mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2025-05-12 22:22:55 +00:00
1770 lines
51 KiB
C++
1770 lines
51 KiB
C++
/*
|
||
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
|
||
* Copyright (c) 2021, Leon Albrecht <leon2002.la@gmail.com>
|
||
*
|
||
* SPDX-License-Identifier: BSD-2-Clause
|
||
*/
|
||
|
||
#include "SoftFPU.h"
|
||
#include "Emulator.h"
|
||
#include "SoftCPU.h"
|
||
#include "ValueWithShadow.h"
|
||
|
||
#include <AK/BitCast.h>
|
||
#include <AK/NumericLimits.h>
|
||
#include <AK/UFixedBigInt.h>
|
||
|
||
#include <unistd.h>
|
||
|
||
#if defined(AK_COMPILER_GCC)
|
||
# pragma GCC optimize("O3")
|
||
#endif
|
||
|
||
#define TODO_INSN() \
|
||
do { \
|
||
reportln("\n=={}== Unimplemented instruction: {}\n"sv, getpid(), __FUNCTION__); \
|
||
m_emulator.dump_backtrace(); \
|
||
_exit(0); \
|
||
} while (0)
|
||
|
||
template<typename T>
|
||
ALWAYS_INLINE void warn_if_uninitialized(T value_with_shadow, char const* message)
|
||
{
|
||
if (value_with_shadow.is_uninitialized()) [[unlikely]] {
|
||
reportln("\033[31;1mWarning! Use of uninitialized value: {}\033[0m\n"sv, message);
|
||
UserspaceEmulator::Emulator::the().dump_backtrace();
|
||
}
|
||
}
|
||
|
||
namespace UserspaceEmulator { // NOLINT(readability-implicit-bool-conversion) 0/1 to follow spec closer
|
||
|
||
ALWAYS_INLINE void SoftFPU::warn_if_mmx_absolute(u8 index) const
|
||
{
|
||
if (m_reg_is_mmx[index]) [[unlikely]] {
|
||
reportln("\033[31;1mWarning! Use of an MMX register as an FPU value ({} abs)\033[0m\n"sv, index);
|
||
m_emulator.dump_backtrace();
|
||
}
|
||
}
|
||
ALWAYS_INLINE void SoftFPU::warn_if_fpu_absolute(u8 index) const
|
||
{
|
||
if (!m_reg_is_mmx[index]) [[unlikely]] {
|
||
reportln("\033[31;1mWarning! Use of an FPU value ({} abs) as an MMX register\033[0m\n"sv, index);
|
||
m_emulator.dump_backtrace();
|
||
}
|
||
}
|
||
|
||
ALWAYS_INLINE long double SoftFPU::fpu_get(u8 index)
|
||
{
|
||
VERIFY(index < 8);
|
||
if (!fpu_is_set(index))
|
||
fpu_set_stack_underflow();
|
||
warn_if_mmx_absolute(index);
|
||
|
||
u8 effective_index = (m_fpu_stack_top + index) % 8;
|
||
|
||
return m_storage[effective_index].fp;
|
||
}
|
||
ALWAYS_INLINE void SoftFPU::fpu_set_absolute(u8 index, long double value)
|
||
{
|
||
VERIFY(index < 8);
|
||
set_tag_from_value_absolute(index, value);
|
||
m_storage[index].fp = value;
|
||
m_reg_is_mmx[index] = false;
|
||
}
|
||
ALWAYS_INLINE void SoftFPU::fpu_set(u8 index, long double value)
|
||
{
|
||
VERIFY(index < 8);
|
||
fpu_set_absolute((m_fpu_stack_top + index) % 8, value);
|
||
}
|
||
MMX SoftFPU::mmx_get(u8 index) const
|
||
{
|
||
VERIFY(index < 8);
|
||
warn_if_fpu_absolute(index);
|
||
return m_storage[index].mmx;
|
||
}
|
||
void SoftFPU::mmx_set(u8 index, MMX value)
|
||
{
|
||
m_storage[index].mmx = value;
|
||
// The high bytes are set to 0b11... to make the floating-point value NaN.
|
||
// This way we are technically able to find out if we are reading the wrong
|
||
// type, but this is still difficult, so we use our own lookup for that
|
||
m_storage[index].__high = 0xFFFFU;
|
||
m_reg_is_mmx[index] = true;
|
||
}
|
||
|
||
ALWAYS_INLINE void SoftFPU::fpu_push(long double value)
|
||
{
|
||
if (fpu_is_set(7))
|
||
fpu_set_stack_overflow();
|
||
m_fpu_stack_top = (m_fpu_stack_top - 1u) % 8;
|
||
|
||
fpu_set(0, value);
|
||
}
|
||
|
||
ALWAYS_INLINE long double SoftFPU::fpu_pop()
|
||
{
|
||
warn_if_mmx_absolute(m_fpu_stack_top);
|
||
|
||
if (!fpu_is_set(0))
|
||
fpu_set_stack_underflow();
|
||
|
||
auto ret = fpu_get(0);
|
||
fpu_set_tag(0, FPU_Tag::Empty);
|
||
m_fpu_stack_top = (m_fpu_stack_top + 1u) % 8;
|
||
return ret;
|
||
}
|
||
|
||
ALWAYS_INLINE void SoftFPU::fpu_set_exception(FPU_Exception ex)
|
||
{
|
||
switch (ex) {
|
||
case FPU_Exception::StackFault:
|
||
m_fpu_error_stackfault = 1;
|
||
m_fpu_error_invalid = 1; // Implies InvalidOperation
|
||
break;
|
||
case FPU_Exception::InvalidOperation:
|
||
m_fpu_error_invalid = 1;
|
||
if (!m_fpu_cw.mask_invalid)
|
||
break;
|
||
return;
|
||
case FPU_Exception::DenormalizedOperand:
|
||
m_fpu_error_denorm = 1;
|
||
if (!m_fpu_cw.mask_denorm)
|
||
break;
|
||
return;
|
||
case FPU_Exception::ZeroDivide:
|
||
m_fpu_error_zero_div = 1;
|
||
if (!m_fpu_cw.mask_zero_div)
|
||
break;
|
||
return;
|
||
case FPU_Exception::Overflow:
|
||
m_fpu_error_overflow = 1;
|
||
if (!m_fpu_cw.mask_overflow)
|
||
break;
|
||
return;
|
||
case FPU_Exception::Underflow:
|
||
m_fpu_error_underflow = 1;
|
||
if (!m_fpu_cw.mask_underflow)
|
||
break;
|
||
return;
|
||
case FPU_Exception::Precision:
|
||
m_fpu_error_precision = 1;
|
||
if (!m_fpu_cw.mask_precision)
|
||
break;
|
||
return;
|
||
}
|
||
|
||
// set exception bit
|
||
m_fpu_error_summary = 1;
|
||
|
||
// FIXME: set traceback
|
||
// For that we need to get the currently executing instruction and
|
||
// the previous eip
|
||
|
||
// FIXME: Call FPU Exception handler
|
||
reportln("Trying to call Exception handler from {}"sv, fpu_exception_string(ex));
|
||
fpu_dump_env();
|
||
m_emulator.dump_backtrace();
|
||
TODO();
|
||
}
|
||
|
||
template<Arithmetic T>
|
||
ALWAYS_INLINE T SoftFPU::round_checked(long double value)
|
||
{
|
||
T result = static_cast<T>(rintl(value));
|
||
if (result != value)
|
||
fpu_set_exception(FPU_Exception::Precision);
|
||
if (result > value)
|
||
set_c1(1);
|
||
else
|
||
set_c1(0);
|
||
return result;
|
||
}
|
||
|
||
template<FloatingPoint T>
|
||
ALWAYS_INLINE T SoftFPU::convert_checked(long double value)
|
||
{
|
||
T result = static_cast<T>(value);
|
||
if (auto rnd = value - result) {
|
||
if (rnd > 0)
|
||
set_c1(1);
|
||
else
|
||
set_c1(0);
|
||
fpu_set_exception(FPU_Exception::Precision);
|
||
}
|
||
return result;
|
||
}
|
||
|
||
// Instructions
|
||
|
||
// DATA TRANSFER
|
||
void SoftFPU::FLD_RM32(const X86::Instruction& insn)
|
||
{
|
||
if (insn.modrm().is_register()) {
|
||
fpu_push(fpu_get(insn.modrm().register_index()));
|
||
} else {
|
||
auto new_f32 = insn.modrm().read32(m_cpu, insn);
|
||
// FIXME: Respect shadow values
|
||
fpu_push(bit_cast<float>(new_f32.value()));
|
||
}
|
||
}
|
||
void SoftFPU::FLD_RM64(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(!insn.modrm().is_register());
|
||
auto new_f64 = insn.modrm().read64(m_cpu, insn);
|
||
// FIXME: Respect shadow values
|
||
fpu_push(bit_cast<double>(new_f64.value()));
|
||
}
|
||
void SoftFPU::FLD_RM80(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(!insn.modrm().is_register());
|
||
|
||
// long doubles can be up to 128 bits wide in memory for reasons (alignment) and only uses 80 bits of precision
|
||
// GCC uses 12 bytes in 32 bit and 16 bytes in 64 bit mode
|
||
// so in the 32 bit case we read a bit to much, but that shouldn't be an issue.
|
||
// FIXME: Respect shadow values
|
||
u128 new_f80 = insn.modrm().read128(m_cpu, insn).value();
|
||
|
||
fpu_push(*(long double*)new_f80.bytes().data());
|
||
}
|
||
|
||
void SoftFPU::FST_RM32(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(!insn.modrm().is_register());
|
||
float f32 = convert_checked<float>(fpu_get(0));
|
||
|
||
if (fpu_is_set(0))
|
||
insn.modrm().write32(m_cpu, insn, shadow_wrap_as_initialized(bit_cast<u32>(f32)));
|
||
else
|
||
insn.modrm().write32(m_cpu, insn, ValueWithShadow<u32>(bit_cast<u32>(f32), 0u));
|
||
}
|
||
void SoftFPU::FST_RM64(const X86::Instruction& insn)
|
||
{
|
||
if (insn.modrm().is_register()) {
|
||
fpu_set(insn.modrm().register_index(), fpu_get(0));
|
||
} else {
|
||
double f64 = convert_checked<double>(fpu_get(0));
|
||
if (fpu_is_set(0))
|
||
insn.modrm().write64(m_cpu, insn, shadow_wrap_as_initialized(bit_cast<u64>(f64)));
|
||
else
|
||
insn.modrm().write64(m_cpu, insn, ValueWithShadow<u64>(bit_cast<u64>(f64), 0ULL));
|
||
}
|
||
}
|
||
|
||
void SoftFPU::FSTP_RM32(const X86::Instruction& insn)
|
||
{
|
||
FST_RM32(insn);
|
||
fpu_pop();
|
||
}
|
||
void SoftFPU::FSTP_RM64(const X86::Instruction& insn)
|
||
{
|
||
FST_RM64(insn);
|
||
fpu_pop();
|
||
}
|
||
void SoftFPU::FSTP_RM80(const X86::Instruction& insn)
|
||
{
|
||
if (insn.modrm().is_register()) {
|
||
fpu_set(insn.modrm().register_index(), fpu_get(0));
|
||
fpu_pop();
|
||
} else {
|
||
// FIXME: Respect more shadow values
|
||
// long doubles can be up to 128 bits wide in memory for reasons (alignment) and only uses 80 bits of precision
|
||
// gcc uses 12 byte in 32 bit and 16 byte in 64 bit mode
|
||
// due to only 10 bytes being used, we just write these 10 into memory
|
||
// We have to do .bytes().data() to get around static type analysis
|
||
ValueWithShadow<u128> f80 { 0u, 0u };
|
||
u128 value {};
|
||
f80 = insn.modrm().read128(m_cpu, insn);
|
||
*(long double*)value.bytes().data() = fpu_pop();
|
||
memcpy(f80.value().bytes().data(), &value, 10); // copy
|
||
f80.set_initialized();
|
||
insn.modrm().write128(m_cpu, insn, f80);
|
||
}
|
||
}
|
||
|
||
void SoftFPU::FILD_RM16(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(!insn.modrm().is_register());
|
||
auto m16int = insn.modrm().read16(m_cpu, insn);
|
||
warn_if_uninitialized(m16int, "int16 loaded as float");
|
||
|
||
fpu_push(static_cast<long double>(static_cast<i16>(m16int.value())));
|
||
}
|
||
void SoftFPU::FILD_RM32(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(!insn.modrm().is_register());
|
||
auto m32int = insn.modrm().read32(m_cpu, insn);
|
||
warn_if_uninitialized(m32int, "int32 loaded as float");
|
||
|
||
fpu_push(static_cast<long double>(static_cast<i32>(m32int.value())));
|
||
}
|
||
void SoftFPU::FILD_RM64(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(!insn.modrm().is_register());
|
||
auto m64int = insn.modrm().read64(m_cpu, insn);
|
||
warn_if_uninitialized(m64int, "int64 loaded as float");
|
||
|
||
fpu_push(static_cast<long double>(static_cast<i64>(m64int.value())));
|
||
}
|
||
|
||
void SoftFPU::FIST_RM16(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(!insn.modrm().is_register());
|
||
auto f = fpu_get(0);
|
||
set_c1(0);
|
||
auto int16 = round_checked<i16>(f);
|
||
|
||
// FIXME: Respect shadow values
|
||
insn.modrm().write16(m_cpu, insn, shadow_wrap_as_initialized(bit_cast<u16>(int16)));
|
||
}
|
||
void SoftFPU::FIST_RM32(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(!insn.modrm().is_register());
|
||
auto f = fpu_get(0);
|
||
set_c1(0);
|
||
auto int32 = round_checked<i32>(f);
|
||
// FIXME: Respect shadow values
|
||
insn.modrm().write32(m_cpu, insn, shadow_wrap_as_initialized(bit_cast<u32>(int32)));
|
||
}
|
||
|
||
void SoftFPU::FISTP_RM16(const X86::Instruction& insn)
|
||
{
|
||
FIST_RM16(insn);
|
||
fpu_pop();
|
||
}
|
||
void SoftFPU::FISTP_RM32(const X86::Instruction& insn)
|
||
{
|
||
FIST_RM32(insn);
|
||
fpu_pop();
|
||
}
|
||
void SoftFPU::FISTP_RM64(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(!insn.modrm().is_register());
|
||
auto f = fpu_pop();
|
||
set_c1(0);
|
||
auto i64 = round_checked<int64_t>(f);
|
||
// FIXME: Respect shadow values
|
||
insn.modrm().write64(m_cpu, insn, shadow_wrap_as_initialized(bit_cast<u64>(i64)));
|
||
}
|
||
|
||
void SoftFPU::FISTTP_RM16(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(!insn.modrm().is_register());
|
||
set_c1(0);
|
||
i16 value = static_cast<i16>(fpu_pop());
|
||
// FIXME: Respect shadow values
|
||
insn.modrm().write16(m_cpu, insn, shadow_wrap_as_initialized(bit_cast<u16>(value)));
|
||
}
|
||
void SoftFPU::FISTTP_RM32(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(!insn.modrm().is_register());
|
||
i32 value = static_cast<i32>(fpu_pop());
|
||
set_c1(0);
|
||
// FIXME: Respect shadow values
|
||
insn.modrm().write32(m_cpu, insn, shadow_wrap_as_initialized(bit_cast<u32>(value)));
|
||
}
|
||
void SoftFPU::FISTTP_RM64(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(!insn.modrm().is_register());
|
||
set_c1(0);
|
||
i64 value = static_cast<i64>(fpu_pop());
|
||
// FIXME: Respect shadow values
|
||
insn.modrm().write64(m_cpu, insn, shadow_wrap_as_initialized(bit_cast<u64>(value)));
|
||
}
|
||
|
||
void SoftFPU::FBLD_M80(const X86::Instruction&) { TODO_INSN(); }
|
||
void SoftFPU::FBSTP_M80(const X86::Instruction&) { TODO_INSN(); }
|
||
|
||
void SoftFPU::FXCH(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(insn.modrm().is_register());
|
||
set_c1(0);
|
||
auto tmp = fpu_get(0);
|
||
fpu_set(0, fpu_get(insn.modrm().register_index()));
|
||
fpu_set(insn.modrm().register_index(), tmp);
|
||
}
|
||
|
||
void SoftFPU::FCMOVE(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(insn.modrm().is_register());
|
||
if (m_cpu.zf())
|
||
fpu_set(0, fpu_get(insn.modrm().rm()));
|
||
}
|
||
void SoftFPU::FCMOVNE(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(insn.modrm().is_register());
|
||
if (!m_cpu.zf())
|
||
fpu_set(0, fpu_get((insn.modrm().reg_fpu())));
|
||
}
|
||
|
||
void SoftFPU::FCMOVB(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(insn.modrm().is_register());
|
||
if (m_cpu.cf())
|
||
fpu_set(0, fpu_get(insn.modrm().rm()));
|
||
}
|
||
void SoftFPU::FCMOVNB(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(insn.modrm().is_register());
|
||
if (!m_cpu.cf())
|
||
fpu_set(0, fpu_get(insn.modrm().rm()));
|
||
}
|
||
void SoftFPU::FCMOVBE(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(insn.modrm().is_register());
|
||
if (m_cpu.cf() || m_cpu.zf())
|
||
fpu_set(0, fpu_get(insn.modrm().rm()));
|
||
}
|
||
void SoftFPU::FCMOVNBE(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(insn.modrm().is_register());
|
||
if (!(m_cpu.cf() || m_cpu.zf()))
|
||
fpu_set(0, fpu_get(insn.modrm().rm()));
|
||
}
|
||
|
||
void SoftFPU::FCMOVU(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(insn.modrm().is_register());
|
||
if (m_cpu.pf())
|
||
fpu_set(0, fpu_get((insn.modrm().reg_fpu())));
|
||
}
|
||
void SoftFPU::FCMOVNU(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(insn.modrm().is_register());
|
||
if (!m_cpu.pf())
|
||
fpu_set(0, fpu_get((insn.modrm().reg_fpu())));
|
||
}
|
||
|
||
// BASIC ARITHMETIC
|
||
void SoftFPU::FADD_RM32(const X86::Instruction& insn)
|
||
{
|
||
// FIXME look at ::INC_foo for how mem/reg stuff is handled, and use that here too to make sure this is only called for mem32 ops
|
||
if (insn.modrm().is_register()) {
|
||
fpu_set(0, fpu_get(insn.modrm().register_index()) + fpu_get(0));
|
||
} else {
|
||
auto new_f32 = insn.modrm().read32(m_cpu, insn);
|
||
// FIXME: Respect shadow values
|
||
auto f32 = bit_cast<float>(new_f32.value());
|
||
fpu_set(0, fpu_get(0) + f32);
|
||
}
|
||
}
|
||
void SoftFPU::FADD_RM64(const X86::Instruction& insn)
|
||
{
|
||
// FIXME look at ::INC_foo for how mem/reg stuff is handled, and use that here too to make sure this is only called for mem64 ops
|
||
if (insn.modrm().is_register()) {
|
||
fpu_set(insn.modrm().register_index(), fpu_get(insn.modrm().register_index()) + fpu_get(0));
|
||
} else {
|
||
auto new_f64 = insn.modrm().read64(m_cpu, insn);
|
||
// FIXME: Respect shadow values
|
||
auto f64 = bit_cast<double>(new_f64.value());
|
||
fpu_set(0, fpu_get(0) + f64);
|
||
}
|
||
}
|
||
void SoftFPU::FADDP(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(insn.modrm().is_register());
|
||
fpu_set(insn.modrm().register_index(), fpu_get(insn.modrm().register_index()) + fpu_get(0));
|
||
fpu_pop();
|
||
}
|
||
|
||
void SoftFPU::FIADD_RM32(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(!insn.modrm().is_register());
|
||
auto m32int = (i32)insn.modrm().read32(m_cpu, insn).value();
|
||
// FIXME: Respect shadow values
|
||
fpu_set(0, fpu_get(0) + (long double)m32int);
|
||
}
|
||
void SoftFPU::FIADD_RM16(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(!insn.modrm().is_register());
|
||
auto m16int = (i16)insn.modrm().read16(m_cpu, insn).value();
|
||
// FIXME: Respect shadow values
|
||
fpu_set(0, fpu_get(0) + (long double)m16int);
|
||
}
|
||
|
||
void SoftFPU::FSUB_RM32(const X86::Instruction& insn)
|
||
{
|
||
if (insn.modrm().is_register()) {
|
||
fpu_set(0, fpu_get(0) - fpu_get(insn.modrm().register_index()));
|
||
} else {
|
||
auto new_f32 = insn.modrm().read32(m_cpu, insn);
|
||
// FIXME: Respect shadow values
|
||
auto f32 = bit_cast<float>(new_f32.value());
|
||
fpu_set(0, fpu_get(0) - f32);
|
||
}
|
||
}
|
||
void SoftFPU::FSUB_RM64(const X86::Instruction& insn)
|
||
{
|
||
if (insn.modrm().is_register()) {
|
||
// Note: This is FSUBR (DC E8+i FSUBR st(i) st(0)) in the spec
|
||
fpu_set(insn.modrm().register_index(), fpu_get(insn.modrm().register_index()) - fpu_get(0));
|
||
} else {
|
||
auto new_f64 = insn.modrm().read64(m_cpu, insn);
|
||
// FIXME: Respect shadow values
|
||
auto f64 = bit_cast<double>(new_f64.value());
|
||
fpu_set(0, fpu_get(0) - f64);
|
||
}
|
||
}
|
||
void SoftFPU::FSUBP(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(insn.modrm().is_register());
|
||
fpu_set(insn.modrm().register_index(), fpu_get(insn.modrm().register_index()) - fpu_get(0));
|
||
fpu_pop();
|
||
}
|
||
|
||
void SoftFPU::FSUBR_RM32(const X86::Instruction& insn)
|
||
{
|
||
if (insn.modrm().is_register()) {
|
||
fpu_set(0, fpu_get(insn.modrm().register_index()) - fpu_get(0));
|
||
} else {
|
||
auto new_f32 = insn.modrm().read32(m_cpu, insn);
|
||
// FIXME: Respect shadow values
|
||
auto f32 = bit_cast<float>(new_f32.value());
|
||
fpu_set(0, f32 - fpu_get(0));
|
||
}
|
||
}
|
||
void SoftFPU::FSUBR_RM64(const X86::Instruction& insn)
|
||
{
|
||
if (insn.modrm().is_register()) {
|
||
// Note: This is FSUB (DC E0+i FSUB st(i) st(0)) in the spec
|
||
fpu_set(insn.modrm().register_index(), fpu_get(insn.modrm().register_index()) - fpu_get(0));
|
||
} else {
|
||
auto new_f64 = insn.modrm().read64(m_cpu, insn);
|
||
// FIXME: Respect shadow values
|
||
auto f64 = bit_cast<double>(new_f64.value());
|
||
fpu_set(0, f64 - fpu_get(0));
|
||
}
|
||
}
|
||
void SoftFPU::FSUBRP(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(insn.modrm().is_register());
|
||
fpu_set(insn.modrm().register_index(), fpu_get(0) - fpu_get(insn.modrm().register_index()));
|
||
fpu_pop();
|
||
}
|
||
|
||
void SoftFPU::FISUB_RM32(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(!insn.modrm().is_register());
|
||
auto m32int = (i32)insn.modrm().read32(m_cpu, insn).value();
|
||
// FIXME: Respect shadow values
|
||
fpu_set(0, fpu_get(0) - (long double)m32int);
|
||
}
|
||
void SoftFPU::FISUB_RM16(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(!insn.modrm().is_register());
|
||
auto m16int = (i16)insn.modrm().read16(m_cpu, insn).value();
|
||
// FIXME: Respect shadow values
|
||
fpu_set(0, fpu_get(0) - (long double)m16int);
|
||
}
|
||
|
||
void SoftFPU::FISUBR_RM16(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(!insn.modrm().is_register());
|
||
auto m16int = (i16)insn.modrm().read16(m_cpu, insn).value();
|
||
// FIXME: Respect shadow values
|
||
fpu_set(0, (long double)m16int - fpu_get(0));
|
||
}
|
||
void SoftFPU::FISUBR_RM32(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(!insn.modrm().is_register());
|
||
auto m32int = (i32)insn.modrm().read32(m_cpu, insn).value();
|
||
// FIXME: Respect shadow values
|
||
fpu_set(0, (long double)m32int - fpu_get(0));
|
||
}
|
||
|
||
void SoftFPU::FMUL_RM32(const X86::Instruction& insn)
|
||
{
|
||
// FIXME look at ::INC_foo for how mem/reg stuff is handled, and use that here too to make sure this is only called for mem32 ops
|
||
if (insn.modrm().is_register()) {
|
||
fpu_set(0, fpu_get(0) * fpu_get(insn.modrm().register_index()));
|
||
} else {
|
||
auto new_f32 = insn.modrm().read32(m_cpu, insn);
|
||
// FIXME: Respect shadow values
|
||
auto f32 = bit_cast<float>(new_f32.value());
|
||
fpu_set(0, fpu_get(0) * f32);
|
||
}
|
||
}
|
||
void SoftFPU::FMUL_RM64(const X86::Instruction& insn)
|
||
{
|
||
// FIXME look at ::INC_foo for how mem/reg stuff is handled, and use that here too to make sure this is only called for mem64 ops
|
||
if (insn.modrm().is_register()) {
|
||
fpu_set(insn.modrm().register_index(), fpu_get(insn.modrm().register_index()) * fpu_get(0));
|
||
} else {
|
||
auto new_f64 = insn.modrm().read64(m_cpu, insn);
|
||
// FIXME: Respect shadow values
|
||
auto f64 = bit_cast<double>(new_f64.value());
|
||
fpu_set(0, fpu_get(0) * f64);
|
||
}
|
||
}
|
||
void SoftFPU::FMULP(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(insn.modrm().is_register());
|
||
fpu_set(insn.modrm().register_index(), fpu_get(insn.modrm().register_index()) * fpu_get(0));
|
||
fpu_pop();
|
||
}
|
||
|
||
void SoftFPU::FIMUL_RM32(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(!insn.modrm().is_register());
|
||
auto m32int = (i32)insn.modrm().read32(m_cpu, insn).value();
|
||
// FIXME: Respect shadow values
|
||
fpu_set(0, fpu_get(0) * m32int);
|
||
}
|
||
void SoftFPU::FIMUL_RM16(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(!insn.modrm().is_register());
|
||
auto m16int = (i16)insn.modrm().read16(m_cpu, insn).value();
|
||
// FIXME: Respect shadow values
|
||
fpu_set(0, fpu_get(0) * m16int);
|
||
}
|
||
|
||
void SoftFPU::FDIV_RM32(const X86::Instruction& insn)
|
||
{
|
||
if (insn.modrm().is_register()) {
|
||
fpu_set(0, fpu_get(0) / fpu_get(insn.modrm().register_index()));
|
||
} else {
|
||
auto new_f32 = insn.modrm().read32(m_cpu, insn);
|
||
// FIXME: Respect shadow values
|
||
auto f32 = bit_cast<float>(new_f32.value());
|
||
// FIXME: Raise IA on + infinity / +-infinity, +-0 / +-0, raise Z on finite / +-0
|
||
fpu_set(0, fpu_get(0) / f32);
|
||
}
|
||
}
|
||
void SoftFPU::FDIV_RM64(const X86::Instruction& insn)
|
||
{
|
||
if (insn.modrm().is_register()) {
|
||
// Note: This is FDIVR (DC F0+i FDIVR st(i) st(0)) in the spec
|
||
fpu_set(insn.modrm().register_index(), fpu_get(insn.modrm().register_index()) / fpu_get(0));
|
||
} else {
|
||
auto new_f64 = insn.modrm().read64(m_cpu, insn);
|
||
// FIXME: Respect shadow values
|
||
auto f64 = bit_cast<double>(new_f64.value());
|
||
// FIXME: Raise IA on + infinity / +-infinity, +-0 / +-0, raise Z on finite / +-0
|
||
fpu_set(0, fpu_get(0) / f64);
|
||
}
|
||
}
|
||
void SoftFPU::FDIVP(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(insn.modrm().is_register());
|
||
// FIXME: Raise IA on + infinity / +-infinity, +-0 / +-0, raise Z on finite / +-0
|
||
fpu_set(insn.modrm().register_index(), fpu_get(insn.modrm().register_index()) / fpu_get(0));
|
||
fpu_pop();
|
||
}
|
||
|
||
void SoftFPU::FDIVR_RM32(const X86::Instruction& insn)
|
||
{
|
||
if (insn.modrm().is_register()) {
|
||
fpu_set(0, fpu_get(insn.modrm().register_index()) / fpu_get(0));
|
||
} else {
|
||
auto new_f32 = insn.modrm().read32(m_cpu, insn);
|
||
// FIXME: Respect shadow values
|
||
auto f32 = bit_cast<float>(new_f32.value());
|
||
// FIXME: Raise IA on + infinity / +-infinity, +-0 / +-0, raise Z on finite / +-0
|
||
fpu_set(0, f32 / fpu_get(0));
|
||
}
|
||
}
|
||
void SoftFPU::FDIVR_RM64(const X86::Instruction& insn)
|
||
{
|
||
if (insn.modrm().is_register()) {
|
||
// Note: This is FDIV (DC F8+i FDIV st(i) st(0)) in the spec
|
||
fpu_set(insn.modrm().register_index(), fpu_get(insn.modrm().register_index()) / fpu_get(0));
|
||
} else {
|
||
auto new_f64 = insn.modrm().read64(m_cpu, insn);
|
||
// FIXME: Respect shadow values
|
||
auto f64 = bit_cast<double>(new_f64.value());
|
||
// FIXME: Raise IA on + infinity / +-infinity, +-0 / +-0, raise Z on finite / +-0
|
||
fpu_set(0, f64 / fpu_get(0));
|
||
}
|
||
}
|
||
void SoftFPU::FDIVRP(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(insn.modrm().is_register());
|
||
// FIXME: Raise IA on + infinity / +-infinity, +-0 / +-0, raise Z on finite / +-0
|
||
fpu_set(insn.modrm().register_index(), fpu_get(0) / fpu_get(insn.modrm().register_index()));
|
||
fpu_pop();
|
||
}
|
||
|
||
void SoftFPU::FIDIV_RM16(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(!insn.modrm().is_register());
|
||
auto m16int = (i16)insn.modrm().read16(m_cpu, insn).value();
|
||
// FIXME: Respect shadow values
|
||
// FIXME: Raise IA on 0 / _=0, raise Z on finite / +-0
|
||
fpu_set(0, fpu_get(0) / m16int);
|
||
}
|
||
void SoftFPU::FIDIV_RM32(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(!insn.modrm().is_register());
|
||
auto m32int = (i32)insn.modrm().read32(m_cpu, insn).value();
|
||
// FIXME: Respect shadow values
|
||
// FIXME: Raise IA on 0 / _=0, raise Z on finite / +-0
|
||
fpu_set(0, fpu_get(0) / m32int);
|
||
}
|
||
|
||
void SoftFPU::FIDIVR_RM16(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(!insn.modrm().is_register());
|
||
auto m16int = (i16)insn.modrm().read16(m_cpu, insn).value();
|
||
// FIXME: Respect shadow values
|
||
// FIXME: Raise IA on 0 / _=0, raise Z on finite / +-0
|
||
fpu_set(0, m16int / fpu_get(0));
|
||
}
|
||
void SoftFPU::FIDIVR_RM32(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(!insn.modrm().is_register());
|
||
auto m32int = (i32)insn.modrm().read32(m_cpu, insn).value();
|
||
// FIXME: Respect shadow values
|
||
// FIXME: Raise IA on 0 / _=0, raise Z on finite / +-0
|
||
fpu_set(0, m32int / fpu_get(0));
|
||
}
|
||
|
||
void SoftFPU::FPREM(const X86::Instruction&)
|
||
{
|
||
// FIXME: FPREM should only be able to reduce top's exponent by a maximum
|
||
// amount of 32-63 (impl-specific)
|
||
long double top = fpu_get(0);
|
||
long double one = fpu_get(1);
|
||
|
||
int Q = static_cast<int>(truncl(top / one));
|
||
top = top - (one * Q);
|
||
set_c2(0);
|
||
set_c1(Q & 1);
|
||
set_c3((Q >> 1) & 1);
|
||
set_c0((Q >> 2) & 1);
|
||
|
||
fpu_set(0, top);
|
||
}
|
||
void SoftFPU::FPREM1(const X86::Instruction&)
|
||
{
|
||
// FIXME: FPREM1 should only be able to reduce top's exponent by a maximum
|
||
// amount of 32-63 (impl-specific)
|
||
long double top = fpu_get(0);
|
||
long double one = fpu_get(1);
|
||
|
||
int Q = static_cast<int>(roundl(top / one));
|
||
top = top - (one * Q);
|
||
set_c2(0);
|
||
set_c1(Q & 1);
|
||
set_c3((Q >> 1) & 1);
|
||
set_c0((Q >> 2) & 1);
|
||
|
||
fpu_set(0, top);
|
||
}
|
||
void SoftFPU::FABS(const X86::Instruction&)
|
||
{
|
||
set_c1(0);
|
||
fpu_set(0, __builtin_fabsl(fpu_get(0)));
|
||
}
|
||
void SoftFPU::FCHS(const X86::Instruction&)
|
||
{
|
||
set_c1(0);
|
||
fpu_set(0, -fpu_get(0));
|
||
}
|
||
|
||
void SoftFPU::FRNDINT(const X86::Instruction&)
|
||
{
|
||
// FIXME: Raise #IA #D
|
||
auto res = round_checked<long double>(fpu_get(0));
|
||
fpu_set(0, res);
|
||
}
|
||
|
||
void SoftFPU::FSCALE(const X86::Instruction&)
|
||
{
|
||
// FIXME: Raise #IA #D #U #O #P
|
||
fpu_set(0, fpu_get(0) * exp2l(truncl(fpu_get(1))));
|
||
}
|
||
|
||
void SoftFPU::FSQRT(const X86::Instruction&)
|
||
{
|
||
// FIXME: Raise #IA #D #P
|
||
if (fpu_get(0) < 0)
|
||
fpu_set_exception(FPU_Exception::InvalidOperation);
|
||
fpu_set(0, sqrtl(fpu_get(0)));
|
||
}
|
||
|
||
void SoftFPU::FXTRACT(const X86::Instruction&) { TODO_INSN(); }
|
||
|
||
// COMPARISON
|
||
|
||
// FIXME: there may be an implicit argument, how is this conveyed by the insn
|
||
void SoftFPU::FCOM_RM32(const X86::Instruction&) { TODO_INSN(); }
|
||
void SoftFPU::FCOM_RM64(const X86::Instruction&) { TODO_INSN(); }
|
||
void SoftFPU::FCOMP_RM32(const X86::Instruction&) { TODO_INSN(); }
|
||
void SoftFPU::FCOMP_RM64(const X86::Instruction&) { TODO_INSN(); }
|
||
void SoftFPU::FCOMPP(const X86::Instruction&)
|
||
{
|
||
if (fpu_isnan(0) || fpu_isnan(1)) {
|
||
fpu_set_exception(FPU_Exception::InvalidOperation);
|
||
if (m_fpu_cw.mask_invalid)
|
||
fpu_set_unordered();
|
||
} else {
|
||
set_c2(0);
|
||
set_c0(fpu_get(0) < fpu_get(1));
|
||
set_c3(fpu_get(0) == fpu_get(1));
|
||
}
|
||
fpu_pop();
|
||
fpu_pop();
|
||
}
|
||
|
||
void SoftFPU::FUCOM(const X86::Instruction&) { TODO_INSN(); } // Needs QNaN detection
|
||
void SoftFPU::FUCOMP(const X86::Instruction&) { TODO_INSN(); }
|
||
void SoftFPU::FUCOMPP(const X86::Instruction&) { TODO_INSN(); }
|
||
|
||
void SoftFPU::FICOM_RM16(const X86::Instruction& insn)
|
||
{
|
||
// FIXME: Check for denormals
|
||
VERIFY(insn.modrm().is_register());
|
||
auto val_shd = insn.modrm().read16(m_cpu, insn);
|
||
warn_if_uninitialized(val_shd, "int16 compare to float");
|
||
auto val = static_cast<i16>(val_shd.value());
|
||
if (fpu_isnan(0)) {
|
||
fpu_set_unordered();
|
||
} else {
|
||
set_c0(fpu_get(0) < val);
|
||
set_c2(0);
|
||
set_c3(fpu_get(0) == val);
|
||
}
|
||
set_c1(0);
|
||
}
|
||
void SoftFPU::FICOM_RM32(const X86::Instruction& insn)
|
||
{
|
||
// FIXME: Check for denormals
|
||
VERIFY(insn.modrm().is_register());
|
||
auto val_shd = insn.modrm().read32(m_cpu, insn);
|
||
warn_if_uninitialized(val_shd, "int32 compare to float");
|
||
auto val = static_cast<i32>(val_shd.value());
|
||
if (fpu_isnan(0)) {
|
||
fpu_set_unordered();
|
||
} else {
|
||
set_c0(fpu_get(0) < val);
|
||
set_c2(0);
|
||
set_c3(fpu_get(0) == val);
|
||
}
|
||
set_c1(0);
|
||
}
|
||
void SoftFPU::FICOMP_RM16(const X86::Instruction& insn)
|
||
{
|
||
FICOM_RM16(insn);
|
||
fpu_pop();
|
||
}
|
||
void SoftFPU::FICOMP_RM32(const X86::Instruction& insn)
|
||
{
|
||
FICOM_RM32(insn);
|
||
fpu_pop();
|
||
}
|
||
|
||
void SoftFPU::FCOMI(const X86::Instruction& insn)
|
||
{
|
||
auto i = insn.modrm().rm();
|
||
// FIXME: QNaN / exception handling.
|
||
set_c0(0);
|
||
if (isnan(fpu_get(0)) || isnan(fpu_get(1))) {
|
||
fpu_set_exception(FPU_Exception::InvalidOperation);
|
||
m_cpu.set_zf(1);
|
||
m_cpu.set_pf(1);
|
||
m_cpu.set_cf(1);
|
||
} else {
|
||
m_cpu.set_zf(fpu_get(0) == fpu_get(i));
|
||
m_cpu.set_pf(false);
|
||
m_cpu.set_cf(fpu_get(0) < fpu_get(i));
|
||
}
|
||
if (!fpu_is_set(1))
|
||
fpu_set_exception(FPU_Exception::Underflow);
|
||
|
||
m_cpu.set_of(false);
|
||
m_cpu.set_af(false);
|
||
m_cpu.set_sf(false);
|
||
|
||
// FIXME: Taint should be based on ST(0) and ST(i)
|
||
m_cpu.m_flags_tainted = false;
|
||
}
|
||
void SoftFPU::FCOMIP(const X86::Instruction& insn)
|
||
{
|
||
FCOMI(insn);
|
||
fpu_pop();
|
||
}
|
||
|
||
void SoftFPU::FUCOMI(const X86::Instruction& insn)
|
||
{
|
||
auto i = insn.modrm().rm();
|
||
// FIXME: Unordered comparison checks.
|
||
// FIXME: QNaN / exception handling.
|
||
set_c1(0);
|
||
if (fpu_isnan(0) || fpu_isnan(i)) {
|
||
m_cpu.set_zf(true);
|
||
m_cpu.set_pf(true);
|
||
m_cpu.set_cf(true);
|
||
} else {
|
||
m_cpu.set_zf(fpu_get(0) == fpu_get(i));
|
||
m_cpu.set_pf(false);
|
||
m_cpu.set_cf(fpu_get(0) < fpu_get(i));
|
||
}
|
||
m_cpu.set_of(false);
|
||
m_cpu.set_af(false);
|
||
m_cpu.set_sf(false);
|
||
|
||
// FIXME: Taint should be based on ST(0) and ST(i)
|
||
m_cpu.m_flags_tainted = false;
|
||
}
|
||
void SoftFPU::FUCOMIP(const X86::Instruction& insn)
|
||
{
|
||
FUCOMI(insn);
|
||
fpu_pop();
|
||
}
|
||
|
||
void SoftFPU::FTST(const X86::Instruction&)
|
||
{
|
||
// FIXME: maybe check for denormal
|
||
set_c1(0);
|
||
if (fpu_isnan(0))
|
||
// raise #IA?
|
||
fpu_set_unordered();
|
||
else {
|
||
set_c0(fpu_get(0) < 0.);
|
||
set_c2(0);
|
||
set_c3(fpu_get(0) == 0.);
|
||
}
|
||
}
|
||
void SoftFPU::FXAM(const X86::Instruction&)
|
||
{
|
||
if (m_reg_is_mmx[m_fpu_stack_top]) {
|
||
// technically a subset of NaN/INF, with the Tag set to valid,
|
||
// but we have our own helper for this
|
||
set_c0(0);
|
||
set_c2(0);
|
||
set_c3(0);
|
||
} else {
|
||
switch (fpu_get_tag(0)) {
|
||
case FPU_Tag::Valid:
|
||
set_c0(0);
|
||
set_c2(1);
|
||
set_c3(0);
|
||
break;
|
||
case FPU_Tag::Zero:
|
||
set_c0(1);
|
||
set_c2(0);
|
||
set_c3(0);
|
||
break;
|
||
case FPU_Tag::Special:
|
||
if (isinf(fpu_get(0))) {
|
||
set_c0(1);
|
||
set_c2(1);
|
||
set_c3(0);
|
||
} else if (isnan(fpu_get(0))) {
|
||
set_c0(1);
|
||
set_c2(0);
|
||
set_c3(0);
|
||
} else {
|
||
// denormalized
|
||
set_c0(0);
|
||
set_c2(1);
|
||
set_c3(1);
|
||
}
|
||
break;
|
||
case FPU_Tag::Empty:
|
||
set_c0(1);
|
||
set_c2(0);
|
||
set_c3(1);
|
||
break;
|
||
default:
|
||
VERIFY_NOT_REACHED();
|
||
}
|
||
}
|
||
set_c1(signbit(fpu_get(0)));
|
||
}
|
||
|
||
// TRANSCENDENTAL
|
||
void SoftFPU::FSIN(const X86::Instruction&)
|
||
{
|
||
// FIXME: Raise #IA #D #P
|
||
// FIXME: Set C1 on when result was rounded up, cleared otherwise
|
||
// FIXME: Set C2 to 1 if ST(0) is outside range of -2^63 to +2^63; else set to 0
|
||
// ST(0) shall remain unchanged in this case
|
||
fpu_set(0, sinl(fpu_get(0)));
|
||
}
|
||
void SoftFPU::FCOS(const X86::Instruction&)
|
||
{
|
||
// FIXME: Raise #IA #D #P
|
||
// FIXME: Set C1 on when result was rounded up, cleared otherwise
|
||
// FIXME: Set C2 to 1 if ST(0) is outside range of -2^63 to +2^63; else set to 0
|
||
// ST(0) shall remain unchanged in this case
|
||
fpu_set(0, cosl(fpu_get(0)));
|
||
}
|
||
void SoftFPU::FSINCOS(const X86::Instruction&)
|
||
{
|
||
// FIXME: Raise #IA #D #P
|
||
// FIXME: Set C1 on when result was rounded up, cleared otherwise
|
||
// FIXME: Set C2 to 1 if ST(0) is outside range of -2^63 to +2^63; else set to 0
|
||
// ST(0) shall remain unchanged in this case
|
||
long double sin = sinl(fpu_get(0));
|
||
long double cos = cosl(fpu_get(0));
|
||
fpu_set(0, sin);
|
||
fpu_push(cos);
|
||
}
|
||
|
||
void SoftFPU::FPTAN(const X86::Instruction&)
|
||
{
|
||
// FIXME: Raise #IA #D #U #P
|
||
// FIXME: Set C1 on when result was rounded up, cleared otherwise
|
||
// FIXME: Set C2 to 1 if ST(0) is outside range of -2^63 to +2^63; else set to 0
|
||
// ST(0) shall remain unchanged in this case
|
||
fpu_set(0, tanl(fpu_get(0)));
|
||
fpu_push(1.0f);
|
||
}
|
||
void SoftFPU::FPATAN(const X86::Instruction&)
|
||
{
|
||
// FIXME: Raise #IA #D #U #P
|
||
// FIXME: Set C1 on when result was rounded up, cleared otherwise
|
||
// Note: Not implemented 80287 quirk:
|
||
// Restriction to 0 ≤ |ST(1)| < |ST(0)| < +∞
|
||
fpu_set(1, atan2l(fpu_get(1), fpu_get(0)));
|
||
fpu_pop();
|
||
}
|
||
|
||
void SoftFPU::F2XM1(const X86::Instruction&)
|
||
{
|
||
// FIXME: Raise #IA #D #U #P
|
||
// FIXME: Set C1 on when result was rounded up, cleared otherwise
|
||
// FIXME: Validate ST(0) is in range –1.0 to +1.0
|
||
auto val = fpu_get(0);
|
||
fpu_set(0, exp2(val) - 1.0l);
|
||
}
|
||
void SoftFPU::FYL2X(const X86::Instruction&)
|
||
{
|
||
// FIXME: Set C1 on when result was rounded up, cleared otherwise
|
||
// FIXME: Raise #IA #D #U #O #P
|
||
auto x = fpu_get(0);
|
||
auto y = fpu_get(1);
|
||
if (x < 0. && !isinf(x)) {
|
||
fpu_set_exception(FPU_Exception::InvalidOperation);
|
||
// FIXME: Spec does not say what to do here....
|
||
// So lets just ask libm....
|
||
fpu_set(1, y * log2l(x));
|
||
} else if (x == 0.) {
|
||
if (y == 0)
|
||
fpu_set_exception(FPU_Exception::InvalidOperation);
|
||
fpu_set_exception(FPU_Exception::ZeroDivide);
|
||
fpu_set(1, INFINITY * (signbit(y) ? 1 : -1));
|
||
} else {
|
||
fpu_set(1, y * log2l(x));
|
||
}
|
||
fpu_pop();
|
||
}
|
||
void SoftFPU::FYL2XP1(const X86::Instruction&)
|
||
{
|
||
// FIXME: Raise #IA #O #U #P #D
|
||
auto x = fpu_get(0);
|
||
auto y = fpu_get(1);
|
||
if (x == 0 && isinf(y))
|
||
fpu_set_exception(FPU_Exception::InvalidOperation);
|
||
|
||
fpu_set(1, (y * log2l(x + 1.0l)));
|
||
fpu_pop();
|
||
}
|
||
|
||
// LOAD CONSTANT
|
||
void SoftFPU::FLD1(const X86::Instruction&)
|
||
{
|
||
set_c1(0);
|
||
fpu_push(1.0l);
|
||
}
|
||
void SoftFPU::FLDZ(const X86::Instruction&)
|
||
{
|
||
set_c1(0);
|
||
fpu_push(0.0l);
|
||
}
|
||
void SoftFPU::FLDPI(const X86::Instruction&)
|
||
{
|
||
set_c1(0);
|
||
fpu_push(M_PIl);
|
||
}
|
||
void SoftFPU::FLDL2E(const X86::Instruction&)
|
||
{
|
||
set_c1(0);
|
||
fpu_push(M_LOG2El);
|
||
}
|
||
void SoftFPU::FLDLN2(const X86::Instruction&)
|
||
{
|
||
set_c1(0);
|
||
fpu_push(M_LN2l);
|
||
}
|
||
void SoftFPU::FLDL2T(const X86::Instruction&)
|
||
{
|
||
set_c1(0);
|
||
fpu_push(log2l(10.0l));
|
||
}
|
||
void SoftFPU::FLDLG2(const X86::Instruction&)
|
||
{
|
||
set_c1(0);
|
||
fpu_push(log10l(2.0l));
|
||
}
|
||
|
||
// CONTROL
|
||
void SoftFPU::FINCSTP(const X86::Instruction&)
|
||
{
|
||
m_fpu_stack_top = (m_fpu_stack_top + 1u) % 8u;
|
||
set_c1(0);
|
||
}
|
||
void SoftFPU::FDECSTP(const X86::Instruction&)
|
||
{
|
||
m_fpu_stack_top = (m_fpu_stack_top - 1u) % 8u;
|
||
set_c1(0);
|
||
}
|
||
|
||
void SoftFPU::FFREE(const X86::Instruction& insn)
|
||
{
|
||
fpu_set_tag(insn.modrm().reg_fpu(), FPU_Tag::Empty);
|
||
}
|
||
void SoftFPU::FFREEP(const X86::Instruction& insn)
|
||
{
|
||
FFREE(insn);
|
||
fpu_pop();
|
||
}
|
||
|
||
void SoftFPU::FNINIT(const X86::Instruction&)
|
||
{
|
||
m_fpu_cw.cw = 0x037F;
|
||
m_fpu_sw = 0;
|
||
m_fpu_tw = 0xFFFF;
|
||
|
||
m_fpu_ip = 0;
|
||
m_fpu_cs = 0;
|
||
|
||
m_fpu_dp = 0;
|
||
m_fpu_ds = 0;
|
||
|
||
m_fpu_iop = 0;
|
||
};
|
||
void SoftFPU::FNCLEX(const X86::Instruction&)
|
||
{
|
||
m_fpu_error_invalid = 0;
|
||
m_fpu_error_denorm = 0;
|
||
m_fpu_error_zero_div = 0;
|
||
m_fpu_error_overflow = 0;
|
||
m_fpu_error_underflow = 0;
|
||
m_fpu_error_precision = 0;
|
||
m_fpu_error_stackfault = 0;
|
||
m_fpu_busy = 0;
|
||
}
|
||
|
||
void SoftFPU::FNSTCW(const X86::Instruction& insn)
|
||
{
|
||
insn.modrm().write16(m_cpu, insn, shadow_wrap_as_initialized(m_fpu_cw.cw));
|
||
}
|
||
void SoftFPU::FLDCW(const X86::Instruction& insn)
|
||
{
|
||
m_fpu_cw.cw = insn.modrm().read16(m_cpu, insn).value();
|
||
|
||
// Just let the host's x87 handle the rounding for us
|
||
// We do not want to accedentally raise an FP-Exception on the host, so we
|
||
// mask all exceptions
|
||
AK::X87ControlWord temp = m_fpu_cw;
|
||
temp.mask_invalid = 1;
|
||
temp.mask_denorm = 1;
|
||
temp.mask_zero_div = 1;
|
||
temp.mask_overflow = 1;
|
||
temp.mask_underflow = 1;
|
||
temp.mask_precision = 1;
|
||
AK::set_cw_x87(temp);
|
||
}
|
||
|
||
void SoftFPU::FNSTENV(const X86::Instruction& insn)
|
||
{
|
||
// Assuming we are always in Protected mode
|
||
// FIXME: 16-bit Format
|
||
|
||
// 32-bit Format
|
||
/* 31--------------16---------------0
|
||
* | | CW | 0
|
||
* +----------------+---------------+
|
||
* | | SW | 4
|
||
* +----------------+---------------+
|
||
* | | TW | 8
|
||
* +----------------+---------------+
|
||
* | FIP | 12
|
||
* +----+-----------+---------------+
|
||
* |0000|fpuOp[10:0]| FIP_sel | 16
|
||
* +----+-----------+---------------+
|
||
* | FDP | 20
|
||
* +----------------+---------------+
|
||
* | | FDP_ds | 24
|
||
* +----------------|---------------+
|
||
* */
|
||
|
||
auto address = insn.modrm().resolve(m_cpu, insn);
|
||
|
||
m_cpu.write_memory16(address, shadow_wrap_as_initialized(m_fpu_cw.cw));
|
||
address.set_offset(address.offset() + 4);
|
||
m_cpu.write_memory16(address, shadow_wrap_as_initialized(m_fpu_sw));
|
||
address.set_offset(address.offset() + 4);
|
||
m_cpu.write_memory16(address, shadow_wrap_as_initialized(m_fpu_tw));
|
||
address.set_offset(address.offset() + 4);
|
||
m_cpu.write_memory32(address, shadow_wrap_as_initialized(m_fpu_ip));
|
||
address.set_offset(address.offset() + 4);
|
||
m_cpu.write_memory16(address, shadow_wrap_as_initialized(m_fpu_cs));
|
||
address.set_offset(address.offset() + 2);
|
||
m_cpu.write_memory16(address, shadow_wrap_as_initialized<u16>(m_fpu_iop & 0x3FFU));
|
||
address.set_offset(address.offset() + 2);
|
||
m_cpu.write_memory32(address, shadow_wrap_as_initialized(m_fpu_dp));
|
||
address.set_offset(address.offset() + 4);
|
||
m_cpu.write_memory16(address, shadow_wrap_as_initialized(m_fpu_ds));
|
||
}
|
||
void SoftFPU::FLDENV(const X86::Instruction& insn)
|
||
{
|
||
// Assuming we are always in Protected mode
|
||
// FIXME: 16-bit Format
|
||
auto address = insn.modrm().resolve(m_cpu, insn);
|
||
|
||
// FIXME: Shadow Values
|
||
m_fpu_cw.cw = m_cpu.read_memory16(address).value();
|
||
// See note in FLDCW
|
||
AK::X87ControlWord temp = m_fpu_cw;
|
||
temp.mask_invalid = 1;
|
||
temp.mask_denorm = 1;
|
||
temp.mask_zero_div = 1;
|
||
temp.mask_overflow = 1;
|
||
temp.mask_underflow = 1;
|
||
temp.mask_precision = 1;
|
||
AK::set_cw_x87(temp);
|
||
|
||
address.set_offset(address.offset() + 4);
|
||
m_fpu_sw = m_cpu.read_memory16(address).value();
|
||
address.set_offset(address.offset() + 4);
|
||
m_fpu_tw = m_cpu.read_memory16(address).value();
|
||
address.set_offset(address.offset() + 4);
|
||
m_fpu_ip = m_cpu.read_memory32(address).value();
|
||
address.set_offset(address.offset() + 4);
|
||
m_fpu_cs = m_cpu.read_memory16(address).value();
|
||
address.set_offset(address.offset() + 2);
|
||
m_fpu_iop = m_cpu.read_memory16(address).value();
|
||
address.set_offset(address.offset() + 2);
|
||
m_fpu_dp = m_cpu.read_memory32(address).value();
|
||
address.set_offset(address.offset() + 4);
|
||
m_fpu_ds = m_cpu.read_memory16(address).value();
|
||
}
|
||
|
||
void SoftFPU::FNSAVE(const X86::Instruction& insn)
|
||
{
|
||
FNSTENV(insn);
|
||
|
||
auto address = insn.modrm().resolve(m_cpu, insn);
|
||
address.set_offset(address.offset() + 28); // size of the ENV
|
||
|
||
// write fpu-stack to memory
|
||
u8 raw_data[80];
|
||
for (int i = 0; i < 8; ++i) {
|
||
memcpy(raw_data + 10 * i, &m_storage[i], 10);
|
||
}
|
||
for (int i = 0; i < 5; ++i) {
|
||
// FIXME: Shadow Value
|
||
m_cpu.write_memory128(address, shadow_wrap_as_initialized(((u128*)raw_data)[i]));
|
||
address.set_offset(address.offset() + 16);
|
||
}
|
||
|
||
FNINIT(insn);
|
||
}
|
||
void SoftFPU::FRSTOR(const X86::Instruction& insn)
|
||
{
|
||
FLDENV(insn);
|
||
|
||
auto address = insn.modrm().resolve(m_cpu, insn);
|
||
address.set_offset(address.offset() + 28); // size of the ENV
|
||
|
||
// read fpu-stack from memory
|
||
u8 raw_data[80];
|
||
for (int i = 0; i < 5; ++i) {
|
||
// FIXME: Shadow Value
|
||
((u128*)raw_data)[i] = m_cpu.read_memory128(address).value();
|
||
address.set_offset(address.offset() + 16);
|
||
}
|
||
for (int i = 0; i < 8; ++i) {
|
||
memcpy(&m_storage[i], raw_data + 10 * i, 10);
|
||
}
|
||
|
||
memset(m_reg_is_mmx, 0, sizeof(m_reg_is_mmx));
|
||
}
|
||
|
||
void SoftFPU::FNSTSW(const X86::Instruction& insn)
|
||
{
|
||
insn.modrm().write16(m_cpu, insn, shadow_wrap_as_initialized(m_fpu_sw));
|
||
}
|
||
void SoftFPU::FNSTSW_AX(const X86::Instruction&)
|
||
{
|
||
m_cpu.set_ax(shadow_wrap_as_initialized(m_fpu_sw));
|
||
}
|
||
// FIXME: FWAIT
|
||
void SoftFPU::FNOP(const X86::Instruction&) { }
|
||
|
||
// DO NOTHING?
|
||
void SoftFPU::FNENI(const X86::Instruction&) { TODO_INSN(); }
|
||
void SoftFPU::FNDISI(const X86::Instruction&) { TODO_INSN(); }
|
||
void SoftFPU::FNSETPM(const X86::Instruction&) { TODO_INSN(); }
|
||
|
||
// MMX
|
||
// helpers
|
||
#define LOAD_MM_MM64M() \
|
||
VERIFY(!insn.has_operand_size_override_prefix()); /* SSE2 */ \
|
||
MMX mm; \
|
||
MMX mm64m; \
|
||
if (insn.modrm().mod() == 0b11) { /* 0b11 signals a register */ \
|
||
mm64m = mmx_get(insn.modrm().rm()); \
|
||
} else { \
|
||
auto temp = insn.modrm().read64(m_cpu, insn); \
|
||
warn_if_uninitialized(temp, "Read of uninitialized Memory as Packed integer"); \
|
||
mm64m.raw = temp.value(); \
|
||
} \
|
||
mm = mmx_get(insn.modrm().reg())
|
||
|
||
#define MMX_intrinsic(intrinsic, res_type, actor_type) \
|
||
LOAD_MM_MM64M(); \
|
||
mm.res_type = __builtin_ia32_##intrinsic(mm.actor_type, mm64m.actor_type); \
|
||
mmx_set(insn.modrm().reg(), mm); \
|
||
mmx_common();
|
||
|
||
// ARITHMETIC
|
||
void SoftFPU::PADDB_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
LOAD_MM_MM64M();
|
||
mm.v8 += mm64m.v8;
|
||
mmx_set(insn.modrm().reg(), mm);
|
||
mmx_common();
|
||
}
|
||
void SoftFPU::PADDW_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
LOAD_MM_MM64M();
|
||
mm.v16 += mm64m.v16;
|
||
mmx_set(insn.modrm().reg(), mm);
|
||
mmx_common();
|
||
}
|
||
void SoftFPU::PADDD_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
LOAD_MM_MM64M();
|
||
mm.v32 += mm64m.v32;
|
||
mmx_set(insn.modrm().reg(), mm);
|
||
mmx_common();
|
||
}
|
||
void SoftFPU::PADDSB_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
MMX_intrinsic(paddsb, v8, v8);
|
||
}
|
||
void SoftFPU::PADDSW_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
MMX_intrinsic(paddsw, v16, v16);
|
||
}
|
||
void SoftFPU::PADDUSB_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
MMX_intrinsic(paddusb, v8, v8);
|
||
}
|
||
void SoftFPU::PADDUSW_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
MMX_intrinsic(paddusw, v16, v16);
|
||
}
|
||
|
||
void SoftFPU::PSUBB_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
LOAD_MM_MM64M();
|
||
mm.v8 -= mm64m.v8;
|
||
mmx_set(insn.modrm().reg(), mm);
|
||
mmx_common();
|
||
}
|
||
void SoftFPU::PSUBW_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
LOAD_MM_MM64M();
|
||
mm.v16 -= mm64m.v16;
|
||
mmx_set(insn.modrm().reg(), mm);
|
||
mmx_common();
|
||
}
|
||
void SoftFPU::PSUBD_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
LOAD_MM_MM64M();
|
||
mm.v32 -= mm64m.v32;
|
||
mmx_set(insn.modrm().reg(), mm);
|
||
mmx_common();
|
||
}
|
||
void SoftFPU::PSUBSB_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
MMX_intrinsic(psubsb, v8, v8);
|
||
}
|
||
void SoftFPU::PSUBSW_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
MMX_intrinsic(psubsw, v16, v16);
|
||
}
|
||
void SoftFPU::PSUBUSB_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
MMX_intrinsic(psubusb, v8, v8);
|
||
}
|
||
void SoftFPU::PSUBUSW_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
MMX_intrinsic(psubusw, v16, v16);
|
||
}
|
||
|
||
void SoftFPU::PMULHW_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
MMX_intrinsic(pmulhw, v16, v16);
|
||
}
|
||
void SoftFPU::PMULLW_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
MMX_intrinsic(pmullw, v16, v16);
|
||
}
|
||
|
||
void SoftFPU::PMADDWD_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
MMX_intrinsic(pmaddwd, v32, v16);
|
||
}
|
||
|
||
// COMPARISON
|
||
void SoftFPU::PCMPEQB_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
LOAD_MM_MM64M();
|
||
|
||
mm.v8 = mm.v8 == mm64m.v8;
|
||
|
||
mmx_set(insn.modrm().reg(), mm);
|
||
mmx_common();
|
||
}
|
||
void SoftFPU::PCMPEQW_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
LOAD_MM_MM64M();
|
||
|
||
mm.v16 = mm.v16 == mm64m.v16;
|
||
mmx_set(insn.modrm().reg(), mm);
|
||
mmx_common();
|
||
}
|
||
void SoftFPU::PCMPEQD_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
LOAD_MM_MM64M();
|
||
|
||
mm.v32 = mm.v32 == mm64m.v32;
|
||
|
||
mmx_set(insn.modrm().reg(), mm);
|
||
mmx_common();
|
||
}
|
||
|
||
void SoftFPU::PCMPGTB_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
LOAD_MM_MM64M();
|
||
|
||
mm.v8 = mm.v8 > mm64m.v8;
|
||
|
||
mmx_set(insn.modrm().reg(), mm);
|
||
mmx_common();
|
||
}
|
||
void SoftFPU::PCMPGTW_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
LOAD_MM_MM64M();
|
||
|
||
mm.v16 = mm.v16 > mm64m.v16;
|
||
|
||
mmx_set(insn.modrm().reg(), mm);
|
||
mmx_common();
|
||
}
|
||
void SoftFPU::PCMPGTD_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
LOAD_MM_MM64M();
|
||
|
||
mm.v32 = mm.v32 > mm64m.v32;
|
||
|
||
mmx_set(insn.modrm().reg(), mm);
|
||
mmx_common();
|
||
}
|
||
|
||
// CONVERSION
|
||
void SoftFPU::PACKSSDW_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
MMX_intrinsic(packssdw, v16, v32);
|
||
}
|
||
void SoftFPU::PACKSSWB_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
MMX_intrinsic(packsswb, v8, v16);
|
||
}
|
||
void SoftFPU::PACKUSWB_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
MMX_intrinsic(packuswb, v8, v16);
|
||
}
|
||
|
||
// UNPACK
|
||
void SoftFPU::PUNPCKHBW_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
MMX_intrinsic(punpckhbw, v8, v8);
|
||
}
|
||
|
||
void SoftFPU::PUNPCKHWD_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
MMX_intrinsic(punpckhwd, v16, v16);
|
||
}
|
||
void SoftFPU::PUNPCKHDQ_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
MMX_intrinsic(punpckhdq, v32, v32);
|
||
}
|
||
|
||
void SoftFPU::PUNPCKLBW_mm1_mm2m32(const X86::Instruction& insn)
|
||
{
|
||
MMX_intrinsic(punpcklbw, v8, v8);
|
||
}
|
||
void SoftFPU::PUNPCKLWD_mm1_mm2m32(const X86::Instruction& insn)
|
||
{
|
||
MMX_intrinsic(punpcklwd, v16, v16);
|
||
}
|
||
void SoftFPU::PUNPCKLDQ_mm1_mm2m32(const X86::Instruction& insn)
|
||
{
|
||
MMX_intrinsic(punpckldq, v32, v32);
|
||
}
|
||
|
||
// LOGICAL
|
||
void SoftFPU::PAND_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
LOAD_MM_MM64M();
|
||
|
||
mm.raw &= mm64m.raw;
|
||
|
||
mmx_set(insn.modrm().reg(), mm);
|
||
mmx_common();
|
||
}
|
||
void SoftFPU::PANDN_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
LOAD_MM_MM64M();
|
||
|
||
mm.raw &= ~mm64m.raw;
|
||
|
||
mmx_set(insn.modrm().reg(), mm);
|
||
mmx_common();
|
||
}
|
||
void SoftFPU::POR_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
LOAD_MM_MM64M();
|
||
|
||
mm.raw |= mm64m.raw;
|
||
|
||
mmx_set(insn.modrm().reg(), mm);
|
||
mmx_common();
|
||
}
|
||
void SoftFPU::PXOR_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
LOAD_MM_MM64M();
|
||
|
||
mm.raw ^= mm64m.raw;
|
||
|
||
mmx_set(insn.modrm().reg(), mm);
|
||
mmx_common();
|
||
}
|
||
|
||
// SHIFT
|
||
void SoftFPU::PSLLW_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
LOAD_MM_MM64M();
|
||
|
||
mm.v16 <<= mm64m.v16;
|
||
|
||
mmx_set(insn.modrm().reg(), mm);
|
||
mmx_common();
|
||
}
|
||
void SoftFPU::PSLLW_mm1_imm8(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(!insn.has_operand_size_override_prefix()); // SSE2
|
||
u8 imm = insn.imm8();
|
||
MMX mm = mmx_get(insn.modrm().reg());
|
||
|
||
mm.v16 <<= imm;
|
||
|
||
mmx_set(insn.modrm().reg(), mm);
|
||
mmx_common();
|
||
}
|
||
void SoftFPU::PSLLD_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
LOAD_MM_MM64M();
|
||
|
||
mm.v32 <<= mm64m.v32;
|
||
|
||
mmx_set(insn.modrm().reg(), mm);
|
||
mmx_common();
|
||
}
|
||
void SoftFPU::PSLLD_mm1_imm8(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(!insn.has_operand_size_override_prefix()); /* SSE2 */
|
||
u8 imm = insn.imm8();
|
||
MMX mm = mmx_get(insn.modrm().reg());
|
||
|
||
mm.v32 <<= imm;
|
||
|
||
mmx_set(insn.modrm().reg(), mm);
|
||
mmx_common();
|
||
}
|
||
void SoftFPU::PSLLQ_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
LOAD_MM_MM64M();
|
||
|
||
mm.raw <<= mm64m.raw;
|
||
|
||
mmx_set(insn.modrm().reg(), mm);
|
||
mmx_common();
|
||
}
|
||
void SoftFPU::PSLLQ_mm1_imm8(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(!insn.has_operand_size_override_prefix()); /* SSE2 */
|
||
u8 imm = insn.imm8();
|
||
MMX mm = mmx_get(insn.modrm().reg());
|
||
|
||
mm.raw <<= imm;
|
||
|
||
mmx_set(insn.modrm().reg(), mm);
|
||
mmx_common();
|
||
}
|
||
void SoftFPU::PSRAW_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
LOAD_MM_MM64M();
|
||
|
||
mm.v16 >>= mm64m.v16;
|
||
|
||
mmx_set(insn.modrm().reg(), mm);
|
||
mmx_common();
|
||
}
|
||
void SoftFPU::PSRAW_mm1_imm8(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(!insn.has_operand_size_override_prefix()); /* SSE2 */
|
||
u8 imm = insn.imm8();
|
||
MMX mm = mmx_get(insn.modrm().reg());
|
||
|
||
mm.v16 >>= imm;
|
||
|
||
mmx_set(insn.modrm().reg(), mm);
|
||
mmx_common();
|
||
}
|
||
void SoftFPU::PSRAD_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
LOAD_MM_MM64M();
|
||
|
||
mm.v32 >>= mm64m.v32;
|
||
|
||
mmx_set(insn.modrm().reg(), mm);
|
||
mmx_common();
|
||
}
|
||
void SoftFPU::PSRAD_mm1_imm8(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(!insn.has_operand_size_override_prefix()); /* SSE2 */
|
||
u8 imm = insn.imm8();
|
||
MMX mm = mmx_get(insn.modrm().reg());
|
||
|
||
mm.v32 >>= imm;
|
||
|
||
mmx_set(insn.modrm().reg(), mm);
|
||
mmx_common();
|
||
}
|
||
void SoftFPU::PSRLW_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
LOAD_MM_MM64M();
|
||
|
||
mm.v16u >>= mm64m.v16u;
|
||
|
||
mmx_set(insn.modrm().reg(), mm);
|
||
mmx_common();
|
||
}
|
||
void SoftFPU::PSRLW_mm1_imm8(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(!insn.has_operand_size_override_prefix()); /* SSE2 */
|
||
u8 imm = insn.imm8();
|
||
MMX mm = mmx_get(insn.modrm().reg());
|
||
|
||
mm.v16u >>= imm;
|
||
|
||
mmx_set(insn.modrm().reg(), mm);
|
||
mmx_common();
|
||
}
|
||
void SoftFPU::PSRLD_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
LOAD_MM_MM64M();
|
||
|
||
mm.v32u >>= mm64m.v32u;
|
||
|
||
mmx_set(insn.modrm().reg(), mm);
|
||
mmx_common();
|
||
}
|
||
void SoftFPU::PSRLD_mm1_imm8(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(!insn.has_operand_size_override_prefix()); /* SSE2 */
|
||
u8 imm = insn.imm8();
|
||
MMX mm = mmx_get(insn.modrm().reg());
|
||
|
||
mm.v32u >>= imm;
|
||
|
||
mmx_set(insn.modrm().reg(), mm);
|
||
mmx_common();
|
||
}
|
||
void SoftFPU::PSRLQ_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
LOAD_MM_MM64M();
|
||
|
||
mm.raw >>= mm64m.raw;
|
||
|
||
mmx_set(insn.modrm().reg(), mm);
|
||
mmx_common();
|
||
}
|
||
void SoftFPU::PSRLQ_mm1_imm8(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(!insn.has_operand_size_override_prefix()); /* SSE2 */
|
||
u8 imm = insn.imm8();
|
||
MMX mm = mmx_get(insn.modrm().reg());
|
||
|
||
mm.raw >>= imm;
|
||
|
||
mmx_set(insn.modrm().reg(), mm);
|
||
mmx_common();
|
||
}
|
||
|
||
// DATA TRANSFER
|
||
void SoftFPU::MOVD_mm1_rm32(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(!insn.has_operand_size_override_prefix()); /* SSE2 */
|
||
u8 mmx_index = insn.modrm().reg();
|
||
// FIXME:: Shadow Value
|
||
// upper half is zeroed out
|
||
mmx_set(mmx_index, { .raw = insn.modrm().read32(m_cpu, insn).value() });
|
||
mmx_common();
|
||
};
|
||
void SoftFPU::MOVD_rm32_mm2(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(!insn.has_operand_size_override_prefix()); /* SSE2 */
|
||
u8 mmx_index = insn.modrm().reg();
|
||
// FIXME:: Shadow Value
|
||
insn.modrm().write32(m_cpu, insn,
|
||
shadow_wrap_as_initialized(static_cast<u32>(mmx_get(mmx_index).raw)));
|
||
mmx_common();
|
||
};
|
||
|
||
void SoftFPU::MOVQ_mm1_mm2m64(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(!insn.has_operand_size_override_prefix()); /* SSE2 */
|
||
// FIXME: Shadow Value
|
||
if (insn.modrm().mod() == 0b11) {
|
||
// instruction
|
||
mmx_set(insn.modrm().reg(),
|
||
mmx_get(insn.modrm().rm()));
|
||
} else {
|
||
mmx_set(insn.modrm().reg(),
|
||
{ .raw = insn.modrm().read64(m_cpu, insn).value() });
|
||
}
|
||
mmx_common();
|
||
}
|
||
void SoftFPU::MOVQ_mm1m64_mm2(const X86::Instruction& insn)
|
||
{
|
||
VERIFY(!insn.has_operand_size_override_prefix()); /* SSE2 */
|
||
if (insn.modrm().mod() == 0b11) {
|
||
// instruction
|
||
mmx_set(insn.modrm().rm(),
|
||
mmx_get(insn.modrm().reg()));
|
||
} else {
|
||
// FIXME: Shadow Value
|
||
insn.modrm().write64(m_cpu, insn,
|
||
shadow_wrap_as_initialized(mmx_get(insn.modrm().reg()).raw));
|
||
}
|
||
mmx_common();
|
||
}
|
||
void SoftFPU::MOVQ_mm1_rm64(const X86::Instruction&) { TODO_INSN(); }; // long mode
|
||
void SoftFPU::MOVQ_rm64_mm2(const X86::Instruction&) { TODO_INSN(); }; // long mode
|
||
|
||
// EMPTY MMX STATE
|
||
void SoftFPU::EMMS(const X86::Instruction&)
|
||
{
|
||
// clear tagword
|
||
m_fpu_tw = 0xFFFF;
|
||
}
|
||
|
||
}
|