mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2025-04-24 21:45:20 +00:00
235 lines
7.1 KiB
C++
235 lines
7.1 KiB
C++
/*
|
|
* Copyright (c) 2020, Ali Mohammad Pur <ali.mpfard@gmail.com>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <AK/Span.h>
|
|
#include <AK/Vector.h>
|
|
#include <LibCrypto/BigInt/UnsignedBigInteger.h>
|
|
#include <LibCrypto/NumberTheory/ModularFunctions.h>
|
|
#include <LibCrypto/PK/Code/EMSA_PSS.h>
|
|
#include <LibCrypto/PK/PK.h>
|
|
|
|
namespace Crypto {
|
|
namespace PK {
|
|
template<typename Integer = u64>
|
|
class RSAPublicKey {
|
|
public:
|
|
RSAPublicKey(const Integer& n, const Integer& e)
|
|
: m_modulus(n)
|
|
, m_public_exponent(e)
|
|
{
|
|
}
|
|
|
|
RSAPublicKey()
|
|
: m_modulus(0)
|
|
, m_public_exponent(0)
|
|
{
|
|
}
|
|
|
|
//--stuff it should do
|
|
|
|
const Integer& modulus() const { return m_modulus; }
|
|
const Integer& public_exponent() const { return m_public_exponent; }
|
|
size_t length() const { return m_length; }
|
|
void set_length(size_t length) { m_length = length; }
|
|
|
|
void set(const Integer& n, const Integer& e)
|
|
{
|
|
m_modulus = n;
|
|
m_public_exponent = e;
|
|
m_length = (n.trimmed_length() * sizeof(u32));
|
|
}
|
|
|
|
private:
|
|
Integer m_modulus;
|
|
Integer m_public_exponent;
|
|
size_t m_length { 0 };
|
|
};
|
|
|
|
template<typename Integer = UnsignedBigInteger>
|
|
class RSAPrivateKey {
|
|
public:
|
|
RSAPrivateKey(const Integer& n, const Integer& d, const Integer& e)
|
|
: m_modulus(n)
|
|
, m_private_exponent(d)
|
|
, m_public_exponent(e)
|
|
{
|
|
}
|
|
|
|
RSAPrivateKey()
|
|
{
|
|
}
|
|
|
|
//--stuff it should do
|
|
const Integer& modulus() const { return m_modulus; }
|
|
const Integer& private_exponent() const { return m_private_exponent; }
|
|
const Integer& public_exponent() const { return m_public_exponent; }
|
|
size_t length() const { return m_length; }
|
|
void set_length(size_t length) { m_length = length; }
|
|
|
|
void set(const Integer& n, const Integer& d, const Integer& e)
|
|
{
|
|
m_modulus = n;
|
|
m_private_exponent = d;
|
|
m_public_exponent = e;
|
|
m_length = (n.length() * sizeof(u32));
|
|
}
|
|
|
|
private:
|
|
Integer m_modulus;
|
|
Integer m_private_exponent;
|
|
Integer m_public_exponent;
|
|
size_t m_length { 0 };
|
|
};
|
|
|
|
template<typename PubKey, typename PrivKey>
|
|
struct RSAKeyPair {
|
|
PubKey public_key;
|
|
PrivKey private_key;
|
|
};
|
|
|
|
using IntegerType = UnsignedBigInteger;
|
|
class RSA : public PKSystem<RSAPrivateKey<IntegerType>, RSAPublicKey<IntegerType>> {
|
|
template<typename T>
|
|
friend class RSA_EMSA_PSS;
|
|
|
|
public:
|
|
using KeyPairType = RSAKeyPair<PublicKeyType, PrivateKeyType>;
|
|
|
|
static KeyPairType parse_rsa_key(ReadonlyBytes);
|
|
static KeyPairType generate_key_pair(size_t bits = 256)
|
|
{
|
|
IntegerType e { 65537 }; // :P
|
|
IntegerType p, q;
|
|
IntegerType lambda;
|
|
|
|
do {
|
|
p = NumberTheory::random_big_prime(bits / 2);
|
|
q = NumberTheory::random_big_prime(bits / 2);
|
|
lambda = NumberTheory::LCM(p.minus(1), q.minus(1));
|
|
dbg() << "checking combination p=" << p << ", q=" << q << ", lambda=" << lambda.length();
|
|
} while (!(NumberTheory::GCD(e, lambda) == 1));
|
|
|
|
auto n = p.multiplied_by(q);
|
|
|
|
auto d = NumberTheory::ModularInverse(e, lambda);
|
|
dbg() << "Your keys are Pub{n=" << n << ", e=" << e << "} and Priv{n=" << n << ", d=" << d << "}";
|
|
RSAKeyPair<PublicKeyType, PrivateKeyType> keys {
|
|
{ n, e },
|
|
{ n, d, e }
|
|
};
|
|
keys.public_key.set_length(bits / 2 / 8);
|
|
keys.private_key.set_length(bits / 2 / 8);
|
|
return keys;
|
|
}
|
|
|
|
RSA(IntegerType n, IntegerType d, IntegerType e)
|
|
{
|
|
m_public_key.set(n, e);
|
|
m_private_key.set(n, d, e);
|
|
}
|
|
|
|
RSA(PublicKeyType& pubkey, PrivateKeyType& privkey)
|
|
: PKSystem<RSAPrivateKey<IntegerType>, RSAPublicKey<IntegerType>>(pubkey, privkey)
|
|
{
|
|
}
|
|
|
|
RSA(const ByteBuffer& publicKeyPEM, const ByteBuffer& privateKeyPEM)
|
|
{
|
|
import_public_key(publicKeyPEM);
|
|
import_private_key(privateKeyPEM);
|
|
}
|
|
|
|
RSA(const StringView& privKeyPEM)
|
|
{
|
|
import_private_key(privKeyPEM.bytes());
|
|
m_public_key.set(m_private_key.modulus(), m_private_key.public_exponent());
|
|
}
|
|
|
|
// create our own keys
|
|
RSA()
|
|
{
|
|
auto pair = generate_key_pair();
|
|
m_public_key = pair.public_key;
|
|
m_private_key = pair.private_key;
|
|
}
|
|
|
|
virtual void encrypt(ReadonlyBytes in, Bytes& out) override;
|
|
virtual void decrypt(ReadonlyBytes in, Bytes& out) override;
|
|
|
|
virtual void sign(ReadonlyBytes in, Bytes& out) override;
|
|
virtual void verify(ReadonlyBytes in, Bytes& out) override;
|
|
|
|
virtual String class_name() const override { return "RSA"; }
|
|
|
|
virtual size_t output_size() const override { return m_public_key.length(); }
|
|
|
|
void import_public_key(ReadonlyBytes, bool pem = true);
|
|
void import_private_key(ReadonlyBytes, bool pem = true);
|
|
|
|
const PrivateKeyType& private_key() const { return m_private_key; }
|
|
const PublicKeyType& public_key() const { return m_public_key; }
|
|
};
|
|
|
|
template<typename HashFunction>
|
|
class RSA_EMSA_PSS {
|
|
public:
|
|
RSA_EMSA_PSS(RSA& rsa)
|
|
: m_rsa(rsa)
|
|
{
|
|
}
|
|
|
|
void sign(ReadonlyBytes in, Bytes& out);
|
|
VerificationConsistency verify(ReadonlyBytes in);
|
|
|
|
private:
|
|
EMSA_PSS<HashFunction, HashFunction::DigestSize> m_emsa_pss;
|
|
RSA m_rsa;
|
|
};
|
|
|
|
class RSA_PKCS1_EME : public RSA {
|
|
public:
|
|
// forward all constructions to RSA
|
|
template<typename... Args>
|
|
RSA_PKCS1_EME(Args... args)
|
|
: RSA(args...)
|
|
{
|
|
}
|
|
|
|
~RSA_PKCS1_EME() { }
|
|
|
|
virtual void encrypt(ReadonlyBytes in, Bytes& out) override;
|
|
virtual void decrypt(ReadonlyBytes in, Bytes& out) override;
|
|
|
|
virtual void sign(ReadonlyBytes, Bytes&) override;
|
|
virtual void verify(ReadonlyBytes, Bytes&) override;
|
|
|
|
virtual String class_name() const override { return "RSA_PKCS1-EME"; }
|
|
virtual size_t output_size() const override { return m_public_key.length(); }
|
|
};
|
|
}
|
|
}
|