ladybird/Kernel/Storage/IDEChannel.cpp
Liav A 05510e3994 Kernel/Storage: Make the IDEChannel design more robust
The overall design is the same, but we change a few things,
like decreasing the amount of blocking forever loops. The goal
is to ensure the kernel won't hang forever when dealing with
buggy hardware.
Also, we reset the channel when initializing it, just in case the
hardware was in bad state before we start use it.
2021-04-26 18:44:06 +02:00

542 lines
20 KiB
C++

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/ByteBuffer.h>
#include <AK/Singleton.h>
#include <AK/StringView.h>
#include <Kernel/IO.h>
#include <Kernel/Process.h>
#include <Kernel/Storage/ATA.h>
#include <Kernel/Storage/IDEChannel.h>
#include <Kernel/Storage/IDEController.h>
#include <Kernel/Storage/PATADiskDevice.h>
#include <Kernel/VM/MemoryManager.h>
#include <Kernel/WorkQueue.h>
namespace Kernel {
#define PATA_PRIMARY_IRQ 14
#define PATA_SECONDARY_IRQ 15
UNMAP_AFTER_INIT NonnullRefPtr<IDEChannel> IDEChannel::create(const IDEController& controller, IOAddressGroup io_group, ChannelType type)
{
return adopt_ref(*new IDEChannel(controller, io_group, type));
}
UNMAP_AFTER_INIT NonnullRefPtr<IDEChannel> IDEChannel::create(const IDEController& controller, u8 irq, IOAddressGroup io_group, ChannelType type)
{
return adopt_ref(*new IDEChannel(controller, irq, io_group, type));
}
RefPtr<StorageDevice> IDEChannel::master_device() const
{
return m_master;
}
RefPtr<StorageDevice> IDEChannel::slave_device() const
{
return m_slave;
}
UNMAP_AFTER_INIT void IDEChannel::initialize()
{
disable_irq();
dbgln_if(PATA_DEBUG, "IDEChannel: {} IO base: {}", channel_type_string(), m_io_group.io_base());
dbgln_if(PATA_DEBUG, "IDEChannel: {} control base: {}", channel_type_string(), m_io_group.control_base());
if (m_io_group.bus_master_base().has_value())
dbgln_if(PATA_DEBUG, "IDEChannel: {} bus master base: {}", channel_type_string(), m_io_group.bus_master_base().value());
else
dbgln_if(PATA_DEBUG, "IDEChannel: {} bus master base disabled", channel_type_string());
m_parent_controller->enable_pin_based_interrupts();
// reset the channel
u8 device_control = m_io_group.control_base().in<u8>();
// Wait 30 milliseconds
IO::delay(30000);
m_io_group.control_base().out<u8>(device_control | (1 << 2));
// Wait 30 milliseconds
IO::delay(30000);
m_io_group.control_base().out<u8>(device_control);
// Wait up to 30 seconds before failing
if (!wait_until_not_busy(false, 30000)) {
dbgln("IDEChannel: reset failed, busy flag on master stuck");
return;
}
// Wait up to 30 seconds before failing
if (!wait_until_not_busy(true, 30000)) {
dbgln("IDEChannel: reset failed, busy flag on slave stuck");
return;
}
detect_disks();
// Note: calling to detect_disks could generate an interrupt, clear it if that's the case
clear_pending_interrupts();
}
UNMAP_AFTER_INIT IDEChannel::IDEChannel(const IDEController& controller, u8 irq, IOAddressGroup io_group, ChannelType type)
: IRQHandler(irq)
, m_channel_type(type)
, m_io_group(io_group)
, m_parent_controller(controller)
{
initialize();
}
UNMAP_AFTER_INIT IDEChannel::IDEChannel(const IDEController& controller, IOAddressGroup io_group, ChannelType type)
: IRQHandler(type == ChannelType::Primary ? PATA_PRIMARY_IRQ : PATA_SECONDARY_IRQ)
, m_channel_type(type)
, m_io_group(io_group)
, m_parent_controller(controller)
{
initialize();
}
void IDEChannel::clear_pending_interrupts() const
{
m_io_group.io_base().offset(ATA_REG_STATUS).in<u8>();
}
UNMAP_AFTER_INIT IDEChannel::~IDEChannel()
{
}
void IDEChannel::start_request(AsyncBlockDeviceRequest& request, bool is_slave, u16 capabilities)
{
Locker locker(m_lock);
VERIFY(m_current_request.is_null());
dbgln_if(PATA_DEBUG, "IDEChannel::start_request");
m_current_request = request;
m_current_request_block_index = 0;
m_current_request_flushing_cache = false;
if (request.request_type() == AsyncBlockDeviceRequest::Read)
ata_read_sectors(is_slave, capabilities);
else
ata_write_sectors(is_slave, capabilities);
}
void IDEChannel::complete_current_request(AsyncDeviceRequest::RequestResult result)
{
// NOTE: this may be called from the interrupt handler!
VERIFY(m_current_request);
VERIFY(m_request_lock.is_locked());
// Now schedule reading back the buffer as soon as we leave the irq handler.
// This is important so that we can safely write the buffer back,
// which could cause page faults. Note that this may be called immediately
// before Processor::deferred_call_queue returns!
g_io_work->queue([this, result]() {
dbgln_if(PATA_DEBUG, "IDEChannel::complete_current_request result: {}", (int)result);
Locker locker(m_lock);
VERIFY(m_current_request);
auto current_request = m_current_request;
m_current_request.clear();
current_request->complete(result);
});
}
static void print_ide_status(u8 status)
{
dbgln("IDEChannel: print_ide_status: DRQ={} BSY={}, DRDY={}, DSC={}, DF={}, CORR={}, IDX={}, ERR={}",
(status & ATA_SR_DRQ) != 0,
(status & ATA_SR_BSY) != 0,
(status & ATA_SR_DRDY) != 0,
(status & ATA_SR_DSC) != 0,
(status & ATA_SR_DF) != 0,
(status & ATA_SR_CORR) != 0,
(status & ATA_SR_IDX) != 0,
(status & ATA_SR_ERR) != 0);
}
void IDEChannel::try_disambiguate_error()
{
VERIFY(m_lock.is_locked());
dbgln("IDEChannel: Error cause:");
switch (m_device_error) {
case ATA_ER_BBK:
dbgln("IDEChannel: - Bad block");
break;
case ATA_ER_UNC:
dbgln("IDEChannel: - Uncorrectable data");
break;
case ATA_ER_MC:
dbgln("IDEChannel: - Media changed");
break;
case ATA_ER_IDNF:
dbgln("IDEChannel: - ID mark not found");
break;
case ATA_ER_MCR:
dbgln("IDEChannel: - Media change request");
break;
case ATA_ER_ABRT:
dbgln("IDEChannel: - Command aborted");
break;
case ATA_ER_TK0NF:
dbgln("IDEChannel: - Track 0 not found");
break;
case ATA_ER_AMNF:
dbgln("IDEChannel: - No address mark");
break;
default:
dbgln("IDEChannel: - No one knows");
break;
}
}
void IDEChannel::handle_irq(const RegisterState&)
{
u8 status = m_io_group.io_base().offset(ATA_REG_STATUS).in<u8>();
m_entropy_source.add_random_event(status);
ScopedSpinLock lock(m_request_lock);
dbgln_if(PATA_DEBUG, "IDEChannel: interrupt: DRQ={}, BSY={}, DRDY={}",
(status & ATA_SR_DRQ) != 0,
(status & ATA_SR_BSY) != 0,
(status & ATA_SR_DRDY) != 0);
if (!m_current_request) {
dbgln("IDEChannel: IRQ but no pending request!");
return;
}
if (status & ATA_SR_ERR) {
print_ide_status(status);
m_device_error = m_io_group.io_base().offset(ATA_REG_ERROR).in<u8>();
dbgln("IDEChannel: Error {:#02x}!", (u8)m_device_error);
try_disambiguate_error();
complete_current_request(AsyncDeviceRequest::Failure);
return;
}
m_device_error = 0;
// Now schedule reading/writing the buffer as soon as we leave the irq handler.
// This is important so that we can safely access the buffers, which could
// trigger page faults
g_io_work->queue([this]() {
Locker locker(m_lock);
ScopedSpinLock lock(m_request_lock);
if (m_current_request->request_type() == AsyncBlockDeviceRequest::Read) {
dbgln_if(PATA_DEBUG, "IDEChannel: Read block {}/{}", m_current_request_block_index, m_current_request->block_count());
if (ata_do_read_sector()) {
if (++m_current_request_block_index >= m_current_request->block_count()) {
complete_current_request(AsyncDeviceRequest::Success);
return;
}
// Wait for the next block
enable_irq();
}
} else {
if (!m_current_request_flushing_cache) {
dbgln_if(PATA_DEBUG, "IDEChannel: Wrote block {}/{}", m_current_request_block_index, m_current_request->block_count());
if (++m_current_request_block_index >= m_current_request->block_count()) {
// We read the last block, flush cache
VERIFY(!m_current_request_flushing_cache);
m_current_request_flushing_cache = true;
m_io_group.io_base().offset(ATA_REG_COMMAND).out<u8>(ATA_CMD_CACHE_FLUSH);
} else {
// Read next block
ata_do_write_sector();
}
} else {
complete_current_request(AsyncDeviceRequest::Success);
}
}
});
}
static void io_delay()
{
for (int i = 0; i < 4; ++i)
IO::in8(0x3f6);
}
bool IDEChannel::wait_until_not_busy(bool slave, size_t milliseconds_timeout)
{
IO::delay(20);
m_io_group.io_base().offset(ATA_REG_HDDEVSEL).out<u8>(0xA0 | (slave << 4)); // First, we need to select the drive itself
IO::delay(20);
size_t time_elapsed = 0;
while (m_io_group.control_base().in<u8>() & ATA_SR_BSY && time_elapsed <= milliseconds_timeout) {
IO::delay(1000);
time_elapsed++;
}
return time_elapsed != milliseconds_timeout;
}
bool IDEChannel::wait_until_not_busy(size_t milliseconds_timeout)
{
size_t time_elapsed = 0;
while (m_io_group.control_base().in<u8>() & ATA_SR_BSY && time_elapsed <= milliseconds_timeout) {
IO::delay(1000);
time_elapsed++;
}
return time_elapsed != milliseconds_timeout;
}
String IDEChannel::channel_type_string() const
{
if (m_channel_type == ChannelType::Primary)
return "Primary";
return "Secondary";
}
UNMAP_AFTER_INIT void IDEChannel::detect_disks()
{
auto channel_string = [](u8 i) -> const char* {
if (i == 0)
return "master";
return "slave";
};
// There are only two possible disks connected to a channel
for (auto i = 0; i < 2; i++) {
// We need to select the drive and then we wait 20 microseconds... and it doesn't hurt anything so let's just do it.
IO::delay(20);
m_io_group.io_base().offset(ATA_REG_HDDEVSEL).out<u8>(0xA0 | (i << 4)); // First, we need to select the drive itself
IO::delay(20);
auto status = m_io_group.control_base().in<u8>();
if (status == 0x0) {
dbgln_if(PATA_DEBUG, "IDEChannel: No {} {} disk detected!", channel_type_string().to_lowercase(), channel_string(i));
continue;
}
m_io_group.io_base().offset(ATA_REG_SECCOUNT0).out<u8>(0);
m_io_group.io_base().offset(ATA_REG_LBA0).out<u8>(0);
m_io_group.io_base().offset(ATA_REG_LBA1).out<u8>(0);
m_io_group.io_base().offset(ATA_REG_LBA2).out<u8>(0);
m_io_group.io_base().offset(ATA_REG_COMMAND).out<u8>(ATA_CMD_IDENTIFY); // Send the ATA_IDENTIFY command
// Wait 10 second for the BSY flag to clear
if (!wait_until_not_busy(2000)) {
dbgln_if(PATA_DEBUG, "IDEChannel: No {} {} disk detected, BSY flag was not reset!", channel_type_string().to_lowercase(), channel_string(i));
continue;
}
bool check_for_atapi = false;
bool device_presence = true;
PATADiskDevice::InterfaceType interface_type = PATADiskDevice::InterfaceType::ATA;
size_t milliseconds_elapsed = 0;
for (;;) {
// Wait about 10 seconds
if (milliseconds_elapsed > 2000)
break;
u8 status = m_io_group.control_base().in<u8>();
if (status & ATA_SR_ERR) {
dbgln_if(PATA_DEBUG, "IDEChannel: {} {} device is not ATA. Will check for ATAPI.", channel_type_string(), channel_string(i));
check_for_atapi = true;
break;
}
if (!(status & ATA_SR_BSY) && (status & ATA_SR_DRQ)) {
dbgln_if(PATA_DEBUG, "IDEChannel: {} {} device appears to be ATA.", channel_type_string(), channel_string(i));
interface_type = PATADiskDevice::InterfaceType::ATA;
break;
}
if (status == 0 || status == 0xFF) {
dbgln_if(PATA_DEBUG, "IDEChannel: {} {} device presence - none.", channel_type_string(), channel_string(i));
device_presence = false;
break;
}
IO::delay(1000);
milliseconds_elapsed++;
}
if (!device_presence) {
continue;
}
if (milliseconds_elapsed > 10000) {
dbgln_if(PATA_DEBUG, "IDEChannel: {} {} device state unknown. Timeout exceeded.", channel_type_string(), channel_string(i));
continue;
}
if (check_for_atapi) {
u8 cl = m_io_group.io_base().offset(ATA_REG_LBA1).in<u8>();
u8 ch = m_io_group.io_base().offset(ATA_REG_LBA2).in<u8>();
if ((cl == 0x14 && ch == 0xEB) || (cl == 0x69 && ch == 0x96)) {
interface_type = PATADiskDevice::InterfaceType::ATAPI;
dbgln("IDEChannel: {} {} device appears to be ATAPI. We're going to ignore it for now as we don't support it.", channel_type_string(), channel_string(i));
continue;
} else {
dbgln("IDEChannel: {} {} device doesn't appear to be ATA or ATAPI. Ignoring it.", channel_type_string(), channel_string(i));
continue;
}
}
ByteBuffer wbuf = ByteBuffer::create_uninitialized(512);
ByteBuffer bbuf = ByteBuffer::create_uninitialized(512);
u8* b = bbuf.data();
u16* w = (u16*)wbuf.data();
for (u32 i = 0; i < 256; ++i) {
u16 data = m_io_group.io_base().offset(ATA_REG_DATA).in<u16>();
*(w++) = data;
*(b++) = MSB(data);
*(b++) = LSB(data);
}
// "Unpad" the device name string.
for (u32 i = 93; i > 54 && bbuf[i] == ' '; --i)
bbuf[i] = 0;
volatile ATAIdentifyBlock& identify_block = (volatile ATAIdentifyBlock&)(*wbuf.data());
u16 capabilities = identify_block.capabilities[0];
// If the drive is so old that it doesn't support LBA, ignore it.
if (!(capabilities & ATA_CAP_LBA))
continue;
u64 max_addressable_block = identify_block.max_28_bit_addressable_logical_sector;
// if we support 48-bit LBA, use that value instead.
if (identify_block.commands_and_feature_sets_supported[1] & (1 << 10))
max_addressable_block = identify_block.user_addressable_logical_sectors_count;
dbgln("IDEChannel: {} {} {} device found: Name={}, Capacity={}, Capabilities=0x{:04x}", channel_type_string(), channel_string(i), interface_type == PATADiskDevice::InterfaceType::ATA ? "ATA" : "ATAPI", ((char*)bbuf.data() + 54), max_addressable_block * 512, capabilities);
if (i == 0) {
m_master = PATADiskDevice::create(m_parent_controller, *this, PATADiskDevice::DriveType::Master, interface_type, capabilities, max_addressable_block);
} else {
m_slave = PATADiskDevice::create(m_parent_controller, *this, PATADiskDevice::DriveType::Slave, interface_type, capabilities, max_addressable_block);
}
}
}
void IDEChannel::ata_access(Direction direction, bool slave_request, u64 lba, u8 block_count, u16 capabilities)
{
VERIFY(m_lock.is_locked());
VERIFY(m_request_lock.is_locked());
LBAMode lba_mode;
u8 head = 0;
VERIFY(capabilities & ATA_CAP_LBA);
if (lba >= 0x10000000) {
lba_mode = LBAMode::FortyEightBit;
head = 0;
} else {
lba_mode = LBAMode::TwentyEightBit;
head = (lba & 0xF000000) >> 24;
}
// Wait 1 second
wait_until_not_busy(1000);
// We need to select the drive and then we wait 20 microseconds... and it doesn't hurt anything so let's just do it.
m_io_group.io_base().offset(ATA_REG_HDDEVSEL).out<u8>(0xE0 | (static_cast<u8>(slave_request) << 4) | head);
IO::delay(20);
if (lba_mode == LBAMode::FortyEightBit) {
m_io_group.io_base().offset(ATA_REG_SECCOUNT1).out<u8>(0);
m_io_group.io_base().offset(ATA_REG_LBA3).out<u8>((lba & 0xFF000000) >> 24);
m_io_group.io_base().offset(ATA_REG_LBA4).out<u8>((lba & 0xFF00000000ull) >> 32);
m_io_group.io_base().offset(ATA_REG_LBA5).out<u8>((lba & 0xFF0000000000ull) >> 40);
}
m_io_group.io_base().offset(ATA_REG_SECCOUNT0).out<u8>(block_count);
m_io_group.io_base().offset(ATA_REG_LBA0).out<u8>((lba & 0x000000FF) >> 0);
m_io_group.io_base().offset(ATA_REG_LBA1).out<u8>((lba & 0x0000FF00) >> 8);
m_io_group.io_base().offset(ATA_REG_LBA2).out<u8>((lba & 0x00FF0000) >> 16);
for (;;) {
auto status = m_io_group.control_base().in<u8>();
if (!(status & ATA_SR_BSY) && (status & ATA_SR_DRDY))
break;
}
send_ata_io_command(lba_mode, direction);
enable_irq();
}
void IDEChannel::send_ata_io_command(LBAMode lba_mode, Direction direction) const
{
if (lba_mode != LBAMode::FortyEightBit) {
m_io_group.io_base().offset(ATA_REG_COMMAND).out<u8>(direction == Direction::Read ? ATA_CMD_READ_PIO : ATA_CMD_WRITE_PIO);
} else {
m_io_group.io_base().offset(ATA_REG_COMMAND).out<u8>(direction == Direction::Read ? ATA_CMD_READ_PIO_EXT : ATA_CMD_WRITE_PIO_EXT);
}
}
bool IDEChannel::ata_do_read_sector()
{
VERIFY(m_lock.is_locked());
VERIFY(m_request_lock.is_locked());
VERIFY(!m_current_request.is_null());
dbgln_if(PATA_DEBUG, "IDEChannel::ata_do_read_sector");
auto& request = *m_current_request;
auto out_buffer = request.buffer().offset(m_current_request_block_index * 512);
ssize_t nwritten = request.write_to_buffer_buffered<512>(out_buffer, 512, [&](u8* buffer, size_t buffer_bytes) {
for (size_t i = 0; i < buffer_bytes; i += sizeof(u16))
*(u16*)&buffer[i] = IO::in16(m_io_group.io_base().offset(ATA_REG_DATA).get());
return (ssize_t)buffer_bytes;
});
if (nwritten < 0) {
// TODO: Do we need to abort the PATA read if this wasn't the last block?
complete_current_request(AsyncDeviceRequest::MemoryFault);
return false;
}
return true;
}
// FIXME: This doesn't quite work and locks up reading LBA 3.
void IDEChannel::ata_read_sectors(bool slave_request, u16 capabilities)
{
VERIFY(m_lock.is_locked());
VERIFY(!m_current_request.is_null());
VERIFY(m_current_request->block_count() <= 256);
ScopedSpinLock m_lock(m_request_lock);
dbgln_if(PATA_DEBUG, "IDEChannel::ata_read_sectors");
dbgln_if(PATA_DEBUG, "IDEChannel: Reading {} sector(s) @ LBA {}", m_current_request->block_count(), m_current_request->block_index());
ata_access(Direction::Read, slave_request, m_current_request->block_index(), m_current_request->block_count(), capabilities);
}
void IDEChannel::ata_do_write_sector()
{
VERIFY(m_lock.is_locked());
VERIFY(m_request_lock.is_locked());
VERIFY(!m_current_request.is_null());
auto& request = *m_current_request;
io_delay();
while ((m_io_group.control_base().in<u8>() & ATA_SR_BSY) || !(m_io_group.control_base().in<u8>() & ATA_SR_DRQ))
;
u8 status = m_io_group.control_base().in<u8>();
VERIFY(status & ATA_SR_DRQ);
auto in_buffer = request.buffer().offset(m_current_request_block_index * 512);
dbgln_if(PATA_DEBUG, "IDEChannel: Writing 512 bytes (part {}) (status={:#02x})...", m_current_request_block_index, status);
ssize_t nread = request.read_from_buffer_buffered<512>(in_buffer, 512, [&](const u8* buffer, size_t buffer_bytes) {
for (size_t i = 0; i < buffer_bytes; i += sizeof(u16))
IO::out16(m_io_group.io_base().offset(ATA_REG_DATA).get(), *(const u16*)&buffer[i]);
return (ssize_t)buffer_bytes;
});
if (nread < 0)
complete_current_request(AsyncDeviceRequest::MemoryFault);
}
// FIXME: I'm assuming this doesn't work based on the fact PIO read doesn't work.
void IDEChannel::ata_write_sectors(bool slave_request, u16 capabilities)
{
VERIFY(m_lock.is_locked());
VERIFY(!m_current_request.is_null());
VERIFY(m_current_request->block_count() <= 256);
ScopedSpinLock m_lock(m_request_lock);
dbgln_if(PATA_DEBUG, "IDEChannel: Writing {} sector(s) @ LBA {}", m_current_request->block_count(), m_current_request->block_index());
ata_access(Direction::Write, slave_request, m_current_request->block_index(), m_current_request->block_count(), capabilities);
ata_do_write_sector();
}
}