mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2025-04-25 05:55:13 +00:00
The new ProcFS design consists of two main parts: 1. The representative ProcFS class, which is derived from the FS class. The ProcFS and its inodes are much more lean - merely 3 classes to represent the common type of inodes - regular files, symbolic links and directories. They're backed by a ProcFSExposedComponent object, which is responsible for the functional operation behind the scenes. 2. The backend of the ProcFS - the ProcFSComponentsRegistrar class and all derived classes from the ProcFSExposedComponent class. These together form the entire backend and handle all the functions you can expect from the ProcFS. The ProcFSExposedComponent derived classes split to 3 types in the manner of lifetime in the kernel: 1. Persistent objects - this category includes all basic objects, like the root folder, /proc/bus folder, main blob files in the root folders, etc. These objects are persistent and cannot die ever. 2. Semi-persistent objects - this category includes all PID folders, and subdirectories to the PID folders. It also includes exposed objects like the unveil JSON'ed blob. These object are persistent as long as the the responsible process they represent is still alive. 3. Dynamic objects - this category includes files in the subdirectories of a PID folder, like /proc/PID/fd/* or /proc/PID/stacks/*. Essentially, these objects are always created dynamically and when no longer in need after being used, they're deallocated. Nevertheless, the new allocated backend objects and inodes try to use the same InodeIndex if possible - this might change only when a thread dies and a new thread is born with a new thread stack, or when a file descriptor is closed and a new one within the same file descriptor number is opened. This is needed to actually be able to do something useful with these objects. The new design assures that many ProcFS instances can be used at once, with one backend for usage for all instances.
321 lines
10 KiB
C++
321 lines
10 KiB
C++
/*
|
|
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/Types.h>
|
|
#include <Kernel/ACPI/DynamicParser.h>
|
|
#include <Kernel/ACPI/Initialize.h>
|
|
#include <Kernel/ACPI/MultiProcessorParser.h>
|
|
#include <Kernel/Arch/PC/BIOS.h>
|
|
#include <Kernel/Arch/x86/Processor.h>
|
|
#include <Kernel/CMOS.h>
|
|
#include <Kernel/CommandLine.h>
|
|
#include <Kernel/Devices/FullDevice.h>
|
|
#include <Kernel/Devices/HID/HIDManagement.h>
|
|
#include <Kernel/Devices/MemoryDevice.h>
|
|
#include <Kernel/Devices/NullDevice.h>
|
|
#include <Kernel/Devices/PCISerialDevice.h>
|
|
#include <Kernel/Devices/RandomDevice.h>
|
|
#include <Kernel/Devices/SB16.h>
|
|
#include <Kernel/Devices/SerialDevice.h>
|
|
#include <Kernel/Devices/USB/UHCIController.h>
|
|
#include <Kernel/Devices/VMWareBackdoor.h>
|
|
#include <Kernel/Devices/ZeroDevice.h>
|
|
#include <Kernel/FileSystem/Ext2FileSystem.h>
|
|
#include <Kernel/FileSystem/SysFS.h>
|
|
#include <Kernel/FileSystem/VirtualFileSystem.h>
|
|
#include <Kernel/Graphics/GraphicsManagement.h>
|
|
#include <Kernel/Heap/SlabAllocator.h>
|
|
#include <Kernel/Heap/kmalloc.h>
|
|
#include <Kernel/Interrupts/APIC.h>
|
|
#include <Kernel/Interrupts/InterruptManagement.h>
|
|
#include <Kernel/Interrupts/PIC.h>
|
|
#include <Kernel/KSyms.h>
|
|
#include <Kernel/Multiboot.h>
|
|
#include <Kernel/Net/NetworkTask.h>
|
|
#include <Kernel/Net/NetworkingManagement.h>
|
|
#include <Kernel/PCI/Access.h>
|
|
#include <Kernel/PCI/Initializer.h>
|
|
#include <Kernel/Panic.h>
|
|
#include <Kernel/Process.h>
|
|
#include <Kernel/ProcessExposed.h>
|
|
#include <Kernel/RTC.h>
|
|
#include <Kernel/Random.h>
|
|
#include <Kernel/Scheduler.h>
|
|
#include <Kernel/Sections.h>
|
|
#include <Kernel/Storage/StorageManagement.h>
|
|
#include <Kernel/TTY/ConsoleManagement.h>
|
|
#include <Kernel/TTY/PTYMultiplexer.h>
|
|
#include <Kernel/TTY/VirtualConsole.h>
|
|
#include <Kernel/Tasks/FinalizerTask.h>
|
|
#include <Kernel/Tasks/SyncTask.h>
|
|
#include <Kernel/Time/TimeManagement.h>
|
|
#include <Kernel/VM/MemoryManager.h>
|
|
#include <Kernel/VirtIO/VirtIO.h>
|
|
#include <Kernel/WorkQueue.h>
|
|
#include <Kernel/kstdio.h>
|
|
|
|
// Defined in the linker script
|
|
typedef void (*ctor_func_t)();
|
|
extern ctor_func_t start_heap_ctors;
|
|
extern ctor_func_t end_heap_ctors;
|
|
extern ctor_func_t start_ctors;
|
|
extern ctor_func_t end_ctors;
|
|
|
|
extern u32 __stack_chk_guard;
|
|
u32 __stack_chk_guard;
|
|
|
|
extern "C" u8* start_of_safemem_text;
|
|
extern "C" u8* end_of_safemem_text;
|
|
extern "C" u8* start_of_safemem_atomic_text;
|
|
extern "C" u8* end_of_safemem_atomic_text;
|
|
|
|
extern "C" u8* end_of_kernel_image;
|
|
|
|
multiboot_module_entry_t multiboot_copy_boot_modules_array[16];
|
|
size_t multiboot_copy_boot_modules_count;
|
|
|
|
extern "C" const char kernel_cmdline[4096];
|
|
READONLY_AFTER_INIT bool g_in_early_boot;
|
|
|
|
namespace Kernel {
|
|
|
|
[[noreturn]] static void init_stage2(void*);
|
|
static void setup_serial_debug();
|
|
|
|
// boot.S expects these functions to exactly have the following signatures.
|
|
// We declare them here to ensure their signatures don't accidentally change.
|
|
extern "C" void init_finished(u32 cpu) __attribute__((used));
|
|
extern "C" [[noreturn]] void init_ap(u32 cpu, Processor* processor_info);
|
|
extern "C" [[noreturn]] void init();
|
|
|
|
READONLY_AFTER_INIT VirtualConsole* tty0;
|
|
|
|
static Processor s_bsp_processor; // global but let's keep it "private"
|
|
|
|
// SerenityOS Kernel C++ entry point :^)
|
|
//
|
|
// This is where C++ execution begins, after boot.S transfers control here.
|
|
//
|
|
// The purpose of init() is to start multi-tasking. It does the bare minimum
|
|
// amount of work needed to start the scheduler.
|
|
//
|
|
// Once multi-tasking is ready, we spawn a new thread that starts in the
|
|
// init_stage2() function. Initialization continues there.
|
|
|
|
extern "C" [[noreturn]] UNMAP_AFTER_INIT void init()
|
|
{
|
|
if ((FlatPtr)&end_of_kernel_image >= 0xc2000000u) {
|
|
// The kernel has grown too large again!
|
|
asm volatile("cli;hlt");
|
|
}
|
|
|
|
g_in_early_boot = true;
|
|
setup_serial_debug();
|
|
|
|
// We need to copy the command line before kmalloc is initialized,
|
|
// as it may overwrite parts of multiboot!
|
|
CommandLine::early_initialize(kernel_cmdline);
|
|
memcpy(multiboot_copy_boot_modules_array, (u8*)low_physical_to_virtual(multiboot_info_ptr->mods_addr), multiboot_info_ptr->mods_count * sizeof(multiboot_module_entry_t));
|
|
multiboot_copy_boot_modules_count = multiboot_info_ptr->mods_count;
|
|
s_bsp_processor.early_initialize(0);
|
|
|
|
// Invoke the constructors needed for the kernel heap
|
|
for (ctor_func_t* ctor = &start_heap_ctors; ctor < &end_heap_ctors; ctor++)
|
|
(*ctor)();
|
|
kmalloc_init();
|
|
slab_alloc_init();
|
|
|
|
ConsoleDevice::initialize();
|
|
s_bsp_processor.initialize(0);
|
|
|
|
CommandLine::initialize();
|
|
MemoryManager::initialize(0);
|
|
|
|
// Ensure that the safemem sections are not empty. This could happen if the linker accidentally discards the sections.
|
|
VERIFY(&start_of_safemem_text != &end_of_safemem_text);
|
|
VERIFY(&start_of_safemem_atomic_text != &end_of_safemem_atomic_text);
|
|
|
|
// Invoke all static global constructors in the kernel.
|
|
// Note that we want to do this as early as possible.
|
|
for (ctor_func_t* ctor = &start_ctors; ctor < &end_ctors; ctor++)
|
|
(*ctor)();
|
|
|
|
APIC::initialize();
|
|
InterruptManagement::initialize();
|
|
ACPI::initialize();
|
|
|
|
// Initialize the PCI Bus as early as possible, for early boot (PCI based) serial logging
|
|
SystemRegistrar::initialize();
|
|
ProcFSComponentsRegistrar::initialize();
|
|
PCI::initialize();
|
|
PCISerialDevice::detect();
|
|
|
|
VFS::initialize();
|
|
|
|
dmesgln("Starting SerenityOS...");
|
|
|
|
TimeManagement::initialize(0);
|
|
|
|
__stack_chk_guard = get_fast_random<u32>();
|
|
|
|
NullDevice::initialize();
|
|
if (!get_serial_debug())
|
|
(void)SerialDevice::must_create(0).leak_ref();
|
|
(void)SerialDevice::must_create(1).leak_ref();
|
|
(void)SerialDevice::must_create(2).leak_ref();
|
|
(void)SerialDevice::must_create(3).leak_ref();
|
|
|
|
VMWareBackdoor::the(); // don't wait until first mouse packet
|
|
HIDManagement::initialize();
|
|
|
|
Thread::initialize();
|
|
Process::initialize();
|
|
Scheduler::initialize();
|
|
|
|
WorkQueue::initialize();
|
|
|
|
{
|
|
RefPtr<Thread> init_stage2_thread;
|
|
Process::create_kernel_process(init_stage2_thread, "init_stage2", init_stage2, nullptr);
|
|
// We need to make sure we drop the reference for init_stage2_thread
|
|
// before calling into Scheduler::start, otherwise we will have a
|
|
// dangling Thread that never gets cleaned up
|
|
}
|
|
|
|
Scheduler::start();
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
//
|
|
// This is where C++ execution begins for APs, after boot.S transfers control here.
|
|
//
|
|
// The purpose of init_ap() is to initialize APs for multi-tasking.
|
|
//
|
|
extern "C" [[noreturn]] UNMAP_AFTER_INIT void init_ap(u32 cpu, Processor* processor_info)
|
|
{
|
|
processor_info->early_initialize(cpu);
|
|
|
|
processor_info->initialize(cpu);
|
|
MemoryManager::initialize(cpu);
|
|
|
|
Scheduler::set_idle_thread(APIC::the().get_idle_thread(cpu));
|
|
|
|
Scheduler::start();
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
//
|
|
// This method is called once a CPU enters the scheduler and its idle thread
|
|
// At this point the initial boot stack can be freed
|
|
//
|
|
extern "C" UNMAP_AFTER_INIT void init_finished(u32 cpu)
|
|
{
|
|
if (cpu == 0) {
|
|
// TODO: we can reuse the boot stack, maybe for kmalloc()?
|
|
} else {
|
|
APIC::the().init_finished(cpu);
|
|
TimeManagement::initialize(cpu);
|
|
}
|
|
}
|
|
|
|
void init_stage2(void*)
|
|
{
|
|
if (APIC::initialized() && APIC::the().enabled_processor_count() > 1) {
|
|
// We can't start the APs until we have a scheduler up and running.
|
|
// We need to be able to process ICI messages, otherwise another
|
|
// core may send too many and end up deadlocking once the pool is
|
|
// exhausted
|
|
APIC::the().boot_aps();
|
|
}
|
|
|
|
GraphicsManagement::the().initialize();
|
|
ConsoleManagement::the().initialize();
|
|
|
|
SyncTask::spawn();
|
|
FinalizerTask::spawn();
|
|
|
|
auto boot_profiling = kernel_command_line().is_boot_profiling_enabled();
|
|
|
|
USB::UHCIController::detect();
|
|
|
|
BIOSExposedFolder::initialize();
|
|
ACPI::ExposedFolder::initialize();
|
|
|
|
VirtIO::detect();
|
|
|
|
NetworkingManagement::the().initialize();
|
|
Syscall::initialize();
|
|
|
|
(void)MemoryDevice::must_create().leak_ref();
|
|
(void)ZeroDevice::must_create().leak_ref();
|
|
(void)FullDevice::must_create().leak_ref();
|
|
(void)RandomDevice::must_create().leak_ref();
|
|
PTYMultiplexer::initialize();
|
|
SB16::detect();
|
|
|
|
StorageManagement::initialize(kernel_command_line().root_device(), kernel_command_line().is_force_pio());
|
|
if (!VFS::the().mount_root(StorageManagement::the().root_filesystem())) {
|
|
PANIC("VFS::mount_root failed");
|
|
}
|
|
|
|
Process::current()->set_root_directory(VFS::the().root_custody());
|
|
|
|
load_kernel_symbol_table();
|
|
|
|
// Switch out of early boot mode.
|
|
g_in_early_boot = false;
|
|
|
|
// NOTE: Everything marked READONLY_AFTER_INIT becomes non-writable after this point.
|
|
MM.protect_readonly_after_init_memory();
|
|
|
|
// NOTE: Everything marked UNMAP_AFTER_INIT becomes inaccessible after this point.
|
|
MM.unmap_memory_after_init();
|
|
|
|
int error;
|
|
|
|
// FIXME: It would be nicer to set the mode from userspace.
|
|
// FIXME: It would be smarter to not hardcode that the first tty is the only graphical one
|
|
ConsoleManagement::the().first_tty()->set_graphical(GraphicsManagement::the().framebuffer_devices_exist());
|
|
RefPtr<Thread> thread;
|
|
auto userspace_init = kernel_command_line().userspace_init();
|
|
auto init_args = kernel_command_line().userspace_init_args();
|
|
Process::create_user_process(thread, userspace_init, (uid_t)0, (gid_t)0, ProcessID(0), error, move(init_args), {}, tty0);
|
|
if (error != 0) {
|
|
PANIC("init_stage2: Error spawning SystemServer: {}", error);
|
|
}
|
|
thread->set_priority(THREAD_PRIORITY_HIGH);
|
|
|
|
if (boot_profiling) {
|
|
dbgln("Starting full system boot profiling");
|
|
auto result = Process::current()->sys$profiling_enable(-1, ~0ull);
|
|
VERIFY(!result.is_error());
|
|
}
|
|
|
|
NetworkTask::spawn();
|
|
|
|
Process::current()->sys$exit(0);
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
UNMAP_AFTER_INIT void setup_serial_debug()
|
|
{
|
|
// serial_debug will output all the dbgln() data to COM1 at
|
|
// 8-N-1 57600 baud. this is particularly useful for debugging the boot
|
|
// process on live hardware.
|
|
if (StringView(kernel_cmdline).contains("serial_debug")) {
|
|
set_serial_debug(true);
|
|
}
|
|
}
|
|
|
|
extern "C" {
|
|
multiboot_info_t* multiboot_info_ptr;
|
|
}
|
|
|
|
// Define some Itanium C++ ABI methods to stop the linker from complaining.
|
|
// If we actually call these something has gone horribly wrong
|
|
void* __dso_handle __attribute__((visibility("hidden")));
|
|
|
|
}
|