mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2025-04-25 22:08:59 +00:00
This strtod implementation is not perfectly accurate, as evidenced by the test (accuracy_strtod.cpp), but it is sufficiently close (up to 8 eps). The main sources of inaccuracy are: - Highly repeated division/multiplication by 'base' (Each operation brings a multiplicative error of 1+2^-53.) - Loss during the initial conversion from long long to double (most prominently, 69294956446009195 should first be rounded to 69294956446009200 and then converted to 69294956446009200.0 and then divided by ten, yielding 6929495644600920.0. Currently, it converts first to double, can't represent 69294956446009195.0, and instead represents 69294956446009190, which eventually yields 6929495644600919.0. Close, but technically wrong.) I believe that these issues can be fixed by rewriting the part at and after double value = digits.number(); and that the loss before that is acceptable. Specifically, losing the exact exponent on overflow is obviously fine. The only other loss occurs when the significant digits overflow a 'long long'. But these store 64(-7ish) bits, and the mantissa of a double only stores 52 bits. With a bit more thinking, one could probably get the error down to 1 or 2 eps. (But not better.) Fixes #1979.
1030 lines
27 KiB
C++
1030 lines
27 KiB
C++
/*
|
|
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <AK/Assertions.h>
|
|
#include <AK/HashMap.h>
|
|
#include <AK/Noncopyable.h>
|
|
#include <AK/StdLibExtras.h>
|
|
#include <AK/Types.h>
|
|
#include <AK/Utf8View.h>
|
|
#include <Kernel/Syscall.h>
|
|
#include <alloca.h>
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
#include <errno.h>
|
|
#include <signal.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/wait.h>
|
|
#include <unistd.h>
|
|
|
|
template<typename T, T min_value, T max_value>
|
|
static inline T strtol_impl(const char* nptr, char** endptr, int base)
|
|
{
|
|
errno = 0;
|
|
|
|
if (base < 0 || base == 1 || base > 36) {
|
|
errno = EINVAL;
|
|
if (endptr)
|
|
*endptr = const_cast<char*>(nptr);
|
|
return 0;
|
|
}
|
|
|
|
const char* p = nptr;
|
|
while (isspace(*p))
|
|
++p;
|
|
|
|
bool is_negative = false;
|
|
if (*p == '-') {
|
|
is_negative = true;
|
|
++p;
|
|
} else {
|
|
if (*p == '+')
|
|
++p;
|
|
}
|
|
|
|
if (base == 0 || base == 16) {
|
|
if (base == 0)
|
|
base = 10;
|
|
if (*p == '0') {
|
|
if (*(p + 1) == 'X' || *(p + 1) == 'x') {
|
|
p += 2;
|
|
base = 16;
|
|
} else if (base != 16) {
|
|
base = 8;
|
|
}
|
|
}
|
|
}
|
|
|
|
T cutoff_point = is_negative ? (min_value / base) : (max_value / base);
|
|
int max_valid_digit_at_cutoff_point = is_negative ? (min_value % base) : (max_value % base);
|
|
|
|
T num = 0;
|
|
|
|
bool has_overflowed = false;
|
|
unsigned digits_consumed = 0;
|
|
|
|
for (;;) {
|
|
char ch = *(p++);
|
|
int digit;
|
|
if (isdigit(ch))
|
|
digit = ch - '0';
|
|
else if (islower(ch))
|
|
digit = ch - ('a' - 10);
|
|
else if (isupper(ch))
|
|
digit = ch - ('A' - 10);
|
|
else
|
|
break;
|
|
|
|
if (digit >= base)
|
|
break;
|
|
|
|
if (has_overflowed)
|
|
continue;
|
|
|
|
bool is_past_cutoff = is_negative ? num < cutoff_point : num > cutoff_point;
|
|
|
|
if (is_past_cutoff || (num == cutoff_point && digit > max_valid_digit_at_cutoff_point)) {
|
|
has_overflowed = true;
|
|
num = is_negative ? min_value : max_value;
|
|
errno = ERANGE;
|
|
} else {
|
|
num *= base;
|
|
num += is_negative ? -digit : digit;
|
|
++digits_consumed;
|
|
}
|
|
}
|
|
|
|
if (endptr) {
|
|
if (has_overflowed || digits_consumed > 0)
|
|
*endptr = const_cast<char*>(p - 1);
|
|
else
|
|
*endptr = const_cast<char*>(nptr);
|
|
}
|
|
return num;
|
|
}
|
|
|
|
static void strtons(const char* str, char** endptr)
|
|
{
|
|
assert(endptr);
|
|
char* ptr = const_cast<char*>(str);
|
|
while (isspace(*ptr)) {
|
|
ptr += 1;
|
|
}
|
|
*endptr = ptr;
|
|
}
|
|
|
|
enum Sign {
|
|
Negative,
|
|
Positive,
|
|
};
|
|
|
|
static Sign strtosign(const char* str, char** endptr)
|
|
{
|
|
assert(endptr);
|
|
if (*str == '+') {
|
|
*endptr = const_cast<char*>(str + 1);
|
|
return Sign::Positive;
|
|
} else if (*str == '-') {
|
|
*endptr = const_cast<char*>(str + 1);
|
|
return Sign::Negative;
|
|
} else {
|
|
*endptr = const_cast<char*>(str);
|
|
return Sign::Positive;
|
|
}
|
|
}
|
|
|
|
enum DigitConsumeDecision {
|
|
Consumed,
|
|
PosOverflow,
|
|
NegOverflow,
|
|
Invalid,
|
|
};
|
|
|
|
template<typename T, T min_value, T max_value>
|
|
class NumParser {
|
|
AK_MAKE_NONMOVABLE(NumParser)
|
|
|
|
public:
|
|
NumParser(Sign sign, int base)
|
|
: m_base(base)
|
|
, m_num(0)
|
|
, m_sign(sign)
|
|
{
|
|
m_cutoff = positive() ? (max_value / base) : (min_value / base);
|
|
m_max_digit_after_cutoff = positive() ? (max_value % base) : (min_value % base);
|
|
}
|
|
|
|
int parse_digit(char ch)
|
|
{
|
|
int digit;
|
|
if (isdigit(ch))
|
|
digit = ch - '0';
|
|
else if (islower(ch))
|
|
digit = ch - ('a' - 10);
|
|
else if (isupper(ch))
|
|
digit = ch - ('A' - 10);
|
|
else
|
|
return -1;
|
|
|
|
if (digit >= m_base)
|
|
return -1;
|
|
|
|
return digit;
|
|
}
|
|
|
|
DigitConsumeDecision consume(char ch)
|
|
{
|
|
int digit = parse_digit(ch);
|
|
if (digit == -1)
|
|
return DigitConsumeDecision::Invalid;
|
|
|
|
if (!can_append_digit(digit)) {
|
|
if (m_sign != Sign::Negative) {
|
|
return DigitConsumeDecision::PosOverflow;
|
|
} else {
|
|
return DigitConsumeDecision::NegOverflow;
|
|
}
|
|
}
|
|
|
|
m_num *= m_base;
|
|
m_num += positive() ? digit : -digit;
|
|
|
|
return DigitConsumeDecision::Consumed;
|
|
}
|
|
|
|
T number() const { return m_num; };
|
|
|
|
private:
|
|
bool can_append_digit(int digit)
|
|
{
|
|
const bool is_below_cutoff = positive() ? (m_num < m_cutoff) : (m_num > m_cutoff);
|
|
|
|
if (is_below_cutoff) {
|
|
return true;
|
|
} else {
|
|
return m_num == m_cutoff && digit < m_max_digit_after_cutoff;
|
|
}
|
|
}
|
|
|
|
bool positive() const
|
|
{
|
|
return m_sign != Sign::Negative;
|
|
}
|
|
|
|
const T m_base;
|
|
T m_num;
|
|
T m_cutoff;
|
|
int m_max_digit_after_cutoff;
|
|
Sign m_sign;
|
|
};
|
|
|
|
typedef NumParser<int, INT_MIN, INT_MAX> IntParser;
|
|
typedef NumParser<long long, LONG_LONG_MIN, LONG_LONG_MAX> LongLongParser;
|
|
|
|
static bool is_either(char* str, int offset, char lower, char upper)
|
|
{
|
|
char ch = *(str + offset);
|
|
return ch == lower || ch == upper;
|
|
}
|
|
|
|
__attribute__((warn_unused_result)) int __generate_unique_filename(char* pattern)
|
|
{
|
|
size_t length = strlen(pattern);
|
|
|
|
if (length < 6 || memcmp(pattern + length - 6, "XXXXXX", 6)) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
size_t start = length - 6;
|
|
|
|
static constexpr char random_characters[] = "abcdefghijklmnopqrstuvwxyz0123456789";
|
|
|
|
for (int attempt = 0; attempt < 100; ++attempt) {
|
|
for (int i = 0; i < 6; ++i)
|
|
pattern[start + i] = random_characters[(rand() % sizeof(random_characters))];
|
|
struct stat st;
|
|
int rc = lstat(pattern, &st);
|
|
if (rc < 0 && errno == ENOENT)
|
|
return 0;
|
|
}
|
|
errno = EEXIST;
|
|
return -1;
|
|
}
|
|
|
|
extern "C" {
|
|
|
|
// Itanium C++ ABI methods defined in crt0.cpp
|
|
extern int __cxa_atexit(void (*function)(void*), void* paramter, void* dso_handle);
|
|
extern void __cxa_finalize(void* dso_handle);
|
|
|
|
void exit(int status)
|
|
{
|
|
__cxa_finalize(nullptr);
|
|
extern void _fini();
|
|
_fini();
|
|
fflush(stdout);
|
|
fflush(stderr);
|
|
_exit(status);
|
|
ASSERT_NOT_REACHED();
|
|
}
|
|
|
|
static void __atexit_to_cxa_atexit(void* handler)
|
|
{
|
|
reinterpret_cast<void (*)()>(handler)();
|
|
}
|
|
|
|
int atexit(void (*handler)())
|
|
{
|
|
return __cxa_atexit(__atexit_to_cxa_atexit, (void*)handler, nullptr);
|
|
}
|
|
|
|
void abort()
|
|
{
|
|
raise(SIGABRT);
|
|
ASSERT_NOT_REACHED();
|
|
}
|
|
|
|
static HashTable<const char*> s_malloced_environment_variables;
|
|
|
|
static void free_environment_variable_if_needed(const char* var)
|
|
{
|
|
if (!s_malloced_environment_variables.contains(var))
|
|
return;
|
|
free(const_cast<char*>(var));
|
|
s_malloced_environment_variables.remove(var);
|
|
}
|
|
|
|
char* getenv(const char* name)
|
|
{
|
|
size_t vl = strlen(name);
|
|
for (size_t i = 0; environ[i]; ++i) {
|
|
const char* decl = environ[i];
|
|
char* eq = strchr(decl, '=');
|
|
if (!eq)
|
|
continue;
|
|
size_t varLength = eq - decl;
|
|
if (vl != varLength)
|
|
continue;
|
|
if (strncmp(decl, name, varLength) == 0) {
|
|
return eq + 1;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
int unsetenv(const char* name)
|
|
{
|
|
auto new_var_len = strlen(name);
|
|
size_t environ_size = 0;
|
|
int skip = -1;
|
|
|
|
for (; environ[environ_size]; ++environ_size) {
|
|
char* old_var = environ[environ_size];
|
|
char* old_eq = strchr(old_var, '=');
|
|
ASSERT(old_eq);
|
|
size_t old_var_len = old_eq - old_var;
|
|
|
|
if (new_var_len != old_var_len)
|
|
continue; // can't match
|
|
|
|
if (strncmp(name, old_var, new_var_len) == 0)
|
|
skip = environ_size;
|
|
}
|
|
|
|
if (skip == -1)
|
|
return 0; // not found: no failure.
|
|
|
|
// Shuffle the existing array down by one.
|
|
memmove(&environ[skip], &environ[skip + 1], ((environ_size - 1) - skip) * sizeof(environ[0]));
|
|
environ[environ_size - 1] = nullptr;
|
|
|
|
free_environment_variable_if_needed(name);
|
|
return 0;
|
|
}
|
|
|
|
int setenv(const char* name, const char* value, int overwrite)
|
|
{
|
|
if (!overwrite && !getenv(name))
|
|
return 0;
|
|
auto length = strlen(name) + strlen(value) + 2;
|
|
auto* var = (char*)malloc(length);
|
|
snprintf(var, length, "%s=%s", name, value);
|
|
s_malloced_environment_variables.set(var);
|
|
return putenv(var);
|
|
}
|
|
|
|
int putenv(char* new_var)
|
|
{
|
|
char* new_eq = strchr(new_var, '=');
|
|
|
|
if (!new_eq)
|
|
return unsetenv(new_var);
|
|
|
|
auto new_var_len = new_eq - new_var;
|
|
int environ_size = 0;
|
|
for (; environ[environ_size]; ++environ_size) {
|
|
char* old_var = environ[environ_size];
|
|
char* old_eq = strchr(old_var, '=');
|
|
ASSERT(old_eq);
|
|
auto old_var_len = old_eq - old_var;
|
|
|
|
if (new_var_len != old_var_len)
|
|
continue; // can't match
|
|
|
|
if (strncmp(new_var, old_var, new_var_len) == 0) {
|
|
free_environment_variable_if_needed(old_var);
|
|
environ[environ_size] = new_var;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// At this point, we need to append the new var.
|
|
// 2 here: one for the new var, one for the sentinel value.
|
|
char** new_environ = (char**)malloc((environ_size + 2) * sizeof(char*));
|
|
if (new_environ == nullptr) {
|
|
errno = ENOMEM;
|
|
return -1;
|
|
}
|
|
|
|
for (int i = 0; environ[i]; ++i) {
|
|
new_environ[i] = environ[i];
|
|
}
|
|
|
|
new_environ[environ_size] = new_var;
|
|
new_environ[environ_size + 1] = nullptr;
|
|
|
|
// swap new and old
|
|
// note that the initial environ is not heap allocated!
|
|
extern bool __environ_is_malloced;
|
|
if (__environ_is_malloced)
|
|
free(environ);
|
|
__environ_is_malloced = true;
|
|
environ = new_environ;
|
|
return 0;
|
|
}
|
|
|
|
double strtod(const char* str, char** endptr)
|
|
{
|
|
// Parse spaces, sign, and base
|
|
char* parse_ptr = const_cast<char*>(str);
|
|
strtons(parse_ptr, &parse_ptr);
|
|
const Sign sign = strtosign(parse_ptr, &parse_ptr);
|
|
|
|
// Parse inf/nan, if applicable.
|
|
if (is_either(parse_ptr, 0, 'i', 'I')) {
|
|
if (is_either(parse_ptr, 1, 'n', 'N')) {
|
|
if (is_either(parse_ptr, 2, 'f', 'F')) {
|
|
parse_ptr += 3;
|
|
if (is_either(parse_ptr, 0, 'i', 'I')) {
|
|
if (is_either(parse_ptr, 1, 'n', 'N')) {
|
|
if (is_either(parse_ptr, 2, 'i', 'I')) {
|
|
if (is_either(parse_ptr, 3, 't', 'T')) {
|
|
if (is_either(parse_ptr, 4, 'y', 'Y')) {
|
|
parse_ptr += 5;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (endptr)
|
|
*endptr = parse_ptr;
|
|
// Don't set errno to ERANGE here:
|
|
// The caller may want to distinguish between "input is
|
|
// literal infinity" and "input is not literal infinity
|
|
// but did not fit into double".
|
|
if (sign != Sign::Negative) {
|
|
return __builtin_huge_val();
|
|
} else {
|
|
return -__builtin_huge_val();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (is_either(parse_ptr, 0, 'n', 'N')) {
|
|
if (is_either(parse_ptr, 1, 'a', 'A')) {
|
|
if (is_either(parse_ptr, 2, 'n', 'N')) {
|
|
if (endptr)
|
|
*endptr = parse_ptr + 3;
|
|
errno = ERANGE;
|
|
if (sign != Sign::Negative) {
|
|
return __builtin_nan("");
|
|
} else {
|
|
return -__builtin_nan("");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Parse base
|
|
char exponent_lower;
|
|
char exponent_upper;
|
|
int base = 10;
|
|
if (*parse_ptr == '0') {
|
|
const char base_ch = *(parse_ptr + 1);
|
|
if (base_ch == 'x' || base_ch == 'X') {
|
|
base = 16;
|
|
parse_ptr += 2;
|
|
}
|
|
}
|
|
|
|
if (base == 10) {
|
|
exponent_lower = 'e';
|
|
exponent_upper = 'E';
|
|
} else {
|
|
exponent_lower = 'p';
|
|
exponent_upper = 'P';
|
|
}
|
|
|
|
// Parse "digits", possibly keeping track of the exponent offset.
|
|
// We parse the most significant digits and the position in the
|
|
// base-`base` representation separately. This allows us to handle
|
|
// numbers like `0.0000000000000000000000000000000000001234` or
|
|
// `1234567890123456789012345678901234567890` with ease.
|
|
LongLongParser digits { sign, base };
|
|
bool digits_usable = false;
|
|
bool should_continue = true;
|
|
bool digits_overflow = false;
|
|
bool after_decimal = false;
|
|
int exponent = 0;
|
|
do {
|
|
if (!after_decimal && *parse_ptr == '.') {
|
|
after_decimal = true;
|
|
parse_ptr += 1;
|
|
continue;
|
|
}
|
|
|
|
bool is_a_digit;
|
|
if (digits_overflow) {
|
|
is_a_digit = digits.parse_digit(*parse_ptr) != -1;
|
|
} else {
|
|
DigitConsumeDecision decision = digits.consume(*parse_ptr);
|
|
switch (decision) {
|
|
case DigitConsumeDecision::Consumed:
|
|
is_a_digit = true;
|
|
// The very first actual digit must pass here:
|
|
digits_usable = true;
|
|
break;
|
|
case DigitConsumeDecision::PosOverflow:
|
|
// fallthrough
|
|
case DigitConsumeDecision::NegOverflow:
|
|
is_a_digit = true;
|
|
digits_overflow = true;
|
|
break;
|
|
case DigitConsumeDecision::Invalid:
|
|
is_a_digit = false;
|
|
break;
|
|
default:
|
|
ASSERT_NOT_REACHED();
|
|
}
|
|
}
|
|
|
|
if (is_a_digit) {
|
|
exponent -= after_decimal ? 1 : 0;
|
|
exponent += digits_overflow ? 1 : 0;
|
|
}
|
|
|
|
should_continue = is_a_digit;
|
|
parse_ptr += should_continue;
|
|
} while (should_continue);
|
|
|
|
if (!digits_usable) {
|
|
// No actual number value available.
|
|
if (endptr)
|
|
*endptr = const_cast<char*>(str);
|
|
return 0.0;
|
|
}
|
|
|
|
// Parse exponent.
|
|
// We already know the next character is not a digit in the current base,
|
|
// nor a valid decimal point. Check whether it's an exponent sign.
|
|
if (*parse_ptr == exponent_lower || *parse_ptr == exponent_upper) {
|
|
// Need to keep the old parse_ptr around, in case of rollback.
|
|
char* old_parse_ptr = parse_ptr;
|
|
parse_ptr += 1;
|
|
|
|
// Can't use atol or strtol here: Must accept excessive exponents,
|
|
// even exponents >64 bits.
|
|
Sign exponent_sign = strtosign(parse_ptr, &parse_ptr);
|
|
IntParser exponent_parser { exponent_sign, base };
|
|
bool exponent_usable = false;
|
|
bool exponent_overflow = false;
|
|
should_continue = true;
|
|
do {
|
|
bool is_a_digit;
|
|
if (exponent_overflow) {
|
|
is_a_digit = exponent_parser.parse_digit(*parse_ptr) != -1;
|
|
} else {
|
|
DigitConsumeDecision decision = exponent_parser.consume(*parse_ptr);
|
|
switch (decision) {
|
|
case DigitConsumeDecision::Consumed:
|
|
is_a_digit = true;
|
|
// The very first actual digit must pass here:
|
|
exponent_usable = true;
|
|
break;
|
|
case DigitConsumeDecision::PosOverflow:
|
|
// fallthrough
|
|
case DigitConsumeDecision::NegOverflow:
|
|
is_a_digit = true;
|
|
exponent_overflow = true;
|
|
break;
|
|
case DigitConsumeDecision::Invalid:
|
|
is_a_digit = false;
|
|
break;
|
|
default:
|
|
ASSERT_NOT_REACHED();
|
|
}
|
|
}
|
|
|
|
should_continue = is_a_digit;
|
|
parse_ptr += should_continue;
|
|
} while (should_continue);
|
|
|
|
if (!exponent_usable) {
|
|
parse_ptr = old_parse_ptr;
|
|
} else if (exponent_overflow) {
|
|
// Technically this is wrong. If someone gives us 5GB of digits,
|
|
// and then an exponent of -5_000_000_000, the resulting exponent
|
|
// should be around 0.
|
|
// However, I think it's safe to assume that we never have to deal
|
|
// with that many digits anyway.
|
|
if (sign != Sign::Negative) {
|
|
exponent = INT_MIN;
|
|
} else {
|
|
exponent = INT_MAX;
|
|
}
|
|
} else {
|
|
// Literal exponent is usable and fits in an int.
|
|
// However, `exponent + exponent_parser.number()` might overflow an int.
|
|
// This would result in the wrong sign of the exponent!
|
|
long long new_exponent = static_cast<long long>(exponent) + static_cast<long long>(exponent_parser.number());
|
|
if (new_exponent < INT_MIN) {
|
|
exponent = INT_MIN;
|
|
} else if (new_exponent > INT_MAX) {
|
|
exponent = INT_MAX;
|
|
} else {
|
|
exponent = static_cast<int>(new_exponent);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Parsing finished. now we only have to compute the result.
|
|
if (endptr)
|
|
*endptr = const_cast<char*>(parse_ptr);
|
|
|
|
// If `digits` is zero, we don't even have to look at `exponent`.
|
|
if (digits.number() == 0) {
|
|
if (sign != Sign::Negative) {
|
|
return 0.0;
|
|
} else {
|
|
return -0.0;
|
|
}
|
|
}
|
|
|
|
// Deal with extreme exponents.
|
|
// The smallest normal is 2^-1022.
|
|
// The smallest denormal is 2^-1074.
|
|
// The largest number in `digits` is 2^63 - 1.
|
|
// Therefore, if "base^exponent" is smaller than 2^-(1074+63), the result is 0.0 anyway.
|
|
// This threshold is roughly 5.3566 * 10^-343.
|
|
// So if the resulting exponent is -344 or lower (closer to -inf),
|
|
// the result is 0.0 anyway.
|
|
// We only need to avoid false positives, so we can ignore base 16.
|
|
if (exponent <= -344) {
|
|
errno = ERANGE;
|
|
// Definitely can't be represented more precisely.
|
|
// I lied, sometimes the result is +0.0, and sometimes -0.0.
|
|
if (sign != Sign::Negative) {
|
|
return 0.0;
|
|
} else {
|
|
return -0.0;
|
|
}
|
|
}
|
|
// The largest normal is 2^+1024-eps.
|
|
// The smallest number in `digits` is 1.
|
|
// Therefore, if "base^exponent" is 2^+1024, the result is INF anyway.
|
|
// This threshold is roughly 1.7977 * 10^-308.
|
|
// So if the resulting exponent is +309 or higher,
|
|
// the result is INF anyway.
|
|
// We only need to avoid false positives, so we can ignore base 16.
|
|
if (exponent >= 309) {
|
|
errno = ERANGE;
|
|
// Definitely can't be represented more precisely.
|
|
// I lied, sometimes the result is +INF, and sometimes -INF.
|
|
if (sign != Sign::Negative) {
|
|
return __builtin_huge_val();
|
|
} else {
|
|
return -__builtin_huge_val();
|
|
}
|
|
}
|
|
|
|
// TODO: If `exponent` is large, this could be made faster.
|
|
double value = digits.number();
|
|
if (exponent < 0) {
|
|
exponent = -exponent;
|
|
for (int i = 0; i < exponent; ++i) {
|
|
value /= base;
|
|
}
|
|
if (value == -0.0 || value == +0.0) {
|
|
errno = ERANGE;
|
|
}
|
|
} else if (exponent > 0) {
|
|
for (int i = 0; i < exponent; ++i) {
|
|
value *= base;
|
|
}
|
|
if (value == -__builtin_huge_val() || value == +__builtin_huge_val()) {
|
|
errno = ERANGE;
|
|
}
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
long double strtold(const char* str, char** endptr)
|
|
{
|
|
assert(sizeof(double) == sizeof(long double));
|
|
return strtod(str, endptr);
|
|
}
|
|
|
|
float strtof(const char* str, char** endptr)
|
|
{
|
|
return strtod(str, endptr);
|
|
}
|
|
|
|
double atof(const char* str)
|
|
{
|
|
return strtod(str, nullptr);
|
|
}
|
|
|
|
int atoi(const char* str)
|
|
{
|
|
size_t len = strlen(str);
|
|
int value = 0;
|
|
bool isNegative = false;
|
|
for (size_t i = 0; i < len; ++i) {
|
|
if (i == 0 && str[0] == '-') {
|
|
isNegative = true;
|
|
continue;
|
|
}
|
|
if (str[i] < '0' || str[i] > '9')
|
|
return value;
|
|
value = value * 10;
|
|
value += str[i] - '0';
|
|
}
|
|
return isNegative ? -value : value;
|
|
}
|
|
|
|
long atol(const char* str)
|
|
{
|
|
static_assert(sizeof(int) == sizeof(long));
|
|
return atoi(str);
|
|
}
|
|
|
|
long long atoll(const char* str)
|
|
{
|
|
dbgprintf("FIXME(Libc): atoll('%s') passing through to atol()\n", str);
|
|
return atol(str);
|
|
}
|
|
|
|
static char ptsname_buf[32];
|
|
char* ptsname(int fd)
|
|
{
|
|
if (ptsname_r(fd, ptsname_buf, sizeof(ptsname_buf)) < 0)
|
|
return nullptr;
|
|
return ptsname_buf;
|
|
}
|
|
|
|
int ptsname_r(int fd, char* buffer, size_t size)
|
|
{
|
|
int rc = syscall(SC_ptsname_r, fd, buffer, size);
|
|
__RETURN_WITH_ERRNO(rc, rc, -1);
|
|
}
|
|
|
|
static unsigned long s_next_rand = 1;
|
|
|
|
int rand()
|
|
{
|
|
s_next_rand = s_next_rand * 1103515245 + 12345;
|
|
return ((unsigned)(s_next_rand / ((RAND_MAX + 1) * 2)) % (RAND_MAX + 1));
|
|
}
|
|
|
|
void srand(unsigned seed)
|
|
{
|
|
s_next_rand = seed;
|
|
}
|
|
|
|
int abs(int i)
|
|
{
|
|
return i < 0 ? -i : i;
|
|
}
|
|
|
|
long int random()
|
|
{
|
|
return rand();
|
|
}
|
|
|
|
void srandom(unsigned seed)
|
|
{
|
|
srand(seed);
|
|
}
|
|
|
|
int system(const char* command)
|
|
{
|
|
if (!command)
|
|
return 1;
|
|
|
|
auto child = fork();
|
|
if (child < 0)
|
|
return -1;
|
|
|
|
if (!child) {
|
|
int rc = execl("/bin/sh", "sh", "-c", command, nullptr);
|
|
ASSERT(rc < 0);
|
|
perror("execl");
|
|
exit(127);
|
|
}
|
|
int wstatus;
|
|
waitpid(child, &wstatus, 0);
|
|
return WEXITSTATUS(wstatus);
|
|
}
|
|
|
|
char* mktemp(char* pattern)
|
|
{
|
|
if (__generate_unique_filename(pattern) < 0)
|
|
pattern[0] = '\0';
|
|
|
|
return pattern;
|
|
}
|
|
|
|
int mkstemp(char* pattern)
|
|
{
|
|
char* path = mktemp(pattern);
|
|
|
|
int fd = open(path, O_RDWR | O_CREAT | O_EXCL, S_IRUSR | S_IWUSR); // I'm using the flags I saw glibc using.
|
|
if (fd >= 0)
|
|
return fd;
|
|
|
|
return -1;
|
|
}
|
|
|
|
char* mkdtemp(char* pattern)
|
|
{
|
|
if (__generate_unique_filename(pattern) < 0)
|
|
return nullptr;
|
|
|
|
if (mkdir(pattern, 0700) < 0)
|
|
return nullptr;
|
|
|
|
return pattern;
|
|
}
|
|
|
|
void* bsearch(const void* key, const void* base, size_t nmemb, size_t size, int (*compar)(const void*, const void*))
|
|
{
|
|
int low = 0;
|
|
int high = nmemb - 1;
|
|
while (low <= high) {
|
|
int middle = (low + high) / 2;
|
|
void* middle_memb = const_cast<char*>((const char*)base + middle * size);
|
|
int comparison = compar(key, middle_memb);
|
|
if (comparison < 0)
|
|
high = middle - 1;
|
|
else if (comparison > 0)
|
|
low = middle + 1;
|
|
else
|
|
return middle_memb;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
div_t div(int numerator, int denominator)
|
|
{
|
|
div_t result;
|
|
result.quot = numerator / denominator;
|
|
result.rem = numerator % denominator;
|
|
|
|
if (numerator >= 0 && result.rem < 0) {
|
|
result.quot++;
|
|
result.rem -= denominator;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
ldiv_t ldiv(long numerator, long denominator)
|
|
{
|
|
ldiv_t result;
|
|
result.quot = numerator / denominator;
|
|
result.rem = numerator % denominator;
|
|
|
|
if (numerator >= 0 && result.rem < 0) {
|
|
result.quot++;
|
|
result.rem -= denominator;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
size_t mbstowcs(wchar_t*, const char*, size_t)
|
|
{
|
|
ASSERT_NOT_REACHED();
|
|
}
|
|
|
|
size_t mbtowc(wchar_t* wch, const char* data, size_t data_size)
|
|
{
|
|
// FIXME: This needs a real implementation.
|
|
UNUSED_PARAM(data_size);
|
|
|
|
if (wch && data) {
|
|
*wch = *data;
|
|
return 1;
|
|
}
|
|
|
|
if (!wch && data) {
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int wctomb(char*, wchar_t)
|
|
{
|
|
ASSERT_NOT_REACHED();
|
|
}
|
|
|
|
size_t wcstombs(char* dest, const wchar_t* src, size_t max)
|
|
{
|
|
char* originalDest = dest;
|
|
while ((size_t)(dest - originalDest) < max) {
|
|
StringView v { (const char*)src, sizeof(wchar_t) };
|
|
|
|
// FIXME: dependent on locale, for now utf-8 is supported.
|
|
Utf8View utf8 { v };
|
|
if (*utf8.begin() == '\0') {
|
|
*dest = '\0';
|
|
return (size_t)(dest - originalDest); // Exclude null character in returned size
|
|
}
|
|
|
|
for (auto byte : utf8) {
|
|
if (byte != '\0')
|
|
*dest++ = byte;
|
|
}
|
|
++src;
|
|
}
|
|
return max;
|
|
}
|
|
|
|
long strtol(const char* str, char** endptr, int base)
|
|
{
|
|
return strtol_impl<long, LONG_MIN, LONG_MAX>(str, endptr, base);
|
|
}
|
|
|
|
unsigned long strtoul(const char* str, char** endptr, int base)
|
|
{
|
|
auto value = strtol(str, endptr, base);
|
|
ASSERT(value >= 0);
|
|
return value;
|
|
}
|
|
|
|
long long strtoll(const char* str, char** endptr, int base)
|
|
{
|
|
return strtol_impl<long long, LONG_LONG_MIN, LONG_LONG_MAX>(str, endptr, base);
|
|
}
|
|
|
|
unsigned long long strtoull(const char* str, char** endptr, int base)
|
|
{
|
|
auto value = strtoll(str, endptr, base);
|
|
ASSERT(value >= 0);
|
|
return value;
|
|
}
|
|
|
|
// Serenity's PRNG is not cryptographically secure. Do not rely on this for
|
|
// any real crypto! These functions (for now) are for compatibility.
|
|
// TODO: In the future, rand can be made determinstic and this not.
|
|
uint32_t arc4random(void)
|
|
{
|
|
char buf[4];
|
|
syscall(SC_getrandom, buf, 4, 0);
|
|
return *(uint32_t*)buf;
|
|
}
|
|
|
|
void arc4random_buf(void* buffer, size_t buffer_size)
|
|
{
|
|
// arc4random_buf should never fail, but user supplied buffers could fail.
|
|
// However, if the user passes a garbage buffer, that's on them.
|
|
syscall(SC_getrandom, buffer, buffer_size, 0);
|
|
}
|
|
|
|
uint32_t arc4random_uniform(uint32_t max_bounds)
|
|
{
|
|
// XXX: Should actually apply special rules for uniformity; avoid what is
|
|
// called "modulo bias".
|
|
return arc4random() % max_bounds;
|
|
}
|
|
|
|
char* realpath(const char* pathname, char* buffer)
|
|
{
|
|
if (!pathname) {
|
|
errno = EFAULT;
|
|
return nullptr;
|
|
}
|
|
size_t size = PATH_MAX;
|
|
if (buffer == nullptr)
|
|
buffer = (char*)malloc(size);
|
|
Syscall::SC_realpath_params params { { pathname, strlen(pathname) }, { buffer, size } };
|
|
int rc = syscall(SC_realpath, ¶ms);
|
|
if (rc < 0) {
|
|
errno = -rc;
|
|
return nullptr;
|
|
}
|
|
errno = 0;
|
|
return buffer;
|
|
}
|
|
|
|
int posix_openpt(int flags)
|
|
{
|
|
if (flags & ~(O_RDWR | O_NOCTTY | O_CLOEXEC)) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
return open("/dev/ptmx", flags);
|
|
}
|
|
|
|
int grantpt(int fd)
|
|
{
|
|
(void)fd;
|
|
return 0;
|
|
}
|
|
|
|
int unlockpt(int fd)
|
|
{
|
|
(void)fd;
|
|
return 0;
|
|
}
|
|
}
|