ladybird/Libraries/LibPthread/pthread.cpp
Tom 5f51d85184 Kernel: Improve time keeping and dramatically reduce interrupt load
This implements a number of changes related to time:
* If a HPET is present, it is now used only as a system timer, unless
  the Local APIC timer is used (in which case the HPET timer will not
  trigger any interrupts at all).
* If a HPET is present, the current time can now be as accurate as the
  chip can be, independently from the system timer. We now query the
  HPET main counter for the current time in CPU #0's system timer
  interrupt, and use that as a base line. If a high precision time is
  queried, that base line is used in combination with quering the HPET
  timer directly, which should give a much more accurate time stamp at
  the expense of more overhead. For faster time stamps, the more coarse
  value based on the last interrupt will be returned. This also means
  that any missed interrupts should not cause the time to drift.
* The default system interrupt rate is reduced to about 250 per second.
* Fix calculation of Thread CPU usage by using the amount of ticks they
  used rather than the number of times a context switch happened.
* Implement CLOCK_REALTIME_COARSE and CLOCK_MONOTONIC_COARSE and use it
  for most cases where precise timestamps are not needed.
2020-12-21 18:26:12 +01:00

610 lines
18 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/Assertions.h>
#include <AK/Atomic.h>
#include <AK/StdLibExtras.h>
#include <Kernel/API/Syscall.h>
#include <limits.h>
#include <pthread.h>
#include <serenity.h>
#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <sys/mman.h>
#include <time.h>
#include <unistd.h>
//#define PTHREAD_DEBUG
namespace {
using PthreadAttrImpl = Syscall::SC_create_thread_params;
} // end anonymous namespace
constexpr size_t required_stack_alignment = 4 * MiB;
constexpr size_t highest_reasonable_guard_size = 32 * PAGE_SIZE;
constexpr size_t highest_reasonable_stack_size = 8 * MiB; // That's the default in Ubuntu?
#define __RETURN_PTHREAD_ERROR(rc) \
return ((rc) < 0 ? -(rc) : 0)
extern "C" {
static void* pthread_create_helper(void* (*routine)(void*), void* argument)
{
void* ret_val = routine(argument);
pthread_exit(ret_val);
return nullptr;
}
static int create_thread(pthread_t* thread, void* (*entry)(void*), void* argument, PthreadAttrImpl* thread_params)
{
void** stack = (void**)((uintptr_t)thread_params->m_stack_location + thread_params->m_stack_size);
auto push_on_stack = [&](void* data) {
stack--;
*stack = data;
thread_params->m_stack_size -= sizeof(void*);
};
// We set up the stack for pthread_create_helper.
// Note that we need to align the stack to 16B, accounting for
// the fact that we also push 8 bytes.
while (((uintptr_t)stack - 8) % 16 != 0)
push_on_stack(nullptr);
push_on_stack(argument);
push_on_stack((void*)entry);
ASSERT((uintptr_t)stack % 16 == 0);
// Push a fake return address
push_on_stack(nullptr);
int rc = syscall(SC_create_thread, pthread_create_helper, thread_params);
if (rc >= 0)
*thread = rc;
__RETURN_PTHREAD_ERROR(rc);
}
[[noreturn]] static void exit_thread(void* code)
{
syscall(SC_exit_thread, code);
ASSERT_NOT_REACHED();
}
int pthread_self()
{
return gettid();
}
int pthread_create(pthread_t* thread, pthread_attr_t* attributes, void* (*start_routine)(void*), void* argument_to_start_routine)
{
if (!thread)
return -EINVAL;
PthreadAttrImpl default_attributes {};
PthreadAttrImpl** arg_attributes = reinterpret_cast<PthreadAttrImpl**>(attributes);
PthreadAttrImpl* used_attributes = arg_attributes ? *arg_attributes : &default_attributes;
if (!used_attributes->m_stack_location) {
// adjust stack size, user might have called setstacksize, which has no restrictions on size/alignment
if (0 != (used_attributes->m_stack_size % required_stack_alignment))
used_attributes->m_stack_size += required_stack_alignment - (used_attributes->m_stack_size % required_stack_alignment);
used_attributes->m_stack_location = mmap_with_name(nullptr, used_attributes->m_stack_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_STACK, 0, 0, "Thread stack");
if (!used_attributes->m_stack_location)
return -1;
}
#ifdef PTHREAD_DEBUG
dbgprintf("pthread_create: Creating thread with attributes at %p, detach state %s, priority %d, guard page size %d, stack size %d, stack location %p\n",
used_attributes,
(PTHREAD_CREATE_JOINABLE == used_attributes->m_detach_state) ? "joinable" : "detached",
used_attributes->m_schedule_priority,
used_attributes->m_guard_page_size,
used_attributes->m_stack_size,
used_attributes->m_stack_location);
#endif
return create_thread(thread, start_routine, argument_to_start_routine, used_attributes);
}
void pthread_exit(void* value_ptr)
{
exit_thread(value_ptr);
}
int pthread_join(pthread_t thread, void** exit_value_ptr)
{
int rc = syscall(SC_join_thread, thread, exit_value_ptr);
__RETURN_PTHREAD_ERROR(rc);
}
int pthread_detach(pthread_t thread)
{
int rc = syscall(SC_detach_thread, thread);
__RETURN_PTHREAD_ERROR(rc);
}
int pthread_sigmask(int how, const sigset_t* set, sigset_t* old_set)
{
if (sigprocmask(how, set, old_set))
return errno;
return 0;
}
int pthread_mutex_init(pthread_mutex_t* mutex, const pthread_mutexattr_t* attributes)
{
mutex->lock = 0;
mutex->owner = 0;
mutex->level = 0;
mutex->type = attributes ? attributes->type : PTHREAD_MUTEX_NORMAL;
return 0;
}
int pthread_mutex_destroy(pthread_mutex_t*)
{
return 0;
}
int pthread_mutex_lock(pthread_mutex_t* mutex)
{
auto& atomic = reinterpret_cast<Atomic<u32>&>(mutex->lock);
pthread_t this_thread = pthread_self();
for (;;) {
u32 expected = false;
if (!atomic.compare_exchange_strong(expected, true, AK::memory_order_acq_rel)) {
if (mutex->type == PTHREAD_MUTEX_RECURSIVE && mutex->owner == this_thread) {
mutex->level++;
return 0;
}
sched_yield();
continue;
}
mutex->owner = this_thread;
mutex->level = 0;
return 0;
}
}
int pthread_mutex_trylock(pthread_mutex_t* mutex)
{
auto& atomic = reinterpret_cast<Atomic<u32>&>(mutex->lock);
u32 expected = false;
if (!atomic.compare_exchange_strong(expected, true, AK::memory_order_acq_rel)) {
if (mutex->type == PTHREAD_MUTEX_RECURSIVE && mutex->owner == pthread_self()) {
mutex->level++;
return 0;
}
return EBUSY;
}
mutex->owner = pthread_self();
mutex->level = 0;
return 0;
}
int pthread_mutex_unlock(pthread_mutex_t* mutex)
{
if (mutex->type == PTHREAD_MUTEX_RECURSIVE && mutex->level > 0) {
mutex->level--;
return 0;
}
mutex->owner = 0;
mutex->lock = 0;
return 0;
}
int pthread_mutexattr_init(pthread_mutexattr_t* attr)
{
attr->type = PTHREAD_MUTEX_NORMAL;
return 0;
}
int pthread_mutexattr_destroy(pthread_mutexattr_t*)
{
return 0;
}
int pthread_mutexattr_settype(pthread_mutexattr_t* attr, int type)
{
if (!attr)
return EINVAL;
if (type != PTHREAD_MUTEX_NORMAL && type != PTHREAD_MUTEX_RECURSIVE)
return EINVAL;
attr->type = type;
return 0;
}
int pthread_attr_init(pthread_attr_t* attributes)
{
auto* impl = new PthreadAttrImpl {};
*attributes = impl;
#ifdef PTHREAD_DEBUG
dbgprintf("pthread_attr_init: New thread attributes at %p, detach state %s, priority %d, guard page size %d, stack size %d, stack location %p\n",
impl,
(PTHREAD_CREATE_JOINABLE == impl->m_detach_state) ? "joinable" : "detached",
impl->m_schedule_priority,
impl->m_guard_page_size,
impl->m_stack_size,
impl->m_stack_location);
#endif
return 0;
}
int pthread_attr_destroy(pthread_attr_t* attributes)
{
auto* attributes_impl = *(reinterpret_cast<PthreadAttrImpl**>(attributes));
delete attributes_impl;
return 0;
}
int pthread_attr_getdetachstate(const pthread_attr_t* attributes, int* p_detach_state)
{
auto* attributes_impl = *(reinterpret_cast<const PthreadAttrImpl* const*>(attributes));
if (!attributes_impl || !p_detach_state)
return EINVAL;
*p_detach_state = attributes_impl->m_detach_state;
return 0;
}
int pthread_attr_setdetachstate(pthread_attr_t* attributes, int detach_state)
{
auto* attributes_impl = *(reinterpret_cast<PthreadAttrImpl**>(attributes));
if (!attributes_impl)
return EINVAL;
if (detach_state != PTHREAD_CREATE_JOINABLE && detach_state != PTHREAD_CREATE_DETACHED)
return EINVAL;
attributes_impl->m_detach_state = detach_state;
#ifdef PTHREAD_DEBUG
dbgprintf("pthread_attr_setdetachstate: Thread attributes at %p, detach state %s, priority %d, guard page size %d, stack size %d, stack location %p\n",
attributes_impl,
(PTHREAD_CREATE_JOINABLE == attributes_impl->m_detach_state) ? "joinable" : "detached",
attributes_impl->m_schedule_priority,
attributes_impl->m_guard_page_size,
attributes_impl->m_stack_size,
attributes_impl->m_stack_location);
#endif
return 0;
}
int pthread_attr_getguardsize(const pthread_attr_t* attributes, size_t* p_guard_size)
{
auto* attributes_impl = *(reinterpret_cast<const PthreadAttrImpl* const*>(attributes));
if (!attributes_impl || !p_guard_size)
return EINVAL;
*p_guard_size = attributes_impl->m_reported_guard_page_size;
return 0;
}
int pthread_attr_setguardsize(pthread_attr_t* attributes, size_t guard_size)
{
auto* attributes_impl = *(reinterpret_cast<PthreadAttrImpl**>(attributes));
if (!attributes_impl)
return EINVAL;
size_t actual_guard_size = guard_size;
// round up
if (0 != (guard_size % PAGE_SIZE))
actual_guard_size += PAGE_SIZE - (guard_size % PAGE_SIZE);
// what is the user even doing?
if (actual_guard_size > highest_reasonable_guard_size) {
return EINVAL;
}
attributes_impl->m_guard_page_size = actual_guard_size;
attributes_impl->m_reported_guard_page_size = guard_size; // POSIX, why?
#ifdef PTHREAD_DEBUG
dbgprintf("pthread_attr_setguardsize: Thread attributes at %p, detach state %s, priority %d, guard page size %d, stack size %d, stack location %p\n",
attributes_impl,
(PTHREAD_CREATE_JOINABLE == attributes_impl->m_detach_state) ? "joinable" : "detached",
attributes_impl->m_schedule_priority,
attributes_impl->m_guard_page_size,
attributes_impl->m_stack_size,
attributes_impl->m_stack_location);
#endif
return 0;
}
int pthread_attr_getschedparam(const pthread_attr_t* attributes, struct sched_param* p_sched_param)
{
auto* attributes_impl = *(reinterpret_cast<const PthreadAttrImpl* const*>(attributes));
if (!attributes_impl || !p_sched_param)
return EINVAL;
p_sched_param->sched_priority = attributes_impl->m_schedule_priority;
return 0;
}
int pthread_attr_setschedparam(pthread_attr_t* attributes, const struct sched_param* p_sched_param)
{
auto* attributes_impl = *(reinterpret_cast<PthreadAttrImpl**>(attributes));
if (!attributes_impl || !p_sched_param)
return EINVAL;
if (p_sched_param->sched_priority < THREAD_PRIORITY_MIN || p_sched_param->sched_priority > THREAD_PRIORITY_MAX)
return ENOTSUP;
attributes_impl->m_schedule_priority = p_sched_param->sched_priority;
#ifdef PTHREAD_DEBUG
dbgprintf("pthread_attr_setschedparam: Thread attributes at %p, detach state %s, priority %d, guard page size %d, stack size %d, stack location %p\n",
attributes_impl,
(PTHREAD_CREATE_JOINABLE == attributes_impl->m_detach_state) ? "joinable" : "detached",
attributes_impl->m_schedule_priority,
attributes_impl->m_guard_page_size,
attributes_impl->m_stack_size,
attributes_impl->m_stack_location);
#endif
return 0;
}
int pthread_attr_getstack(const pthread_attr_t* attributes, void** p_stack_ptr, size_t* p_stack_size)
{
auto* attributes_impl = *(reinterpret_cast<const PthreadAttrImpl* const*>(attributes));
if (!attributes_impl || !p_stack_ptr || !p_stack_size)
return EINVAL;
*p_stack_ptr = attributes_impl->m_stack_location;
*p_stack_size = attributes_impl->m_stack_size;
return 0;
}
int pthread_attr_setstack(pthread_attr_t* attributes, void* p_stack, size_t stack_size)
{
auto* attributes_impl = *(reinterpret_cast<PthreadAttrImpl**>(attributes));
if (!attributes_impl || !p_stack)
return EINVAL;
// Check for required alignment on size
if (0 != (stack_size % required_stack_alignment))
return EINVAL;
// FIXME: Check for required alignment on pointer?
// FIXME: "[EACCES] The stack page(s) described by stackaddr and stacksize are not both readable and writable by the thread."
// Have to check that the whole range is mapped to this process/thread? Can we defer this to create_thread?
attributes_impl->m_stack_size = stack_size;
attributes_impl->m_stack_location = p_stack;
#ifdef PTHREAD_DEBUG
dbgprintf("pthread_attr_setstack: Thread attributes at %p, detach state %s, priority %d, guard page size %d, stack size %d, stack location %p\n",
attributes_impl,
(PTHREAD_CREATE_JOINABLE == attributes_impl->m_detach_state) ? "joinable" : "detached",
attributes_impl->m_schedule_priority,
attributes_impl->m_guard_page_size,
attributes_impl->m_stack_size,
attributes_impl->m_stack_location);
#endif
return 0;
}
int pthread_attr_getstacksize(const pthread_attr_t* attributes, size_t* p_stack_size)
{
auto* attributes_impl = *(reinterpret_cast<const PthreadAttrImpl* const*>(attributes));
if (!attributes_impl || !p_stack_size)
return EINVAL;
*p_stack_size = attributes_impl->m_stack_size;
return 0;
}
int pthread_attr_setstacksize(pthread_attr_t* attributes, size_t stack_size)
{
auto* attributes_impl = *(reinterpret_cast<PthreadAttrImpl**>(attributes));
if (!attributes_impl)
return EINVAL;
if ((stack_size < PTHREAD_STACK_MIN) || stack_size > highest_reasonable_stack_size)
return EINVAL;
attributes_impl->m_stack_size = stack_size;
#ifdef PTHREAD_DEBUG
dbgprintf("pthread_attr_setstacksize: Thread attributes at %p, detach state %s, priority %d, guard page size %d, stack size %d, stack location %p\n",
attributes_impl,
(PTHREAD_CREATE_JOINABLE == attributes_impl->m_detach_state) ? "joinable" : "detached",
attributes_impl->m_schedule_priority,
attributes_impl->m_guard_page_size,
attributes_impl->m_stack_size,
attributes_impl->m_stack_location);
#endif
return 0;
}
int pthread_getschedparam([[maybe_unused]] pthread_t thread, [[maybe_unused]] int* policy, [[maybe_unused]] struct sched_param* param)
{
return 0;
}
int pthread_setschedparam([[maybe_unused]] pthread_t thread, [[maybe_unused]] int policy, [[maybe_unused]] const struct sched_param* param)
{
return 0;
}
int pthread_cond_init(pthread_cond_t* cond, const pthread_condattr_t* attr)
{
cond->value = 0;
cond->previous = 0;
cond->clockid = attr ? attr->clockid : CLOCK_MONOTONIC_COARSE;
return 0;
}
int pthread_cond_destroy(pthread_cond_t*)
{
return 0;
}
static int cond_wait(pthread_cond_t* cond, pthread_mutex_t* mutex, const struct timespec* abstime)
{
i32 value = cond->value;
cond->previous = value;
pthread_mutex_unlock(mutex);
int rc = futex(&cond->value, FUTEX_WAIT, value, abstime);
pthread_mutex_lock(mutex);
return rc;
}
int pthread_cond_wait(pthread_cond_t* cond, pthread_mutex_t* mutex)
{
int rc = cond_wait(cond, mutex, nullptr);
ASSERT(rc == 0);
return 0;
}
int pthread_condattr_init(pthread_condattr_t* attr)
{
attr->clockid = CLOCK_MONOTONIC_COARSE;
return 0;
}
int pthread_condattr_destroy(pthread_condattr_t*)
{
return 0;
}
int pthread_condattr_setclock(pthread_condattr_t* attr, clockid_t clock)
{
attr->clockid = clock;
return 0;
}
int pthread_cond_timedwait(pthread_cond_t* cond, pthread_mutex_t* mutex, const struct timespec* abstime)
{
return cond_wait(cond, mutex, abstime);
}
int pthread_cond_signal(pthread_cond_t* cond)
{
u32 value = cond->previous + 1;
cond->value = value;
int rc = futex(&cond->value, FUTEX_WAKE, 1, nullptr);
ASSERT(rc == 0);
return 0;
}
int pthread_cond_broadcast(pthread_cond_t* cond)
{
u32 value = cond->previous + 1;
cond->value = value;
int rc = futex(&cond->value, FUTEX_WAKE, INT32_MAX, nullptr);
ASSERT(rc == 0);
return 0;
}
static const int max_keys = 64;
typedef void (*KeyDestructor)(void*);
struct KeyTable {
// FIXME: Invoke key destructors on thread exit!
KeyDestructor destructors[64] { nullptr };
int next { 0 };
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
};
struct SpecificTable {
void* values[64] { nullptr };
};
static KeyTable s_keys;
__thread SpecificTable t_specifics;
int pthread_key_create(pthread_key_t* key, KeyDestructor destructor)
{
int ret = 0;
pthread_mutex_lock(&s_keys.mutex);
if (s_keys.next >= max_keys) {
ret = ENOMEM;
} else {
*key = s_keys.next++;
s_keys.destructors[*key] = destructor;
ret = 0;
}
pthread_mutex_unlock(&s_keys.mutex);
return ret;
}
void* pthread_getspecific(pthread_key_t key)
{
if (key < 0)
return nullptr;
if (key >= max_keys)
return nullptr;
return t_specifics.values[key];
}
int pthread_setspecific(pthread_key_t key, const void* value)
{
if (key < 0)
return EINVAL;
if (key >= max_keys)
return EINVAL;
t_specifics.values[key] = const_cast<void*>(value);
return 0;
}
int pthread_setname_np(pthread_t thread, const char* name)
{
if (!name)
return EFAULT;
int rc = syscall(SC_set_thread_name, thread, name, strlen(name));
__RETURN_PTHREAD_ERROR(rc);
}
int pthread_getname_np(pthread_t thread, char* buffer, size_t buffer_size)
{
int rc = syscall(SC_get_thread_name, thread, buffer, buffer_size);
__RETURN_PTHREAD_ERROR(rc);
}
} // extern "C"