrip_value(Vector { 1, 2, 840, 113549, 1, 1, 11 });
 | |
| 
 | |
|     roundtrip_value(ByteString { "Hello, World!\n" });
 | |
| 
 | |
|     roundtrip_value(nullptr);
 | |
| 
 | |
|     roundtrip_value(Crypto::ASN1::BitStringView { { { 0x00, 0x01, 0x02, 0x03 } }, 3 });
 | |
| }
 | |
| 
 | |
| TEST_CASE(test_encoder_constructed)
 | |
| {
 | |
|     Crypto::ASN1::Encoder encoder;
 | |
|     /*
 | |
|      * RSAPrivateKey ::= SEQUENCE {
 | |
|      *   version           Version,  -- Version ::= INTEGER { two-prime(0), multi(1) }
 | |
|      *   modulus           INTEGER,  -- n
 | |
|      *   publicExponent    INTEGER,  -- e
 | |
|      *   privateExponent   INTEGER,  -- d
 | |
|      *   prime1            INTEGER,  -- p
 | |
|      *   prime2            INTEGER,  -- q
 | |
|      *   exponent1         INTEGER,  -- d mod (p-1)
 | |
|      *   exponent2         INTEGER,  -- d mod (q-1)
 | |
|      *   coefficient       INTEGER,  -- (inverse of q) mod p
 | |
|      *   otherPrimeInfos   OtherPrimeInfos OPTIONAL
 | |
|      * }
 | |
|      */
 | |
|     (void)encoder.write_constructed(Crypto::ASN1::Class::Universal, Crypto::ASN1::Kind::Sequence, [&] {
 | |
|         MUST(encoder.write(0u));       // version
 | |
|         MUST(encoder.write(0x1234u));  // modulus
 | |
|         MUST(encoder.write(0x10001u)); // publicExponent
 | |
|         MUST(encoder.write(0x5678u));  // privateExponent
 | |
|         MUST(encoder.write(0x9abcu));  // prime1
 | |
|         MUST(encoder.write(0xdef0u));  // prime2
 | |
|         MUST(encoder.write(0x1234u));  // exponent1
 | |
|         MUST(encoder.write(0x5678u));  // exponent2
 | |
|         MUST(encoder.write(0x9abcu));  // coefficient
 | |
|     });
 | |
|     auto encoded = encoder.finish();
 | |
|     Crypto::ASN1::Decoder decoder(encoded);
 | |
|     MUST(decoder.enter());                                                 // Sequence
 | |
|     EXPECT_EQ(MUST(decoder.read<Crypto::UnsignedBigInteger>()), 0u);       // version
 | |
|     EXPECT_EQ(MUST(decoder.read<Crypto::UnsignedBigInteger>()), 0x1234u);  // modulus
 | |
|     EXPECT_EQ(MUST(decoder.read<Crypto::UnsignedBigInteger>()), 0x10001u); // publicExponent
 | |
|     EXPECT_EQ(MUST(decoder.read<Crypto::UnsignedBigInteger>()), 0x5678u);  // privateExponent
 | |
|     EXPECT_EQ(MUST(decoder.read<Crypto::UnsignedBigInteger>()), 0x9abcu);  // prime1
 | |
|     EXPECT_EQ(MUST(decoder.read<Crypto::UnsignedBigInteger>()), 0xdef0u);  // prime2
 | |
|     EXPECT_EQ(MUST(decoder.read<Crypto::UnsignedBigInteger>()), 0x1234u);  // exponent1
 | |
|     EXPECT_EQ(MUST(decoder.read<Crypto::UnsignedBigInteger>()), 0x5678u);  // exponent2
 | |
|     EXPECT_EQ(MUST(decoder.read<Crypto::UnsignedBigInteger>()), 0x9abcu);  // coefficient
 | |
|     EXPECT(decoder.eof());                                                 // no otherPrimeInfos
 | |
|     MUST(decoder.leave());                                                 // Sequence
 | |
|     EXPECT(decoder.eof());                                                 // no other data
 | |
| }
 |