ladybird/Libraries/LibCrypto/PK/RSA.h

235 lines
7.1 KiB
C++

/*
* Copyright (c) 2020, Ali Mohammad Pur <ali.mpfard@gmail.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <AK/Span.h>
#include <AK/Vector.h>
#include <LibCrypto/BigInt/UnsignedBigInteger.h>
#include <LibCrypto/NumberTheory/ModularFunctions.h>
#include <LibCrypto/PK/Code/EMSA_PSS.h>
#include <LibCrypto/PK/PK.h>
namespace Crypto {
namespace PK {
template<typename Integer = u64>
class RSAPublicKey {
public:
RSAPublicKey(const Integer& n, const Integer& e)
: m_modulus(n)
, m_public_exponent(e)
{
}
RSAPublicKey()
: m_modulus(0)
, m_public_exponent(0)
{
}
//--stuff it should do
const Integer& modulus() const { return m_modulus; }
const Integer& public_exponent() const { return m_public_exponent; }
size_t length() const { return m_length; }
void set_length(size_t length) { m_length = length; }
void set(const Integer& n, const Integer& e)
{
m_modulus = n;
m_public_exponent = e;
m_length = (n.trimmed_length() * sizeof(u32));
}
private:
Integer m_modulus;
Integer m_public_exponent;
size_t m_length { 0 };
};
template<typename Integer = UnsignedBigInteger>
class RSAPrivateKey {
public:
RSAPrivateKey(const Integer& n, const Integer& d, const Integer& e)
: m_modulus(n)
, m_private_exponent(d)
, m_public_exponent(e)
{
}
RSAPrivateKey()
{
}
//--stuff it should do
const Integer& modulus() const { return m_modulus; }
const Integer& private_exponent() const { return m_private_exponent; }
const Integer& public_exponent() const { return m_public_exponent; }
size_t length() const { return m_length; }
void set_length(size_t length) { m_length = length; }
void set(const Integer& n, const Integer& d, const Integer& e)
{
m_modulus = n;
m_private_exponent = d;
m_public_exponent = e;
m_length = (n.length() * sizeof(u32));
}
private:
Integer m_modulus;
Integer m_private_exponent;
Integer m_public_exponent;
size_t m_length { 0 };
};
template<typename PubKey, typename PrivKey>
struct RSAKeyPair {
PubKey public_key;
PrivKey private_key;
};
using IntegerType = UnsignedBigInteger;
class RSA : public PKSystem<RSAPrivateKey<IntegerType>, RSAPublicKey<IntegerType>> {
template<typename T>
friend class RSA_EMSA_PSS;
public:
using KeyPairType = RSAKeyPair<PublicKeyType, PrivateKeyType>;
static KeyPairType parse_rsa_key(ReadonlyBytes);
static KeyPairType generate_key_pair(size_t bits = 256)
{
IntegerType e { 65537 }; // :P
IntegerType p, q;
IntegerType lambda;
do {
p = NumberTheory::random_big_prime(bits / 2);
q = NumberTheory::random_big_prime(bits / 2);
lambda = NumberTheory::LCM(p.minus(1), q.minus(1));
dbg() << "checking combination p=" << p << ", q=" << q << ", lambda=" << lambda.length();
} while (!(NumberTheory::GCD(e, lambda) == 1));
auto n = p.multiplied_by(q);
auto d = NumberTheory::ModularInverse(e, lambda);
dbg() << "Your keys are Pub{n=" << n << ", e=" << e << "} and Priv{n=" << n << ", d=" << d << "}";
RSAKeyPair<PublicKeyType, PrivateKeyType> keys {
{ n, e },
{ n, d, e }
};
keys.public_key.set_length(bits / 2 / 8);
keys.private_key.set_length(bits / 2 / 8);
return keys;
}
RSA(IntegerType n, IntegerType d, IntegerType e)
{
m_public_key.set(n, e);
m_private_key.set(n, d, e);
}
RSA(PublicKeyType& pubkey, PrivateKeyType& privkey)
: PKSystem<RSAPrivateKey<IntegerType>, RSAPublicKey<IntegerType>>(pubkey, privkey)
{
}
RSA(const ByteBuffer& publicKeyPEM, const ByteBuffer& privateKeyPEM)
{
import_public_key(publicKeyPEM);
import_private_key(privateKeyPEM);
}
RSA(const StringView& privKeyPEM)
{
import_private_key(privKeyPEM.bytes());
m_public_key.set(m_private_key.modulus(), m_private_key.public_exponent());
}
// create our own keys
RSA()
{
auto pair = generate_key_pair();
m_public_key = pair.public_key;
m_private_key = pair.private_key;
}
virtual void encrypt(ReadonlyBytes in, Bytes& out) override;
virtual void decrypt(ReadonlyBytes in, Bytes& out) override;
virtual void sign(ReadonlyBytes in, Bytes& out) override;
virtual void verify(ReadonlyBytes in, Bytes& out) override;
virtual String class_name() const override { return "RSA"; }
virtual size_t output_size() const override { return m_public_key.length(); }
void import_public_key(ReadonlyBytes, bool pem = true);
void import_private_key(ReadonlyBytes, bool pem = true);
const PrivateKeyType& private_key() const { return m_private_key; }
const PublicKeyType& public_key() const { return m_public_key; }
};
template<typename HashFunction>
class RSA_EMSA_PSS {
public:
RSA_EMSA_PSS(RSA& rsa)
: m_rsa(rsa)
{
}
void sign(ReadonlyBytes in, Bytes& out);
VerificationConsistency verify(ReadonlyBytes in);
private:
EMSA_PSS<HashFunction, HashFunction::DigestSize> m_emsa_pss;
RSA m_rsa;
};
class RSA_PKCS1_EME : public RSA {
public:
// forward all constructions to RSA
template<typename... Args>
RSA_PKCS1_EME(Args... args)
: RSA(args...)
{
}
~RSA_PKCS1_EME() { }
virtual void encrypt(ReadonlyBytes in, Bytes& out) override;
virtual void decrypt(ReadonlyBytes in, Bytes& out) override;
virtual void sign(ReadonlyBytes, Bytes&) override;
virtual void verify(ReadonlyBytes, Bytes&) override;
virtual String class_name() const override { return "RSA_PKCS1-EME"; }
virtual size_t output_size() const override { return m_public_key.length(); }
};
}
}