mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2025-04-26 06:18:59 +00:00
810 lines
36 KiB
C++
810 lines
36 KiB
C++
/*
|
|
* Copyright (c) 2022, Matthew Olsson <mattco@serenityos.org>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/ByteBuffer.h>
|
|
#include <AK/Debug.h>
|
|
#include <AK/Random.h>
|
|
#include <AK/UFixedBigIntDivision.h>
|
|
#include <LibCrypto/Cipher/AES.h>
|
|
#include <LibCrypto/Hash/HashManager.h>
|
|
#include <LibCrypto/Hash/MD5.h>
|
|
#include <LibPDF/CommonNames.h>
|
|
#include <LibPDF/Document.h>
|
|
#include <LibPDF/Encryption.h>
|
|
|
|
namespace PDF {
|
|
|
|
static constexpr Array<u8, 32> standard_encryption_key_padding_bytes = {
|
|
0x28,
|
|
0xBF,
|
|
0x4E,
|
|
0x5E,
|
|
0x4E,
|
|
0x75,
|
|
0x8A,
|
|
0x41,
|
|
0x64,
|
|
0x00,
|
|
0x4E,
|
|
0x56,
|
|
0xFF,
|
|
0xFA,
|
|
0x01,
|
|
0x08,
|
|
0x2E,
|
|
0x2E,
|
|
0x00,
|
|
0xB6,
|
|
0xD0,
|
|
0x68,
|
|
0x3E,
|
|
0x80,
|
|
0x2F,
|
|
0x0C,
|
|
0xA9,
|
|
0xFE,
|
|
0x64,
|
|
0x53,
|
|
0x69,
|
|
0x7A,
|
|
};
|
|
|
|
PDFErrorOr<NonnullRefPtr<SecurityHandler>> SecurityHandler::create(Document* document, NonnullRefPtr<DictObject> encryption_dict)
|
|
{
|
|
auto filter = TRY(encryption_dict->get_name(document, CommonNames::Filter))->name();
|
|
if (filter == "Standard")
|
|
return TRY(StandardSecurityHandler::create(document, encryption_dict));
|
|
|
|
dbgln("Unrecognized security handler filter: {}", filter);
|
|
TODO();
|
|
}
|
|
|
|
struct CryptFilter {
|
|
CryptFilterMethod method { CryptFilterMethod::None };
|
|
int length_in_bits { 0 };
|
|
};
|
|
|
|
static PDFErrorOr<CryptFilter> parse_v4_or_newer_crypt(Document* document, NonnullRefPtr<DictObject> encryption_dict, DeprecatedString filter)
|
|
{
|
|
// See 3.5 Encryption, Table 3.18 "Entries common to all encryption dictionaries" for StmF and StrF,
|
|
// and 3.5.4 Crypt Filters in the 1.7 spec, in particular Table 3.22 "Entries common to all crypt filter dictionaries".
|
|
|
|
if (filter == "Identity")
|
|
return CryptFilter {};
|
|
|
|
// "Every crypt filter used in the document must have an entry in this dictionary"
|
|
if (!encryption_dict->contains(CommonNames::CF))
|
|
return Error(Error::Type::Parse, "Missing CF key in encryption dict for v4");
|
|
|
|
auto crypt_filter_dicts = TRY(encryption_dict->get_dict(document, CommonNames::CF));
|
|
if (!crypt_filter_dicts->contains(filter))
|
|
return Error(Error::Type::Parse, "Missing key in CF dict for v4");
|
|
|
|
auto crypt_filter_dict = TRY(crypt_filter_dicts->get_dict(document, filter));
|
|
|
|
// "Default value: None"
|
|
if (!crypt_filter_dict->contains(CommonNames::CFM))
|
|
return CryptFilter {};
|
|
auto crypt_filter_method = TRY(crypt_filter_dict->get_name(document, CommonNames::CFM))->name();
|
|
if (crypt_filter_method == "None")
|
|
return CryptFilter {};
|
|
|
|
// Table 3.22 in the 1.7 spec says this is optional but doesn't give a default value.
|
|
// But the 2.0 spec (ISO 32000 2020) says it's required.
|
|
// The 2.0 spec also says "The standard security handler expresses the Length entry in bytes" (!).
|
|
if (!crypt_filter_dict->contains(CommonNames::Length))
|
|
return Error(Error::Type::Parse, "crypt filter /Length missing");
|
|
auto length_in_bits = crypt_filter_dict->get_value(CommonNames::Length).get<int>() * 8;
|
|
|
|
// NOTE: /CFM's /AuthEvent should be ignored for /StmF, /StrF.
|
|
|
|
if (crypt_filter_method == "V2")
|
|
return CryptFilter { CryptFilterMethod::V2, length_in_bits };
|
|
|
|
if (crypt_filter_method == "AESV2") {
|
|
// "the AES algorithm in Cipher Block Chaining (CBC) mode with a 16-byte block size [...] The key size (Length) shall be 128 bits."
|
|
if (length_in_bits != 128)
|
|
return Error(Error::Type::Parse, "Unexpected bit size for AESV2");
|
|
return CryptFilter { CryptFilterMethod::AESV2, length_in_bits };
|
|
}
|
|
|
|
if (crypt_filter_method == "AESV3") {
|
|
// "the AES-256 algorithm in Cipher Block Chaining (CBC) with padding mode with a 16-byte block size [...] The key size (Length) shall be 256 bits."
|
|
if (length_in_bits != 256)
|
|
return Error(Error::Type::Parse, "Unexpected bit size for AESV3");
|
|
return CryptFilter { CryptFilterMethod::AESV3, length_in_bits };
|
|
}
|
|
|
|
return Error(Error::Type::Parse, "Unknown crypt filter method");
|
|
}
|
|
|
|
PDFErrorOr<NonnullRefPtr<StandardSecurityHandler>> StandardSecurityHandler::create(Document* document, NonnullRefPtr<DictObject> encryption_dict)
|
|
{
|
|
auto revision = encryption_dict->get_value(CommonNames::R).get<int>();
|
|
auto o = TRY(encryption_dict->get_string(document, CommonNames::O))->string();
|
|
auto u = TRY(encryption_dict->get_string(document, CommonNames::U))->string();
|
|
auto p = encryption_dict->get_value(CommonNames::P).get<int>();
|
|
|
|
// V, number: [...] 1 "Algorithm 1 Encryption of data using the RC4 or AES algorithms" in 7.6.2,
|
|
// "General Encryption Algorithm," with an encryption key length of 40 bits, see below [...]
|
|
// Length, integer: (Optional; PDF 1.4; only if V is 2 or 3) The length of the encryption key, in bits.
|
|
// The value shall be a multiple of 8, in the range 40 to 128. Default value: 40.
|
|
auto v = encryption_dict->get_value(CommonNames::V).get<int>();
|
|
|
|
auto method = CryptFilterMethod::V2;
|
|
size_t length_in_bits = 40;
|
|
|
|
if (v >= 4) {
|
|
// "Default value: Identity"
|
|
DeprecatedString stream_filter = "Identity";
|
|
if (encryption_dict->contains(CommonNames::StmF))
|
|
stream_filter = TRY(encryption_dict->get_name(document, CommonNames::StmF))->name();
|
|
|
|
DeprecatedString string_filter = "Identity";
|
|
if (encryption_dict->contains(CommonNames::StrF))
|
|
string_filter = TRY(encryption_dict->get_name(document, CommonNames::StrF))->name();
|
|
|
|
if (stream_filter != string_filter)
|
|
return Error(Error::Type::Parse, "Can't handle StmF and StrF being different");
|
|
|
|
auto crypt_filter = TRY(parse_v4_or_newer_crypt(document, encryption_dict, stream_filter));
|
|
method = crypt_filter.method;
|
|
length_in_bits = crypt_filter.length_in_bits;
|
|
} else if (encryption_dict->contains(CommonNames::Length))
|
|
length_in_bits = encryption_dict->get_value(CommonNames::Length).get<int>();
|
|
else if (v != 1)
|
|
return Error(Error::Type::Parse, "Can't determine length of encryption key");
|
|
|
|
auto length = length_in_bits / 8;
|
|
|
|
dbgln_if(PDF_DEBUG, "encryption v{}, method {}, length {}", v, (int)method, length);
|
|
|
|
bool encrypt_metadata = true;
|
|
if (encryption_dict->contains(CommonNames::EncryptMetadata))
|
|
encryption_dict->get_value(CommonNames::EncryptMetadata).get<bool>();
|
|
|
|
DeprecatedString oe, ue, perms;
|
|
if (v >= 5) {
|
|
oe = TRY(encryption_dict->get_string(document, CommonNames::OE))->string();
|
|
ue = TRY(encryption_dict->get_string(document, CommonNames::UE))->string();
|
|
perms = TRY(encryption_dict->get_string(document, CommonNames::Perms))->string();
|
|
|
|
// O and U are 48 bytes for V == 5, but some files pad them with nul bytes to 127 bytes. So trim them, if necessary.
|
|
if (o.length() > 48)
|
|
o = o.substring(0, 48);
|
|
if (u.length() > 48)
|
|
u = u.substring(0, 48);
|
|
|
|
if (o.length() != 48)
|
|
return Error(Error::Type::Parse, "Invalid O size");
|
|
if (oe.length() != 32)
|
|
return Error(Error::Type::Parse, "Invalid OE size");
|
|
if (u.length() != 48)
|
|
return Error(Error::Type::Parse, "Invalid U size");
|
|
if (ue.length() != 32)
|
|
return Error(Error::Type::Parse, "Invalid UE size");
|
|
if (perms.length() != 16)
|
|
return Error(Error::Type::Parse, "Invalid Perms size");
|
|
}
|
|
|
|
return adopt_ref(*new StandardSecurityHandler(document, revision, o, oe, u, ue, perms, p, encrypt_metadata, length, method));
|
|
}
|
|
|
|
StandardSecurityHandler::StandardSecurityHandler(Document* document, size_t revision, DeprecatedString const& o_entry, DeprecatedString const& oe_entry, DeprecatedString const& u_entry, DeprecatedString const& ue_entry, DeprecatedString const& perms_entry, u32 flags, bool encrypt_metadata, size_t length, CryptFilterMethod method)
|
|
: m_document(document)
|
|
, m_revision(revision)
|
|
, m_o_entry(o_entry)
|
|
, m_oe_entry(oe_entry)
|
|
, m_u_entry(u_entry)
|
|
, m_ue_entry(ue_entry)
|
|
, m_perms_entry(perms_entry)
|
|
, m_flags(flags)
|
|
, m_encrypt_metadata(encrypt_metadata)
|
|
, m_length(length)
|
|
, m_method(method)
|
|
{
|
|
}
|
|
|
|
ByteBuffer StandardSecurityHandler::compute_user_password_value_r2(ByteBuffer password_string)
|
|
{
|
|
// Algorithm 4: Computing the encryption dictionary's U (user password)
|
|
// value (Security handlers of revision 2)
|
|
|
|
// a) Create an encryption key based on the user password string, as
|
|
// described in [Algorithm 2]
|
|
auto encryption_key = compute_encryption_key_r2_to_r5(password_string);
|
|
|
|
// b) Encrypt the 32-byte padding string shown in step (a) of [Algorithm 2],
|
|
// using an RC4 encryption function with the encryption key from the
|
|
// preceding step.
|
|
RC4 rc4(encryption_key);
|
|
auto output = rc4.encrypt(standard_encryption_key_padding_bytes);
|
|
|
|
// c) Store the result of step (b) as the value of the U entry in the
|
|
// encryption dictionary.
|
|
return output;
|
|
}
|
|
|
|
ByteBuffer StandardSecurityHandler::compute_user_password_value_r3_to_r5(ByteBuffer password_string)
|
|
{
|
|
// Algorithm 5: Computing the encryption dictionary's U (user password)
|
|
// value (Security handlers of revision 3 or greater)
|
|
|
|
// a) Create an encryption key based on the user password string, as
|
|
// described in [Algorithm 2]
|
|
auto encryption_key = compute_encryption_key_r2_to_r5(password_string);
|
|
|
|
// b) Initialize the MD5 hash function and pass the 32-byte padding string
|
|
// shown in step (a) of [Algorithm 2] as input to this function
|
|
Crypto::Hash::MD5 md5;
|
|
md5.update(standard_encryption_key_padding_bytes);
|
|
|
|
// e) Pass the first element of the file's file identifier array to the MD5
|
|
// hash function.
|
|
auto id_array = m_document->trailer()->get_array(m_document, CommonNames::ID).release_value_but_fixme_should_propagate_errors();
|
|
auto first_element_string = id_array->get_string_at(m_document, 0).release_value_but_fixme_should_propagate_errors()->string();
|
|
md5.update(first_element_string);
|
|
|
|
// d) Encrypt the 16-byte result of the hash, using an RC4 encryption function
|
|
// with the encryption key from step (a).
|
|
RC4 rc4(encryption_key);
|
|
auto out = md5.peek();
|
|
auto buffer = rc4.encrypt(out.bytes());
|
|
|
|
// e) Do the following 19 times:
|
|
//
|
|
// Take the output from the previous invocation of the RC4 function and pass
|
|
// it as input to a new invocation of the function; use an encryption key generated
|
|
// by taking each byte of the original encryption key obtained in step (a) and
|
|
// performing an XOR operation between the that byte and the single-byte value of
|
|
// the iteration counter (from 1 to 19).
|
|
auto new_encryption_key = ByteBuffer::create_uninitialized(encryption_key.size()).release_value_but_fixme_should_propagate_errors();
|
|
for (size_t i = 1; i <= 19; i++) {
|
|
for (size_t j = 0; j < encryption_key.size(); j++)
|
|
new_encryption_key[j] = encryption_key[j] ^ i;
|
|
|
|
RC4 new_rc4(new_encryption_key);
|
|
buffer = new_rc4.encrypt(buffer);
|
|
}
|
|
|
|
// f) Append 16 bytes of the arbitrary padding to the output from the final invocation
|
|
// of the RC4 function and store the 32-byte result as the value of the U entry in
|
|
// the encryption dictionary.
|
|
VERIFY(buffer.size() == 16);
|
|
for (size_t i = 0; i < 16; i++)
|
|
buffer.append(0xab);
|
|
|
|
return buffer;
|
|
}
|
|
|
|
bool StandardSecurityHandler::authenticate_user_password_r2_to_r5(StringView password_string)
|
|
{
|
|
// Algorithm 6: Authenticating the user password
|
|
|
|
// a) Perform all but the last step of [Algorithm 4] or [Algorithm 5] using the
|
|
// supplied password string.
|
|
ByteBuffer password_buffer = ByteBuffer::copy(password_string.bytes()).release_value_but_fixme_should_propagate_errors();
|
|
if (m_revision == 2) {
|
|
password_buffer = compute_user_password_value_r2(password_buffer);
|
|
} else {
|
|
password_buffer = compute_user_password_value_r3_to_r5(password_buffer);
|
|
}
|
|
|
|
// b) If the result of step (a) is equal to the value of the encryption
|
|
// dictionary's "U" entry (comparing the first 16 bytes in the case of security
|
|
// handlers of revision 3 or greater), the password supplied is the correct user
|
|
// password.
|
|
auto u_bytes = m_u_entry.bytes();
|
|
if (m_revision >= 3)
|
|
return u_bytes.slice(0, 16) == password_buffer.bytes().slice(0, 16);
|
|
return u_bytes == password_buffer.bytes();
|
|
}
|
|
|
|
bool StandardSecurityHandler::authenticate_user_password_r6_and_later(StringView password)
|
|
{
|
|
// ISO 32000 (PDF 2.0), 7.6.4.4.10 Algorithm 11: Authenticating the user password (Security handlers of
|
|
// revision 6)
|
|
|
|
// a) Test the password against the user key by computing the 32-byte hash using 7.6.4.3.4, "Algorithm 2.B:
|
|
// Computing a hash (revision 6 or later)" with an input string consisting of the UTF-8 password
|
|
// concatenated with the 8 bytes of User Validation Salt (see 7.6.4.4.7, "Algorithm 8: Computing the
|
|
// encryption dictionary's U (user password) and UE (user encryption) values (Security handlers of
|
|
// revision 6)"). If the 32- byte result matches the first 32 bytes of the U string, this is the user password.
|
|
ByteBuffer input;
|
|
input.append(password.bytes());
|
|
input.append(m_u_entry.bytes().slice(32, 8)); // See comment in compute_encryption_key_r6_and_later() re "Validation Salt".
|
|
auto hash = computing_a_hash_r6_and_later(input, password, HashKind::User);
|
|
|
|
return hash == m_u_entry.bytes().trim(32);
|
|
}
|
|
|
|
bool StandardSecurityHandler::authenticate_owner_password_r6_and_later(StringView password)
|
|
{
|
|
// ISO 32000 (PDF 2.0), 7.6.4.4.11 Algorithm 12: Authenticating the owner password (Security handlers of
|
|
// revision 6)
|
|
|
|
// a) Test the password against the owner key by computing the 32-byte hash using algorithm 2.B with an
|
|
// input string consisting of the UTF-8 password concatenated with the 8 bytes of Owner Validation Salt
|
|
// and the 48 byte U string. If the 32- byte result matches the first 32 bytes of the O string, this is the owner
|
|
// password.
|
|
ByteBuffer input;
|
|
input.append(password.bytes());
|
|
input.append(m_o_entry.bytes().slice(32, 8)); // See comment in compute_encryption_key_r6_and_later() re "Validation Salt".
|
|
input.append(m_u_entry.bytes());
|
|
auto hash = computing_a_hash_r6_and_later(input, password, HashKind::Owner);
|
|
|
|
return hash == m_o_entry.bytes().trim(32);
|
|
}
|
|
|
|
bool StandardSecurityHandler::try_provide_user_password(StringView password_string)
|
|
{
|
|
bool has_user_password;
|
|
if (m_revision >= 6) {
|
|
// This checks both owner and user password.
|
|
auto password = ByteBuffer::copy(password_string.bytes()).release_value_but_fixme_should_propagate_errors();
|
|
has_user_password = compute_encryption_key_r6_and_later(move(password));
|
|
} else {
|
|
has_user_password = authenticate_user_password_r2_to_r5(password_string);
|
|
}
|
|
|
|
if (!has_user_password)
|
|
m_encryption_key = {};
|
|
return has_user_password;
|
|
}
|
|
|
|
ByteBuffer StandardSecurityHandler::compute_encryption_key_r2_to_r5(ByteBuffer password_string)
|
|
{
|
|
// This function should never be called after we have a valid encryption key.
|
|
VERIFY(!m_encryption_key.has_value());
|
|
|
|
// 7.6.3.3 Encryption Key Algorithm
|
|
|
|
// Algorithm 2: Computing an encryption key
|
|
|
|
// a) Pad or truncate the password string to exactly 32 bytes. If the password string
|
|
// is more than 32 bytes long, use only its first 32 bytes; if it is less than 32
|
|
// bytes long, pad it by appending the required number of additional bytes from the
|
|
// beginning of the following padding string: [omitted]
|
|
|
|
if (password_string.size() > 32) {
|
|
password_string.resize(32);
|
|
} else {
|
|
password_string.append(standard_encryption_key_padding_bytes.data(), 32 - password_string.size());
|
|
}
|
|
|
|
// b) Initialize the MD5 hash function and pass the result of step (a) as input to
|
|
// this function.
|
|
Crypto::Hash::MD5 md5;
|
|
md5.update(password_string);
|
|
|
|
// c) Pass the value of the encryption dictionary's "O" entry to the MD5 hash function.
|
|
md5.update(m_o_entry);
|
|
|
|
// d) Convert the integer value of the P entry to a 32-bit unsigned binary number and pass
|
|
// these bytes to the MD5 hash function, low-order byte first.
|
|
md5.update(reinterpret_cast<u8 const*>(&m_flags), sizeof(m_flags));
|
|
|
|
// e) Pass the first element of the file's file identifier array to the MD5 hash function.
|
|
auto id_array = m_document->trailer()->get_array(m_document, CommonNames::ID).release_value_but_fixme_should_propagate_errors();
|
|
auto first_element_string = id_array->get_string_at(m_document, 0).release_value_but_fixme_should_propagate_errors()->string();
|
|
md5.update(first_element_string);
|
|
|
|
// f) (Security handlers of revision 4 or greater) if the document metadata is not being
|
|
// encrypted, pass 4 bytes with the value 0xffffffff to the MD5 hash function.
|
|
if (m_revision >= 4 && !m_encrypt_metadata) {
|
|
u32 value = 0xffffffff;
|
|
md5.update(reinterpret_cast<u8 const*>(&value), 4);
|
|
}
|
|
|
|
// g) Finish the hash.
|
|
// h) (Security handlers of revision 3 or greater) Do the following 50 times:
|
|
//
|
|
// Take the output from the previous MD5 hash and pass the first n bytes
|
|
// of the output as input into a new MD5 hash, where n is the number of
|
|
// bytes of the encryption key as defined by the value of the encryption
|
|
// dictionary's Length entry.
|
|
if (m_revision >= 3) {
|
|
ByteBuffer n_bytes;
|
|
|
|
for (u32 i = 0; i < 50; i++) {
|
|
Crypto::Hash::MD5 new_md5;
|
|
n_bytes.ensure_capacity(m_length);
|
|
|
|
while (n_bytes.size() < m_length) {
|
|
auto out = md5.peek();
|
|
for (size_t j = 0; j < out.data_length() && n_bytes.size() < m_length; j++)
|
|
n_bytes.append(out.data[j]);
|
|
}
|
|
|
|
VERIFY(n_bytes.size() == m_length);
|
|
new_md5.update(n_bytes);
|
|
md5 = move(new_md5);
|
|
n_bytes.clear();
|
|
}
|
|
}
|
|
|
|
// i) Set the encryption key to the first n bytes of the output from the final MD5
|
|
// hash, where n shall always be 5 for security handlers of revision 2 but, for
|
|
// security handlers of revision 3 or greater, shall depend on the value of the
|
|
// encryption dictionary's Length entry.
|
|
size_t n;
|
|
if (m_revision == 2) {
|
|
n = 5;
|
|
} else if (m_revision >= 3) {
|
|
n = m_length;
|
|
} else {
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
ByteBuffer encryption_key;
|
|
encryption_key.ensure_capacity(n);
|
|
while (encryption_key.size() < n) {
|
|
auto out = md5.peek();
|
|
for (size_t i = 0; encryption_key.size() < n && i < out.data_length(); i++)
|
|
encryption_key.append(out.bytes()[i]);
|
|
}
|
|
|
|
m_encryption_key = encryption_key;
|
|
|
|
return encryption_key;
|
|
}
|
|
|
|
bool StandardSecurityHandler::compute_encryption_key_r6_and_later(ByteBuffer password_string)
|
|
{
|
|
// This function should never be called after we have a valid encryption key.
|
|
VERIFY(!m_encryption_key.has_value());
|
|
|
|
auto const zero_iv = ByteBuffer::create_zeroed(16).release_value_but_fixme_should_propagate_errors();
|
|
|
|
// ISO 32000 (PDF 2.0), 7.6.4.3.3 Algorithm 2.A: Retrieving the file encryption key from an encrypted
|
|
// document in order to decrypt it (revision 6 or later)
|
|
|
|
// "It is necessary to treat the 48-bytes of the O and U strings in the
|
|
// Encrypt dictionary as made up of three sections [...]. The first 32 bytes
|
|
// are a hash value (explained below). The next 8 bytes are called the Validation Salt. The final 8 bytes are
|
|
// called the Key Salt."
|
|
|
|
// a) The UTF-8 password string shall be generated from Unicode input by processing the input string with
|
|
// the SASLprep (Internet RFC 4013) profile of stringprep (Internet RFC 3454) using the Normalize and BiDi
|
|
// options, and then converting to a UTF-8 representation.
|
|
// FIXME
|
|
|
|
// b) Truncate the UTF-8 representation to 127 bytes if it is longer than 127 bytes.
|
|
if (password_string.size() > 127)
|
|
password_string.resize(127);
|
|
|
|
// c) Test the password against the owner key by computing a hash using algorithm 2.B with an input string
|
|
// consisting of the UTF-8 password concatenated with the 8 bytes of owner Validation Salt, concatenated
|
|
// with the 48-byte U string. If the 32-byte result matches the first 32 bytes of the O string, this is the owner
|
|
// password.
|
|
// [Implementor's note: This is the same as Algorithm 12 in the spec.]
|
|
if (authenticate_owner_password_r6_and_later(password_string)) {
|
|
// d) Compute an intermediate owner key by computing a hash using algorithm 2.B with an input string
|
|
// consisting of the UTF-8 owner password concatenated with the 8 bytes of owner Key Salt, concatenated
|
|
// with the 48-byte U string. The 32-byte result is the key used to decrypt the 32-byte OE string using AES-
|
|
// 256 in CBC mode with no padding and an initialization vector of zero. The 32-byte result is the file
|
|
// encryption key.
|
|
ByteBuffer input;
|
|
input.append(password_string);
|
|
input.append(m_o_entry.bytes().slice(40, 8));
|
|
input.append(m_u_entry.bytes());
|
|
auto key = computing_a_hash_r6_and_later(input, password_string, HashKind::Owner);
|
|
|
|
// [Implementor's note: PaddingMode doesn't matter here since input is block-aligned.]
|
|
auto cipher = Crypto::Cipher::AESCipher::CBCMode(key, 256, Crypto::Cipher::Intent::Decryption, Crypto::Cipher::PaddingMode::Null);
|
|
auto decrypted = cipher.create_aligned_buffer(m_oe_entry.length()).release_value_but_fixme_should_propagate_errors();
|
|
Bytes decrypted_span = decrypted.bytes();
|
|
cipher.decrypt(m_oe_entry.bytes(), decrypted_span, zero_iv);
|
|
m_encryption_key = ByteBuffer::copy(decrypted_span).release_value_but_fixme_should_propagate_errors();
|
|
}
|
|
// [Implementor's note: The spec seems to miss a step like c) but for the user password here.]
|
|
else if (authenticate_user_password_r6_and_later(password_string)) {
|
|
// e) Compute an intermediate user key by computing a hash using algorithm 2.B with an input string
|
|
// consisting of the UTF-8 user password concatenated with the 8 bytes of user Key Salt. The 32-byte result
|
|
// is the key used to decrypt the 32-byte UE string using AES-256 in CBC mode with no padding and an
|
|
// initialization vector of zero. The 32-byte result is the file encryption key.
|
|
ByteBuffer input;
|
|
input.append(password_string);
|
|
input.append(m_u_entry.bytes().slice(40, 8));
|
|
auto key = computing_a_hash_r6_and_later(input, password_string, HashKind::User);
|
|
|
|
// [Implementor's note: PaddingMode doesn't matter here since input is block-aligned.]
|
|
auto cipher = Crypto::Cipher::AESCipher::CBCMode(key, 256, Crypto::Cipher::Intent::Decryption, Crypto::Cipher::PaddingMode::Null);
|
|
auto decrypted = cipher.create_aligned_buffer(m_ue_entry.length()).release_value_but_fixme_should_propagate_errors();
|
|
Bytes decrypted_span = decrypted.bytes();
|
|
cipher.decrypt(m_ue_entry.bytes(), decrypted_span, zero_iv);
|
|
m_encryption_key = ByteBuffer::copy(decrypted_span).release_value_but_fixme_should_propagate_errors();
|
|
}
|
|
// [Implementor's note: No explicit step for this in the spec, but if we get here the password was neither owner nor user password.]
|
|
else {
|
|
return false;
|
|
}
|
|
|
|
// f) Decrypt the 16-byte Perms string using AES-256 in ECB mode with an initialization vector of zero and
|
|
// the file encryption key as the key. Verify that bytes 9-11 of the result are the characters "a", "d", "b". Bytes
|
|
// 0-3 of the decrypted Perms entry, treated as a little-endian integer, are the user permissions. They shall
|
|
// match the value in the P key.
|
|
// [Implementor's note: For 16-byte long messages, CBC with an IV of zero is the same as ECB. ECB with an IV doesn't make a lot of sense (?) Maybe the spec means CBC.]
|
|
auto cipher = Crypto::Cipher::AESCipher::CBCMode(m_encryption_key.value(), 256, Crypto::Cipher::Intent::Decryption, Crypto::Cipher::PaddingMode::Null);
|
|
auto decrypted = cipher.create_aligned_buffer(m_perms_entry.length()).release_value_but_fixme_should_propagate_errors();
|
|
Bytes decrypted_span = decrypted.bytes();
|
|
cipher.decrypt(m_perms_entry.bytes(), decrypted_span, zero_iv);
|
|
|
|
return decrypted_span[9] == 'a' && decrypted_span[10] == 'd' && decrypted_span[11] == 'b' && *bit_cast<LittleEndian<u32>*>(decrypted_span.data()) == m_flags;
|
|
}
|
|
|
|
ByteBuffer StandardSecurityHandler::computing_a_hash_r6_and_later(ByteBuffer original_input, StringView input_password, HashKind kind)
|
|
{
|
|
// ISO 32000 (PDF 2.0), 7.6.4.3.4 Algorithm 2.B: Computing a hash (revision 6 or later)
|
|
|
|
// Take the SHA-256 hash of the original input to the algorithm and name the resulting 32 bytes, K.
|
|
static_assert(Crypto::Hash::SHA256::DigestType::Size == 32);
|
|
Crypto::Hash::SHA256 sha;
|
|
sha.update(original_input);
|
|
auto K = ByteBuffer::copy(sha.digest().bytes()).release_value_but_fixme_should_propagate_errors();
|
|
|
|
// Perform the following steps (a)-(d) 64 times:
|
|
int round_number;
|
|
for (round_number = 0;; ++round_number) {
|
|
// a) Make a new string, K1, consisting of 64 repetitions of the sequence: Input password, K, the 48-byte user
|
|
// key. The 48 byte user key is only used when checking the owner password or creating the owner key. If
|
|
// checking the user password or creating the user key, K1 is the concatenation of the input password and K.
|
|
ByteBuffer K1_part;
|
|
K1_part.append(input_password.bytes());
|
|
K1_part.append(K.bytes());
|
|
if (kind == HashKind::Owner)
|
|
K1_part.append(m_u_entry.bytes());
|
|
|
|
ByteBuffer K1;
|
|
for (int i = 0; i < 64; ++i)
|
|
K1.append(K1_part);
|
|
|
|
// b) Encrypt K1 with the AES-128 (CBC, no padding) algorithm, using the first 16 bytes of K as the key and
|
|
// the second 16 bytes of K as the initialization vector. The result of this encryption is E.
|
|
ReadonlyBytes key = K.bytes().trim(16);
|
|
ReadonlyBytes initialization_vector = K.bytes().slice(16);
|
|
|
|
// [Implementor's note: PaddingMode doesn't matter here since input is block-aligned.]
|
|
auto cipher = Crypto::Cipher::AESCipher::CBCMode(key, 128, Crypto::Cipher::Intent::Encryption, Crypto::Cipher::PaddingMode::Null);
|
|
auto E = cipher.create_aligned_buffer(K1.size()).release_value_but_fixme_should_propagate_errors();
|
|
Bytes E_span = E.bytes();
|
|
cipher.encrypt(K1, E_span, initialization_vector);
|
|
|
|
// c) Taking the first 16 bytes of E as an unsigned big-endian integer, compute the remainder, modulo 3. If the
|
|
// result is 0, the next hash used is SHA-256, if the result is 1, the next hash used is SHA-384, if the result is
|
|
// 2, the next hash used is SHA-512.
|
|
u128 remainder(0);
|
|
for (int i = 0; i < 16; ++i)
|
|
remainder = (remainder << 8) | E[i];
|
|
remainder %= u128(3);
|
|
|
|
Crypto::Hash::HashKind hash_kind;
|
|
switch (u8 { remainder }) {
|
|
case 0:
|
|
hash_kind = Crypto::Hash::HashKind::SHA256;
|
|
break;
|
|
case 1:
|
|
hash_kind = Crypto::Hash::HashKind::SHA384;
|
|
break;
|
|
case 2:
|
|
hash_kind = Crypto::Hash::HashKind::SHA512;
|
|
break;
|
|
}
|
|
|
|
// d) Using the hash algorithm determined in step c, take the hash of E. The result is a new value of K, which
|
|
// will be 32, 48, or 64 bytes in length.
|
|
Crypto::Hash::Manager hash(hash_kind);
|
|
hash.update(E);
|
|
K = ByteBuffer::copy(hash.digest().bytes()).release_value_but_fixme_should_propagate_errors();
|
|
|
|
// Repeat the process (a-d) with this new value of K. Following 64 rounds (round number 0 to round
|
|
// number 63), do the following, starting with round number 64:
|
|
|
|
// [Implementor's note: Conceptually, steps e)-f) are at the top of the loop for rounds >= 64, so this has to continue for < 63, not for < 64.]
|
|
if (round_number < 63)
|
|
continue;
|
|
|
|
// NOTE 2 The reason for multiple rounds is to defeat the possibility of running all paths in parallel. With 64
|
|
// rounds (minimum) there are 3^64 paths through the algorithm.
|
|
|
|
// e) Look at the very last byte of E. If the value of that byte (taken as an unsigned integer) is greater than the
|
|
// round number - 32, repeat steps (a-d) again.
|
|
|
|
// f) Repeat from steps (a-e) until the value of the last byte is <= (round number) - 32.
|
|
|
|
// NOTE 3 Tests indicate that the total number of rounds will most likely be between 65 and 80.
|
|
|
|
if (E.bytes().last() <= round_number - 32)
|
|
break;
|
|
}
|
|
|
|
// The first 32 bytes of the final K are the output of the algorithm.
|
|
VERIFY(K.size() >= 32);
|
|
K.resize(32);
|
|
return K;
|
|
}
|
|
|
|
void StandardSecurityHandler::crypt(NonnullRefPtr<Object> object, Reference reference, Crypto::Cipher::Intent direction) const
|
|
{
|
|
VERIFY(m_encryption_key.has_value());
|
|
|
|
if (m_method == CryptFilterMethod::None)
|
|
return;
|
|
|
|
auto aes = [&](ReadonlyBytes bytes, ByteBuffer const& key) {
|
|
auto cipher = Crypto::Cipher::AESCipher::CBCMode(key, m_length * 8, direction, Crypto::Cipher::PaddingMode::CMS);
|
|
|
|
// "The block size parameter is 16 bytes, and the initialization vector is a 16-byte random number
|
|
// that is stored as the first 16 bytes of the encrypted stream or string."
|
|
static_assert(Crypto::Cipher::AESCipher::block_size() == 16);
|
|
if (direction == Crypto::Cipher::Intent::Encryption) {
|
|
auto output = cipher.create_aligned_buffer(16 + bytes.size()).release_value_but_fixme_should_propagate_errors();
|
|
auto iv_span = output.bytes().trim(16);
|
|
auto encrypted_span = output.bytes().slice(16);
|
|
|
|
fill_with_random(iv_span);
|
|
cipher.encrypt(bytes, encrypted_span, iv_span);
|
|
|
|
return output;
|
|
} else {
|
|
VERIFY(direction == Crypto::Cipher::Intent::Decryption);
|
|
|
|
auto iv = bytes.trim(16);
|
|
bytes = bytes.slice(16);
|
|
|
|
auto decrypted = cipher.create_aligned_buffer(bytes.size()).release_value_but_fixme_should_propagate_errors();
|
|
auto decrypted_span = decrypted.bytes();
|
|
cipher.decrypt(bytes, decrypted_span, iv);
|
|
decrypted.resize(decrypted_span.size());
|
|
|
|
return decrypted;
|
|
}
|
|
};
|
|
|
|
ReadonlyBytes bytes;
|
|
Function<void(ByteBuffer)> assign;
|
|
|
|
if (object->is<StreamObject>()) {
|
|
auto stream = object->cast<StreamObject>();
|
|
bytes = stream->bytes();
|
|
|
|
assign = [&object](ByteBuffer buffer) {
|
|
object->cast<StreamObject>()->buffer() = move(buffer);
|
|
};
|
|
|
|
if (stream->dict()->contains(CommonNames::Filter)) {
|
|
// ISO 32000 (PDF 2.0), 7.4.10 Crypt filter
|
|
// "The Crypt filter shall be the first filter in the Filter array entry."
|
|
auto filters = m_document->read_filters(stream->dict()).release_value_but_fixme_should_propagate_errors();
|
|
if (!filters.is_empty() && filters[0] == "Crypt")
|
|
TODO();
|
|
}
|
|
} else if (object->is<StringObject>()) {
|
|
auto string = object->cast<StringObject>();
|
|
bytes = string->string().bytes();
|
|
assign = [&object](ByteBuffer buffer) {
|
|
object->cast<StringObject>()->set_string(DeprecatedString(buffer.bytes()));
|
|
};
|
|
} else {
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
if (m_method == CryptFilterMethod::AESV3) {
|
|
// ISO 32000 (PDF 2.0), 7.6.3.3 Algorithm 1.A: Encryption of data using the AES algorithms
|
|
|
|
// a) Use the 32-byte file encryption key for the AES-256 symmetric key algorithm, along with the string or
|
|
// stream data to be encrypted.
|
|
//
|
|
// Use the AES algorithm in Cipher Block Chaining (CBC) mode, which requires an initialization
|
|
// vector. The block size parameter is set to 16 bytes, and the initialization vector is a 16-byte random
|
|
// number that is stored as the first 16 bytes of the encrypted stream or string.
|
|
assign(aes(bytes, m_encryption_key.value()));
|
|
return;
|
|
}
|
|
|
|
// 7.6.2 General Encryption Algorithm
|
|
// Algorithm 1: Encryption of data using the RC3 or AES algorithms
|
|
|
|
// a) Obtain the object number and generation number from the object identifier of
|
|
// the string or stream to be encrypted. If the string is a direct object, use
|
|
// the identifier of the indirect object containing it.
|
|
//
|
|
// Note: This is always passed in at parse time because objects don't know their own
|
|
// object number.
|
|
|
|
// b) For all strings and streams with crypt filter specifier; treating the object
|
|
// number as binary integers, extend the original n-byte encryption key to n + 5
|
|
// bytes by appending the low-order 3 bytes of the object number and the low-order
|
|
// 2 bytes of the generation number in that order, low-order byte first. ...
|
|
|
|
auto encryption_key = m_encryption_key.value();
|
|
auto index = reference.as_ref_index();
|
|
auto generation = reference.as_ref_generation_index();
|
|
|
|
encryption_key.append(index & 0xff);
|
|
encryption_key.append((index >> 8) & 0xff);
|
|
encryption_key.append((index >> 16) & 0xff);
|
|
encryption_key.append(generation & 0xff);
|
|
encryption_key.append((generation >> 8) & 0xff);
|
|
|
|
if (m_method == CryptFilterMethod::AESV2) {
|
|
encryption_key.append('s');
|
|
encryption_key.append('A');
|
|
encryption_key.append('l');
|
|
encryption_key.append('T');
|
|
}
|
|
|
|
// c) Initialize the MD5 hash function and pass the result of step (b) as input to this
|
|
// function.
|
|
Crypto::Hash::MD5 md5;
|
|
md5.update(encryption_key);
|
|
|
|
// d) Use the first (n + 5) bytes, up to a maximum of 16, of the output from the MD5
|
|
// hash as the key for the RC4 or AES symmetric key algorithms, along with the string
|
|
// or stream data to be encrypted.
|
|
auto key = ByteBuffer::copy(md5.peek().bytes()).release_value_but_fixme_should_propagate_errors();
|
|
|
|
if (key.size() > min(encryption_key.size(), 16))
|
|
key.resize(encryption_key.size());
|
|
|
|
if (m_method == CryptFilterMethod::AESV2) {
|
|
assign(aes(bytes, key));
|
|
return;
|
|
}
|
|
|
|
// RC4 is symmetric, so decryption is the same as encryption.
|
|
VERIFY(m_method == CryptFilterMethod::V2);
|
|
RC4 rc4(key);
|
|
auto output = rc4.encrypt(bytes);
|
|
|
|
assign(move(output));
|
|
}
|
|
|
|
void StandardSecurityHandler::encrypt(NonnullRefPtr<Object> object, Reference reference) const
|
|
{
|
|
crypt(object, reference, Crypto::Cipher::Intent::Encryption);
|
|
}
|
|
|
|
void StandardSecurityHandler::decrypt(NonnullRefPtr<Object> object, Reference reference) const
|
|
{
|
|
crypt(object, reference, Crypto::Cipher::Intent::Decryption);
|
|
}
|
|
|
|
static constexpr auto identity_permutation = iota_array<size_t, 256>(0);
|
|
|
|
RC4::RC4(ReadonlyBytes key)
|
|
: m_bytes(identity_permutation)
|
|
{
|
|
size_t j = 0;
|
|
for (size_t i = 0; i < 256; i++) {
|
|
j = (j + m_bytes[i] + key[i % key.size()]) & 0xff;
|
|
swap(m_bytes[i], m_bytes[j]);
|
|
}
|
|
}
|
|
|
|
void RC4::generate_bytes(ByteBuffer& bytes)
|
|
{
|
|
size_t i = 0;
|
|
size_t j = 0;
|
|
|
|
for (size_t count = 0; count < bytes.size(); count++) {
|
|
i = (i + 1) % 256;
|
|
j = (j + m_bytes[i]) % 256;
|
|
swap(m_bytes[i], m_bytes[j]);
|
|
bytes[count] = m_bytes[(m_bytes[i] + m_bytes[j]) % 256];
|
|
}
|
|
}
|
|
|
|
ByteBuffer RC4::encrypt(ReadonlyBytes bytes)
|
|
{
|
|
auto output = ByteBuffer::create_uninitialized(bytes.size()).release_value_but_fixme_should_propagate_errors();
|
|
generate_bytes(output);
|
|
for (size_t i = 0; i < bytes.size(); i++)
|
|
output[i] ^= bytes[i];
|
|
return output;
|
|
}
|
|
|
|
}
|