ladybird/Libraries/LibJS/Runtime/ECMAScriptFunctionObject.cpp
Aliaksandr Kalenik e48645c83f LibJS: Cache arguments span in ExecutionContext
Allows us to avoid doing math in ExecutionContext::argument()
2025-04-24 10:30:52 +02:00

966 lines
43 KiB
C++
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2020, Stephan Unverwerth <s.unverwerth@serenityos.org>
* Copyright (c) 2020-2023, Linus Groh <linusg@serenityos.org>
* Copyright (c) 2023-2025, Andreas Kling <andreas@ladybird.org>
* Copyright (c) 2023, Shannon Booth <shannon@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Debug.h>
#include <AK/Function.h>
#include <LibJS/AST.h>
#include <LibJS/Bytecode/BasicBlock.h>
#include <LibJS/Bytecode/Generator.h>
#include <LibJS/Bytecode/Interpreter.h>
#include <LibJS/Runtime/AbstractOperations.h>
#include <LibJS/Runtime/Array.h>
#include <LibJS/Runtime/AsyncFunctionDriverWrapper.h>
#include <LibJS/Runtime/AsyncGenerator.h>
#include <LibJS/Runtime/ECMAScriptFunctionObject.h>
#include <LibJS/Runtime/Error.h>
#include <LibJS/Runtime/ExecutionContext.h>
#include <LibJS/Runtime/FunctionEnvironment.h>
#include <LibJS/Runtime/GeneratorObject.h>
#include <LibJS/Runtime/GlobalEnvironment.h>
#include <LibJS/Runtime/GlobalObject.h>
#include <LibJS/Runtime/NativeFunction.h>
#include <LibJS/Runtime/PromiseCapability.h>
#include <LibJS/Runtime/PromiseConstructor.h>
#include <LibJS/Runtime/Value.h>
namespace JS {
GC_DEFINE_ALLOCATOR(ECMAScriptFunctionObject);
GC::Ref<ECMAScriptFunctionObject> ECMAScriptFunctionObject::create(Realm& realm, FlyString name, ByteString source_text, Statement const& ecmascript_code, NonnullRefPtr<FunctionParameters const> parameters, i32 function_length, Vector<FlyString> local_variables_names, Environment* parent_environment, PrivateEnvironment* private_environment, FunctionKind kind, bool is_strict, FunctionParsingInsights parsing_insights, bool is_arrow_function, Variant<PropertyKey, PrivateName, Empty> class_field_initializer_name)
{
Object* prototype = nullptr;
switch (kind) {
case FunctionKind::Normal:
prototype = realm.intrinsics().function_prototype();
break;
case FunctionKind::Generator:
prototype = realm.intrinsics().generator_function_prototype();
break;
case FunctionKind::Async:
prototype = realm.intrinsics().async_function_prototype();
break;
case FunctionKind::AsyncGenerator:
prototype = realm.intrinsics().async_generator_function_prototype();
break;
}
auto shared_data = adopt_ref(*new SharedFunctionInstanceData(
realm.vm(),
kind,
move(name),
function_length,
*parameters,
ecmascript_code,
source_text,
is_strict,
is_arrow_function,
parsing_insights,
move(local_variables_names)));
shared_data->m_class_field_initializer_name = move(class_field_initializer_name);
return realm.create<ECMAScriptFunctionObject>(
move(shared_data),
parent_environment,
private_environment,
*prototype);
}
GC::Ref<ECMAScriptFunctionObject> ECMAScriptFunctionObject::create(Realm& realm, FlyString name, Object& prototype, ByteString source_text, Statement const& ecmascript_code, NonnullRefPtr<FunctionParameters const> parameters, i32 function_length, Vector<FlyString> local_variables_names, Environment* parent_environment, PrivateEnvironment* private_environment, FunctionKind kind, bool is_strict, FunctionParsingInsights parsing_insights, bool is_arrow_function, Variant<PropertyKey, PrivateName, Empty> class_field_initializer_name)
{
auto shared_data = adopt_ref(*new SharedFunctionInstanceData(
realm.vm(),
kind,
move(name),
function_length,
*parameters,
ecmascript_code,
source_text,
is_strict,
is_arrow_function,
parsing_insights,
move(local_variables_names)));
shared_data->m_class_field_initializer_name = move(class_field_initializer_name);
return realm.create<ECMAScriptFunctionObject>(
move(shared_data),
parent_environment,
private_environment,
prototype);
}
GC::Ref<ECMAScriptFunctionObject> ECMAScriptFunctionObject::create_from_function_node(
FunctionNode const& function_node,
FlyString name,
GC::Ref<Realm> realm,
GC::Ptr<Environment> parent_environment,
GC::Ptr<PrivateEnvironment> private_environment)
{
GC::Ptr<Object> prototype = nullptr;
switch (function_node.kind()) {
case FunctionKind::Normal:
prototype = realm->intrinsics().function_prototype();
break;
case FunctionKind::Generator:
prototype = realm->intrinsics().generator_function_prototype();
break;
case FunctionKind::Async:
prototype = realm->intrinsics().async_function_prototype();
break;
case FunctionKind::AsyncGenerator:
prototype = realm->intrinsics().async_generator_function_prototype();
break;
}
RefPtr<SharedFunctionInstanceData> shared_data = function_node.shared_data();
if (!shared_data) {
shared_data = adopt_ref(*new SharedFunctionInstanceData(realm->vm(),
function_node.kind(),
move(name),
function_node.function_length(),
function_node.parameters(),
*function_node.body_ptr(),
function_node.source_text(),
function_node.is_strict_mode(),
function_node.is_arrow_function(),
function_node.parsing_insights(),
function_node.local_variables_names()));
function_node.set_shared_data(shared_data);
}
return realm->create<ECMAScriptFunctionObject>(
shared_data.release_nonnull(),
parent_environment,
private_environment,
*prototype);
}
SharedFunctionInstanceData::SharedFunctionInstanceData(
VM& vm,
FunctionKind kind,
FlyString name,
i32 function_length,
NonnullRefPtr<FunctionParameters const> formal_parameters,
NonnullRefPtr<Statement const> ecmascript_code,
ByteString source_text,
bool strict,
bool is_arrow_function,
FunctionParsingInsights const& parsing_insights,
Vector<FlyString> local_variables_names)
: m_formal_parameters(move(formal_parameters))
, m_ecmascript_code(move(ecmascript_code))
, m_name(move(name))
, m_source_text(move(source_text))
, m_local_variables_names(move(local_variables_names))
, m_function_length(function_length)
, m_kind(kind)
, m_strict(strict)
, m_might_need_arguments_object(parsing_insights.might_need_arguments_object)
, m_contains_direct_call_to_eval(parsing_insights.contains_direct_call_to_eval)
, m_is_arrow_function(is_arrow_function)
, m_uses_this(parsing_insights.uses_this)
{
if (m_is_arrow_function)
m_this_mode = ThisMode::Lexical;
else if (m_strict)
m_this_mode = ThisMode::Strict;
else
m_this_mode = ThisMode::Global;
// 15.1.3 Static Semantics: IsSimpleParameterList, https://tc39.es/ecma262/#sec-static-semantics-issimpleparameterlist
m_has_simple_parameter_list = all_of(m_formal_parameters->parameters(), [&](auto& parameter) {
if (parameter.is_rest)
return false;
if (parameter.default_value)
return false;
if (!parameter.binding.template has<NonnullRefPtr<Identifier const>>())
return false;
return true;
});
// NOTE: The following steps are from FunctionDeclarationInstantiation that could be executed once
// and then reused in all subsequent function instantiations.
// 2. Let code be func.[[ECMAScriptCode]].
ScopeNode const* scope_body = nullptr;
if (is<ScopeNode>(*m_ecmascript_code))
scope_body = static_cast<ScopeNode const*>(m_ecmascript_code.ptr());
// 3. Let strict be func.[[Strict]].
// 4. Let formals be func.[[FormalParameters]].
auto const& formals = *m_formal_parameters;
// 5. Let parameterNames be the BoundNames of formals.
// 6. If parameterNames has any duplicate entries, let hasDuplicates be true. Otherwise, let hasDuplicates be false.
size_t parameters_in_environment = 0;
// NOTE: This loop performs step 5, 6, and 8.
for (auto const& parameter : formals.parameters()) {
if (parameter.default_value)
m_has_parameter_expressions = true;
parameter.binding.visit(
[&](Identifier const& identifier) {
if (m_parameter_names.set(identifier.string(), identifier.is_local() ? ParameterIsLocal::Yes : ParameterIsLocal::No) != AK::HashSetResult::InsertedNewEntry)
m_has_duplicates = true;
else if (!identifier.is_local())
++parameters_in_environment;
},
[&](NonnullRefPtr<BindingPattern const> const& pattern) {
if (pattern->contains_expression())
m_has_parameter_expressions = true;
// NOTE: Nothing in the callback throws an exception.
MUST(pattern->for_each_bound_identifier([&](auto& identifier) {
if (m_parameter_names.set(identifier.string(), identifier.is_local() ? ParameterIsLocal::Yes : ParameterIsLocal::No) != AK::HashSetResult::InsertedNewEntry)
m_has_duplicates = true;
else if (!identifier.is_local())
++parameters_in_environment;
}));
});
}
// 15. Let argumentsObjectNeeded be true.
m_arguments_object_needed = m_might_need_arguments_object;
// 16. If func.[[ThisMode]] is lexical, then
if (m_this_mode == ThisMode::Lexical) {
// a. NOTE: Arrow functions never have an arguments object.
// b. Set argumentsObjectNeeded to false.
m_arguments_object_needed = false;
}
// 17. Else if parameterNames contains "arguments", then
else if (m_parameter_names.contains(vm.names.arguments.as_string())) {
// a. Set argumentsObjectNeeded to false.
m_arguments_object_needed = false;
}
HashTable<FlyString> function_names;
// 18. Else if hasParameterExpressions is false, then
// a. If functionNames contains "arguments" or lexicalNames contains "arguments", then
// i. Set argumentsObjectNeeded to false.
// NOTE: The block below is a combination of step 14 and step 18.
if (scope_body) {
// NOTE: Nothing in the callback throws an exception.
MUST(scope_body->for_each_var_function_declaration_in_reverse_order([&](FunctionDeclaration const& function) {
if (function_names.set(function.name()) == AK::HashSetResult::InsertedNewEntry)
m_functions_to_initialize.append(function);
}));
auto const& arguments_name = vm.names.arguments.as_string();
if (!m_has_parameter_expressions && function_names.contains(arguments_name))
m_arguments_object_needed = false;
if (!m_has_parameter_expressions && m_arguments_object_needed) {
// NOTE: Nothing in the callback throws an exception.
MUST(scope_body->for_each_lexically_declared_identifier([&](auto const& identifier) {
if (identifier.string() == arguments_name)
m_arguments_object_needed = false;
}));
}
} else {
m_arguments_object_needed = false;
}
size_t* environment_size = nullptr;
size_t parameter_environment_bindings_count = 0;
// 19. If strict is true or hasParameterExpressions is false, then
if (strict || !m_has_parameter_expressions) {
// a. NOTE: Only a single Environment Record is needed for the parameters, since calls to eval in strict mode code cannot create new bindings which are visible outside of the eval.
// b. Let env be the LexicalEnvironment of calleeContext
// NOTE: Here we are only interested in the size of the environment.
environment_size = &m_function_environment_bindings_count;
}
// 20. Else,
else {
// a. NOTE: A separate Environment Record is needed to ensure that bindings created by direct eval calls in the formal parameter list are outside the environment where parameters are declared.
// b. Let calleeEnv be the LexicalEnvironment of calleeContext.
// c. Let env be NewDeclarativeEnvironment(calleeEnv).
environment_size = &parameter_environment_bindings_count;
}
*environment_size += parameters_in_environment;
HashMap<FlyString, ParameterIsLocal> parameter_bindings;
auto arguments_object_needs_binding = m_arguments_object_needed && !m_local_variables_names.contains_slow(vm.names.arguments.as_string());
// 22. If argumentsObjectNeeded is true, then
if (m_arguments_object_needed) {
// f. Let parameterBindings be the list-concatenation of parameterNames and « "arguments" ».
parameter_bindings = m_parameter_names;
parameter_bindings.set(vm.names.arguments.as_string(), ParameterIsLocal::No);
if (arguments_object_needs_binding)
(*environment_size)++;
} else {
parameter_bindings = m_parameter_names;
// a. Let parameterBindings be parameterNames.
}
HashMap<FlyString, ParameterIsLocal> instantiated_var_names;
size_t* var_environment_size = nullptr;
// 27. If hasParameterExpressions is false, then
if (!m_has_parameter_expressions) {
// b. Let instantiatedVarNames be a copy of the List parameterBindings.
instantiated_var_names = parameter_bindings;
if (scope_body) {
// c. For each element n of varNames, do
MUST(scope_body->for_each_var_declared_identifier([&](auto const& id) {
// i. If instantiatedVarNames does not contain n, then
if (instantiated_var_names.set(id.string(), id.is_local() ? ParameterIsLocal::Yes : ParameterIsLocal::No) == AK::HashSetResult::InsertedNewEntry) {
// 1. Append n to instantiatedVarNames.
// Following steps will be executed in function_declaration_instantiation:
// 2. Perform ! env.CreateMutableBinding(n, false).
// 3. Perform ! env.InitializeBinding(n, undefined).
m_var_names_to_initialize_binding.append({
.identifier = id,
// NOTE: We don't have to set parameter_binding or function_name here
// since those are only relevant in the hasParameterExpressions==true path.
});
if (!id.is_local())
(*environment_size)++;
}
}));
}
// d. Let varEnv be env
var_environment_size = environment_size;
} else {
// a. NOTE: A separate Environment Record is needed to ensure that closures created by expressions in the formal parameter list do not have visibility of declarations in the function body.
// b. Let varEnv be NewDeclarativeEnvironment(env).
// NOTE: Here we are only interested in the size of the environment.
var_environment_size = &m_var_environment_bindings_count;
// 28. Else,
// NOTE: Steps a, b, c and d are executed in function_declaration_instantiation.
// e. For each element n of varNames, do
if (scope_body) {
MUST(scope_body->for_each_var_declared_identifier([&](auto const& id) {
// 1. Append n to instantiatedVarNames.
// Following steps will be executed in function_declaration_instantiation:
// 2. Perform ! env.CreateMutableBinding(n, false).
// 3. Perform ! env.InitializeBinding(n, undefined).
if (instantiated_var_names.set(id.string(), id.is_local() ? ParameterIsLocal::Yes : ParameterIsLocal::No) == AK::HashSetResult::InsertedNewEntry) {
m_var_names_to_initialize_binding.append({
.identifier = id,
.parameter_binding = parameter_bindings.contains(id.string()),
.function_name = function_names.contains(id.string()),
});
if (!id.is_local())
(*var_environment_size)++;
}
}));
}
}
// 29. NOTE: Annex B.3.2.1 adds additional steps at this point.
// B.3.2.1 Changes to FunctionDeclarationInstantiation, https://tc39.es/ecma262/#sec-web-compat-functiondeclarationinstantiation
if (!m_strict && scope_body) {
MUST(scope_body->for_each_function_hoistable_with_annexB_extension([&](FunctionDeclaration& function_declaration) {
auto function_name = function_declaration.name();
if (parameter_bindings.contains(function_name))
return;
if (!instantiated_var_names.contains(function_name) && function_name != vm.names.arguments.as_string()) {
m_function_names_to_initialize_binding.append(function_name);
instantiated_var_names.set(function_name, ParameterIsLocal::No);
(*var_environment_size)++;
}
function_declaration.set_should_do_additional_annexB_steps();
}));
}
size_t* lex_environment_size = nullptr;
// 30. If strict is false, then
if (!m_strict) {
bool can_elide_declarative_environment = !m_contains_direct_call_to_eval && (!scope_body || !scope_body->has_non_local_lexical_declarations());
if (can_elide_declarative_environment) {
lex_environment_size = var_environment_size;
} else {
// a. Let lexEnv be NewDeclarativeEnvironment(varEnv).
lex_environment_size = &m_lex_environment_bindings_count;
}
} else {
// a. let lexEnv be varEnv.
// NOTE: Here we are only interested in the size of the environment.
lex_environment_size = var_environment_size;
}
if (scope_body) {
MUST(scope_body->for_each_lexically_declared_identifier([&](auto const& id) {
if (!id.is_local())
(*lex_environment_size)++;
}));
}
m_function_environment_needed = arguments_object_needs_binding || m_function_environment_bindings_count > 0 || m_var_environment_bindings_count > 0 || m_lex_environment_bindings_count > 0 || parsing_insights.uses_this_from_environment || m_contains_direct_call_to_eval;
}
ECMAScriptFunctionObject::ECMAScriptFunctionObject(
NonnullRefPtr<SharedFunctionInstanceData> shared_data,
Environment* parent_environment,
PrivateEnvironment* private_environment,
Object& prototype)
: FunctionObject(prototype)
, m_shared_data(move(shared_data))
, m_environment(parent_environment)
, m_private_environment(private_environment)
{
if (!is_arrow_function() && kind() == FunctionKind::Normal)
unsafe_set_shape(realm()->intrinsics().normal_function_shape());
// 15. Set F.[[ScriptOrModule]] to GetActiveScriptOrModule().
m_script_or_module = vm().get_active_script_or_module();
}
void ECMAScriptFunctionObject::initialize(Realm& realm)
{
auto& vm = this->vm();
Base::initialize(realm);
// Note: The ordering of these properties must be: length, name, prototype which is the order
// they are defined in the spec: https://tc39.es/ecma262/#sec-function-instances .
// This is observable through something like: https://tc39.es/ecma262/#sec-ordinaryownpropertykeys
// which must give the properties in chronological order which in this case is the order they
// are defined in the spec.
m_name_string = PrimitiveString::create(vm, name());
if (!is_arrow_function() && kind() == FunctionKind::Normal) {
put_direct(realm.intrinsics().normal_function_length_offset(), Value(function_length()));
put_direct(realm.intrinsics().normal_function_name_offset(), m_name_string);
auto prototype = Object::create_with_premade_shape(realm.intrinsics().normal_function_prototype_shape());
prototype->put_direct(realm.intrinsics().normal_function_prototype_constructor_offset(), this);
put_direct(realm.intrinsics().normal_function_prototype_offset(), prototype);
} else {
MUST(define_property_or_throw(vm.names.length, { .value = Value(function_length()), .writable = false, .enumerable = false, .configurable = true }));
MUST(define_property_or_throw(vm.names.name, { .value = m_name_string, .writable = false, .enumerable = false, .configurable = true }));
if (!is_arrow_function()) {
Object* prototype = nullptr;
switch (kind()) {
case FunctionKind::Normal:
VERIFY_NOT_REACHED();
break;
case FunctionKind::Generator:
// prototype is "g1.prototype" in figure-2 (https://tc39.es/ecma262/img/figure-2.png)
prototype = Object::create_prototype(realm, realm.intrinsics().generator_function_prototype_prototype());
break;
case FunctionKind::Async:
break;
case FunctionKind::AsyncGenerator:
prototype = Object::create_prototype(realm, realm.intrinsics().async_generator_function_prototype_prototype());
break;
}
// 27.7.4 AsyncFunction Instances, https://tc39.es/ecma262/#sec-async-function-instances
// AsyncFunction instances do not have a prototype property as they are not constructible.
if (kind() != FunctionKind::Async)
define_direct_property(vm.names.prototype, prototype, Attribute::Writable);
}
}
}
// 10.2.1 [[Call]] ( thisArgument, argumentsList ), https://tc39.es/ecma262/#sec-ecmascript-function-objects-call-thisargument-argumentslist
ThrowCompletionOr<Value> ECMAScriptFunctionObject::internal_call(Value this_argument, ReadonlySpan<Value> arguments_list)
{
auto& vm = this->vm();
// 1. Let callerContext be the running execution context.
// NOTE: No-op, kept by the VM in its execution context stack.
if (!m_bytecode_executable) {
if (!ecmascript_code().bytecode_executable()) {
if (is_module_wrapper()) {
const_cast<Statement&>(ecmascript_code()).set_bytecode_executable(TRY(Bytecode::compile(vm, ecmascript_code(), kind(), name())));
} else {
const_cast<Statement&>(ecmascript_code()).set_bytecode_executable(TRY(Bytecode::compile(vm, *this)));
}
}
m_bytecode_executable = ecmascript_code().bytecode_executable();
}
u32 arguments_count = max(arguments_list.size(), formal_parameters().size());
auto registers_and_constants_and_locals_count = m_bytecode_executable->number_of_registers + m_bytecode_executable->constants.size() + m_bytecode_executable->local_variable_names.size();
ExecutionContext* callee_context = nullptr;
ALLOCATE_EXECUTION_CONTEXT_ON_NATIVE_STACK(callee_context, registers_and_constants_and_locals_count, arguments_count);
// Non-standard
auto arguments = callee_context->arguments;
if (!arguments_list.is_empty())
arguments.overwrite(0, arguments_list.data(), arguments_list.size() * sizeof(Value));
callee_context->passed_argument_count = arguments_list.size();
if (arguments_list.size() < formal_parameters().size()) {
for (size_t i = arguments_list.size(); i < formal_parameters().size(); ++i)
arguments[i] = js_undefined();
}
// 2. Let calleeContext be PrepareForOrdinaryCall(F, undefined).
// NOTE: We throw if the end of the native stack is reached, so unlike in the spec this _does_ need an exception check.
TRY(prepare_for_ordinary_call(*callee_context, nullptr));
// 3. Assert: calleeContext is now the running execution context.
VERIFY(&vm.running_execution_context() == callee_context);
// 4. If F.[[IsClassConstructor]] is true, then
if (is_class_constructor()) {
// a. Let error be a newly created TypeError object.
// b. NOTE: error is created in calleeContext with F's associated Realm Record.
auto throw_completion = vm.throw_completion<TypeError>(ErrorType::ClassConstructorWithoutNew, name());
// c. Remove calleeContext from the execution context stack and restore callerContext as the running execution context.
vm.pop_execution_context();
// d. Return ThrowCompletion(error).
return throw_completion;
}
// 5. Perform OrdinaryCallBindThis(F, calleeContext, thisArgument).
if (uses_this())
ordinary_call_bind_this(*callee_context, this_argument);
// 6. Let result be Completion(OrdinaryCallEvaluateBody(F, argumentsList)).
auto result = ordinary_call_evaluate_body();
// 7. Remove calleeContext from the execution context stack and restore callerContext as the running execution context.
vm.pop_execution_context();
// 8. If result.[[Type]] is return, return result.[[Value]].
if (result.type() == Completion::Type::Return)
return result.value();
// 9. Assert: result is a throw completion.
VERIFY(result.type() == Completion::Type::Throw);
// 10. Return ? result.
return result.release_error();
}
// 10.2.2 [[Construct]] ( argumentsList, newTarget ), https://tc39.es/ecma262/#sec-ecmascript-function-objects-construct-argumentslist-newtarget
ThrowCompletionOr<GC::Ref<Object>> ECMAScriptFunctionObject::internal_construct(ReadonlySpan<Value> arguments_list, FunctionObject& new_target)
{
auto& vm = this->vm();
if (!m_bytecode_executable) {
if (!ecmascript_code().bytecode_executable()) {
if (is_module_wrapper()) {
const_cast<Statement&>(ecmascript_code()).set_bytecode_executable(TRY(Bytecode::compile(vm, ecmascript_code(), kind(), name())));
} else {
const_cast<Statement&>(ecmascript_code()).set_bytecode_executable(TRY(Bytecode::compile(vm, *this)));
}
}
m_bytecode_executable = ecmascript_code().bytecode_executable();
}
u32 arguments_count = max(arguments_list.size(), formal_parameters().size());
auto registers_and_constants_and_locals_count = m_bytecode_executable->number_of_registers + m_bytecode_executable->constants.size() + m_bytecode_executable->local_variable_names.size();
ExecutionContext* callee_context = nullptr;
ALLOCATE_EXECUTION_CONTEXT_ON_NATIVE_STACK(callee_context, registers_and_constants_and_locals_count, arguments_count);
// Non-standard
auto arguments = callee_context->arguments;
if (!arguments_list.is_empty())
arguments.overwrite(0, arguments_list.data(), arguments_list.size() * sizeof(Value));
callee_context->passed_argument_count = arguments_list.size();
if (arguments_list.size() < formal_parameters().size()) {
for (size_t i = arguments_list.size(); i < formal_parameters().size(); ++i)
arguments[i] = js_undefined();
}
// 1. Let callerContext be the running execution context.
// NOTE: No-op, kept by the VM in its execution context stack.
// 2. Let kind be F.[[ConstructorKind]].
auto kind = constructor_kind();
GC::Ptr<Object> this_argument;
// 3. If kind is base, then
if (kind == ConstructorKind::Base) {
// a. Let thisArgument be ? OrdinaryCreateFromConstructor(newTarget, "%Object.prototype%").
this_argument = TRY(ordinary_create_from_constructor<Object>(vm, new_target, &Intrinsics::object_prototype, ConstructWithPrototypeTag::Tag));
}
// 4. Let calleeContext be PrepareForOrdinaryCall(F, newTarget).
// NOTE: We throw if the end of the native stack is reached, so unlike in the spec this _does_ need an exception check.
TRY(prepare_for_ordinary_call(*callee_context, &new_target));
// 5. Assert: calleeContext is now the running execution context.
VERIFY(&vm.running_execution_context() == callee_context);
// 6. If kind is base, then
if (kind == ConstructorKind::Base) {
// a. Perform OrdinaryCallBindThis(F, calleeContext, thisArgument).
if (uses_this())
ordinary_call_bind_this(*callee_context, this_argument);
// b. Let initializeResult be Completion(InitializeInstanceElements(thisArgument, F)).
auto initialize_result = this_argument->initialize_instance_elements(*this);
// c. If initializeResult is an abrupt completion, then
if (initialize_result.is_throw_completion()) {
// i. Remove calleeContext from the execution context stack and restore callerContext as the running execution context.
vm.pop_execution_context();
// ii. Return ? initializeResult.
return initialize_result.throw_completion();
}
}
// 7. Let constructorEnv be the LexicalEnvironment of calleeContext.
auto constructor_env = callee_context->lexical_environment;
// 8. Let result be Completion(OrdinaryCallEvaluateBody(F, argumentsList)).
auto result = ordinary_call_evaluate_body();
// 9. Remove calleeContext from the execution context stack and restore callerContext as the running execution context.
vm.pop_execution_context();
// 10. If result is a throw completion, then
if (result.type() == Completion::Type::Throw) {
// a. Return ? result.
return result.release_error();
}
// 11. Assert: result is a return completion.
VERIFY(result.type() == Completion::Type::Return);
// 12. If Type(result.[[Value]]) is Object, return result.[[Value]].
if (result.value().is_object())
return result.value().as_object();
// 13. If kind is base, return thisArgument.
if (kind == ConstructorKind::Base)
return *this_argument;
// 14. If result.[[Value]] is not undefined, throw a TypeError exception.
if (!result.value().is_undefined())
return vm.throw_completion<TypeError>(ErrorType::DerivedConstructorReturningInvalidValue);
// 15. Let thisBinding be ? constructorEnv.GetThisBinding().
auto this_binding = TRY(constructor_env->get_this_binding(vm));
// 16. Assert: Type(thisBinding) is Object.
VERIFY(this_binding.is_object());
// 17. Return thisBinding.
return this_binding.as_object();
}
void ECMAScriptFunctionObject::visit_edges(Visitor& visitor)
{
Base::visit_edges(visitor);
visitor.visit(m_environment);
visitor.visit(m_private_environment);
visitor.visit(m_home_object);
visitor.visit(m_name_string);
visitor.visit(m_bytecode_executable);
if (m_class_data) {
for (auto& field : m_class_data->fields) {
field.initializer.visit(
[&visitor](GC::Ref<ECMAScriptFunctionObject>& initializer) {
visitor.visit(initializer);
},
[&visitor](Value initializer) {
visitor.visit(initializer);
},
[](Empty) {});
if (auto* property_key_ptr = field.name.get_pointer<PropertyKey>(); property_key_ptr && property_key_ptr->is_symbol())
visitor.visit(property_key_ptr->as_symbol());
}
for (auto& private_element : m_class_data->private_methods)
visitor.visit(private_element.value);
}
m_script_or_module.visit(
[](Empty) {},
[&](auto& script_or_module) {
visitor.visit(script_or_module);
});
}
// 10.2.7 MakeMethod ( F, homeObject ), https://tc39.es/ecma262/#sec-makemethod
void ECMAScriptFunctionObject::make_method(Object& home_object)
{
// 1. Set F.[[HomeObject]] to homeObject.
m_home_object = &home_object;
// 2. Return unused.
}
// 10.2.1.1 PrepareForOrdinaryCall ( F, newTarget ), https://tc39.es/ecma262/#sec-prepareforordinarycall
ThrowCompletionOr<void> ECMAScriptFunctionObject::prepare_for_ordinary_call(ExecutionContext& callee_context, Object* new_target)
{
auto& vm = this->vm();
// Non-standard
callee_context.is_strict_mode = is_strict_mode();
// 1. Let callerContext be the running execution context.
// 2. Let calleeContext be a new ECMAScript code execution context.
// 3. Set the Function of calleeContext to F.
callee_context.function = this;
callee_context.function_name = m_name_string;
// 4. Let calleeRealm be F.[[Realm]].
// 5. Set the Realm of calleeContext to calleeRealm.
callee_context.realm = realm();
// 6. Set the ScriptOrModule of calleeContext to F.[[ScriptOrModule]].
callee_context.script_or_module = m_script_or_module;
if (function_environment_needed()) {
// 7. Let localEnv be NewFunctionEnvironment(F, newTarget).
auto local_environment = new_function_environment(*this, new_target);
local_environment->ensure_capacity(shared_data().m_function_environment_bindings_count);
// 8. Set the LexicalEnvironment of calleeContext to localEnv.
callee_context.lexical_environment = local_environment;
// 9. Set the VariableEnvironment of calleeContext to localEnv.
callee_context.variable_environment = local_environment;
} else {
callee_context.lexical_environment = environment();
callee_context.variable_environment = environment();
}
// 10. Set the PrivateEnvironment of calleeContext to F.[[PrivateEnvironment]].
callee_context.private_environment = m_private_environment;
// 11. If callerContext is not already suspended, suspend callerContext.
// 12. Push calleeContext onto the execution context stack; calleeContext is now the running execution context.
TRY(vm.push_execution_context(callee_context, {}));
// 13. NOTE: Any exception objects produced after this point are associated with calleeRealm.
// 14. Return calleeContext.
// NOTE: See the comment after step 2 above about how contexts are allocated on the C++ stack.
return {};
}
// 10.2.1.2 OrdinaryCallBindThis ( F, calleeContext, thisArgument ), https://tc39.es/ecma262/#sec-ordinarycallbindthis
void ECMAScriptFunctionObject::ordinary_call_bind_this(ExecutionContext& callee_context, Value this_argument)
{
auto& vm = this->vm();
// 1. Let thisMode be F.[[ThisMode]].
// If thisMode is lexical, return unused.
if (this_mode() == ThisMode::Lexical)
return;
// 3. Let calleeRealm be F.[[Realm]].
auto callee_realm = realm();
// 4. Let localEnv be the LexicalEnvironment of calleeContext.
auto local_env = callee_context.lexical_environment;
Value this_value;
// 5. If thisMode is strict, let thisValue be thisArgument.
if (this_mode() == ThisMode::Strict) {
this_value = this_argument;
}
// 6. Else,
else {
// a. If thisArgument is undefined or null, then
if (this_argument.is_nullish()) {
// i. Let globalEnv be calleeRealm.[[GlobalEnv]].
// ii. Assert: globalEnv is a global Environment Record.
auto& global_env = callee_realm->global_environment();
// iii. Let thisValue be globalEnv.[[GlobalThisValue]].
this_value = &global_env.global_this_value();
}
// b. Else,
else {
// i. Let thisValue be ! ToObject(thisArgument).
this_value = MUST(this_argument.to_object(vm));
// ii. NOTE: ToObject produces wrapper objects using calleeRealm.
VERIFY(vm.current_realm() == callee_realm);
}
}
// 7. Assert: localEnv is a function Environment Record.
// 8. Assert: The next step never returns an abrupt completion because localEnv.[[ThisBindingStatus]] is not initialized.
// 9. Perform ! localEnv.BindThisValue(thisValue).
callee_context.this_value = this_value;
if (function_environment_needed())
MUST(as<FunctionEnvironment>(*local_env).bind_this_value(vm, this_value));
// 10. Return unused.
}
// 27.7.5.1 AsyncFunctionStart ( promiseCapability, asyncFunctionBody ), https://tc39.es/ecma262/#sec-async-functions-abstract-operations-async-function-start
template<typename T>
void async_function_start(VM& vm, PromiseCapability const& promise_capability, T const& async_function_body)
{
// 1. Let runningContext be the running execution context.
auto& running_context = vm.running_execution_context();
// 2. Let asyncContext be a copy of runningContext.
auto async_context = running_context.copy();
// 3. NOTE: Copying the execution state is required for AsyncBlockStart to resume its execution. It is ill-defined to resume a currently executing context.
// 4. Perform AsyncBlockStart(promiseCapability, asyncFunctionBody, asyncContext).
async_block_start(vm, async_function_body, promise_capability, *async_context);
// 5. Return unused.
}
// 27.7.5.2 AsyncBlockStart ( promiseCapability, asyncBody, asyncContext ), https://tc39.es/ecma262/#sec-asyncblockstart
template<typename T>
void async_block_start(VM& vm, T const& async_body, PromiseCapability const& promise_capability, ExecutionContext& async_context)
{
auto& realm = *vm.current_realm();
// 1. Let runningContext be the running execution context.
auto& running_context = vm.running_execution_context();
// 2. Let closure be a new Abstract Closure with no parameters that captures promiseCapability and asyncBody and performs the following steps when called:
auto closure = NativeFunction::create(realm, ""_fly_string, [&async_body, &promise_capability](auto& vm) -> ThrowCompletionOr<Value> {
Completion result;
// a. Let acAsyncContext be the running execution context.
// b. If asyncBody is a Parse Node, then
if constexpr (!IsSame<T, GC::Function<Completion()>>) {
// i. Let result be Completion(Evaluation of asyncBody).
auto maybe_executable = Bytecode::compile(vm, async_body, FunctionKind::Async, "AsyncBlockStart"_fly_string);
if (maybe_executable.is_error())
result = maybe_executable.release_error();
else
result = vm.bytecode_interpreter().run_executable(*maybe_executable.value(), {}).value;
}
// c. Else,
else {
// i. Assert: asyncBody is an Abstract Closure with no parameters.
// ii. Let result be asyncBody().
result = async_body.function()();
}
// d. Assert: If we return here, the async function either threw an exception or performed an implicit or explicit return; all awaiting is done.
// e. Remove acAsyncContext from the execution context stack and restore the execution context that is at the top of the execution context stack as the running execution context.
vm.pop_execution_context();
// f. If result is a normal completion, then
if (result.type() == Completion::Type::Normal) {
// i. Perform ! Call(promiseCapability.[[Resolve]], undefined, « undefined »).
MUST(call(vm, *promise_capability.resolve(), js_undefined(), js_undefined()));
}
// g. Else if result is a return completion, then
else if (result.type() == Completion::Type::Return) {
// i. Perform ! Call(promiseCapability.[[Resolve]], undefined, « result.[[Value]] »).
MUST(call(vm, *promise_capability.resolve(), js_undefined(), result.value()));
}
// h. Else,
else {
// i. Assert: result is a throw completion.
VERIFY(result.type() == Completion::Type::Throw);
// ii. Perform ! Call(promiseCapability.[[Reject]], undefined, « result.[[Value]] »).
MUST(call(vm, *promise_capability.reject(), js_undefined(), result.value()));
}
// i. Return unused.
// NOTE: We don't support returning an empty/optional/unused value here.
return js_undefined();
});
// 3. Set the code evaluation state of asyncContext such that when evaluation is resumed for that execution context, closure will be called with no arguments.
// 4. Push asyncContext onto the execution context stack; asyncContext is now the running execution context.
auto push_result = vm.push_execution_context(async_context, {});
if (push_result.is_error())
return;
// 5. Resume the suspended evaluation of asyncContext. Let result be the value returned by the resumed computation.
auto result = call(vm, *closure, *async_context.this_value);
// 6. Assert: When we return here, asyncContext has already been removed from the execution context stack and runningContext is the currently running execution context.
VERIFY(&vm.running_execution_context() == &running_context);
// 7. Assert: result is a normal completion with a value of unused. The possible sources of this value are Await or, if the async function doesn't await anything, step 2.i above.
VERIFY(result.has_value() && result.value().is_undefined());
// 8. Return unused.
}
template void async_block_start(VM&, NonnullRefPtr<Statement const> const& async_body, PromiseCapability const&, ExecutionContext&);
template void async_function_start(VM&, PromiseCapability const&, NonnullRefPtr<Statement const> const& async_function_body);
template void async_block_start(VM&, GC::Function<Completion()> const& async_body, PromiseCapability const&, ExecutionContext&);
template void async_function_start(VM&, PromiseCapability const&, GC::Function<Completion()> const& async_function_body);
// 10.2.1.4 OrdinaryCallEvaluateBody ( F, argumentsList ), https://tc39.es/ecma262/#sec-ordinarycallevaluatebody
// 15.8.4 Runtime Semantics: EvaluateAsyncFunctionBody, https://tc39.es/ecma262/#sec-runtime-semantics-evaluatefunctionbody
Completion ECMAScriptFunctionObject::ordinary_call_evaluate_body()
{
auto& vm = this->vm();
auto& realm = *vm.current_realm();
auto result_and_frame = vm.bytecode_interpreter().run_executable(*m_bytecode_executable, {});
if (result_and_frame.value.is_error())
return result_and_frame.value.release_error();
auto result = result_and_frame.value.release_value();
// NOTE: Running the bytecode should eventually return a completion.
// Until it does, we assume "return" and include the undefined fallback from the call site.
if (kind() == FunctionKind::Normal)
return { Completion::Type::Return, result };
if (kind() == FunctionKind::AsyncGenerator) {
auto async_generator_object = TRY(AsyncGenerator::create(realm, result, this, vm.running_execution_context().copy()));
return { Completion::Type::Return, async_generator_object };
}
auto generator_object = TRY(GeneratorObject::create(realm, result, this, vm.running_execution_context().copy()));
// NOTE: Async functions are entirely transformed to generator functions, and wrapped in a custom driver that returns a promise
// See AwaitExpression::generate_bytecode() for the transformation.
if (kind() == FunctionKind::Async)
return { Completion::Type::Return, AsyncFunctionDriverWrapper::create(realm, generator_object) };
VERIFY(kind() == FunctionKind::Generator);
return { Completion::Type::Return, generator_object };
}
void ECMAScriptFunctionObject::set_name(FlyString const& name)
{
auto& vm = this->vm();
const_cast<SharedFunctionInstanceData&>(shared_data()).m_name = name;
m_name_string = PrimitiveString::create(vm, name);
MUST(define_property_or_throw(vm.names.name, { .value = m_name_string, .writable = false, .enumerable = false, .configurable = true }));
}
ECMAScriptFunctionObject::ClassData& ECMAScriptFunctionObject::ensure_class_data() const
{
if (!m_class_data)
m_class_data = make<ClassData>();
return *m_class_data;
}
}