ladybird/Userland/Libraries/LibAudio/Sample.h
kleines Filmröllchen 61d9082da6 LibAudio: Replace log_pan with a constant power panning algoritm
This little functional change uses the most common algorithm for panning
audio, known as constant power panning. It makes it so that the total
output power (not directly the sample value, i.e. the peak) stays the
same no matter how the audio is panned.
2021-11-08 16:29:25 -08:00

145 lines
3.8 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2021, kleines Filmröllchen <malu.bertsch@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Math.h>
namespace Audio {
using namespace AK::Exponentials;
// Constants for logarithmic volume. See Sample::linear_to_log
// Corresponds to 60dB
constexpr double DYNAMIC_RANGE = 1000;
constexpr double VOLUME_A = 1 / DYNAMIC_RANGE;
double const VOLUME_B = log(DYNAMIC_RANGE);
// A single sample in an audio buffer.
// Values are floating point, and should range from -1.0 to +1.0
struct Sample {
constexpr Sample() = default;
// For mono
constexpr Sample(double left)
: left(left)
, right(left)
{
}
// For stereo
constexpr Sample(double left, double right)
: left(left)
, right(right)
{
}
void clip()
{
if (left > 1)
left = 1;
else if (left < -1)
left = -1;
if (right > 1)
right = 1;
else if (right < -1)
right = -1;
}
// Logarithmic scaling, as audio should ALWAYS do.
// Reference: https://www.dr-lex.be/info-stuff/volumecontrols.html
// We use the curve `factor = a * exp(b * change)`,
// where change is the input fraction we want to change by,
// a = 1/1000, b = ln(1000) = 6.908 and factor is the multiplier used.
// The value 1000 represents the dynamic range in sound pressure, which corresponds to 60 dB(A).
// This is a good dynamic range because it can represent all loudness values from
// 30 dB(A) (barely hearable with background noise)
// to 90 dB(A) (almost too loud to hear and about the reasonable limit of actual sound equipment).
//
// Format ranges:
// - Linear: 0.0 to 1.0
// - Logarithmic: 0.0 to 1.0
ALWAYS_INLINE double linear_to_log(double const change)
{
// TODO: Add linear slope around 0
return VOLUME_A * exp(VOLUME_B * change);
}
ALWAYS_INLINE double log_to_linear(double const val)
{
// TODO: Add linear slope around 0
return log(val / VOLUME_A) / VOLUME_B;
}
ALWAYS_INLINE Sample& log_multiply(double const change)
{
double factor = linear_to_log(change);
left *= factor;
right *= factor;
return *this;
}
ALWAYS_INLINE Sample log_multiplied(double const volume_change) const
{
Sample new_frame { left, right };
new_frame.log_multiply(volume_change);
return new_frame;
}
// Constant power panning
ALWAYS_INLINE Sample& pan(double const position)
{
double const pi_over_2 = AK::Pi<double> * 0.5;
double const root_over_2 = AK::sqrt(2.0) * 0.5;
double const angle = position * pi_over_2 * 0.5;
left *= root_over_2 * (AK::cos(angle) - AK::sin(angle));
right *= root_over_2 * (AK::cos(angle) + AK::sin(angle));
return *this;
}
ALWAYS_INLINE Sample panned(double const position) const
{
Sample new_sample { left, right };
new_sample.pan(position);
return new_sample;
}
constexpr Sample& operator*=(double const mult)
{
left *= mult;
right *= mult;
return *this;
}
constexpr Sample operator*(double const mult)
{
return { left * mult, right * mult };
}
constexpr Sample& operator+=(Sample const& other)
{
left += other.left;
right += other.right;
return *this;
}
constexpr Sample& operator+=(double other)
{
left += other;
right += other;
return *this;
}
constexpr Sample operator+(Sample const& other)
{
return { left + other.left, right + other.right };
}
double left { 0 };
double right { 0 };
};
}