ladybird/Libraries/LibDebug/DebugSession.cpp
Itamar f9d62fd5e5 LibDebug: Make sure to not single step the program twice
After hitting a breakpoint, we single step the program to execute the
instruction we breaked on and re-enable the breakpoint.
We also single step the program when the user of LibDebug returned a
DebugDecision::SingleStep.

Previously, if we hit a breakpoint and then were asked to to a
DebugDecision::SingleStep, we would single step twice.

This bug can actually crash programs, because it might cause us to
skip over a patched INT3 instruction in the second single-step.

Interestingely enough, this bug manifested as functrace crashing
certain programs: after hitting a breakpoint on a CALL instruction,
functrace single steps the program to see where the CALL jumps to
(yes, this can be optimized :D). functrace crashed when a CALL
instruction jumps to another CALL, because it inserts breakpoints on CALL
instructions, and so the INT3 in the 2nd CALL was skipped over, and we
executed garbage :).

This commit fixes this by making sure not to single-step twice.
2020-05-24 10:42:21 +02:00

250 lines
7.4 KiB
C++

/*
* Copyright (c) 2020, Itamar S. <itamar8910@gmail.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "DebugSession.h"
#include <AK/Optional.h>
#include <stdlib.h>
DebugSession::DebugSession(int pid)
: m_debugee_pid(pid)
, m_executable(String::format("/proc/%d/exe", pid))
, m_elf(ELF::Loader::create(reinterpret_cast<u8*>(m_executable.data()), m_executable.size()))
, m_debug_info(m_elf)
{
}
DebugSession::~DebugSession()
{
if (!m_is_debugee_dead) {
if (ptrace(PT_DETACH, m_debugee_pid, 0, 0) < 0) {
perror("PT_DETACH");
}
}
}
OwnPtr<DebugSession> DebugSession::exec_and_attach(const String& command)
{
int pid = fork();
if (!pid) {
if (ptrace(PT_TRACE_ME, 0, 0, 0) < 0) {
perror("PT_TRACE_ME");
exit(1);
}
auto parts = command.split(' ');
ASSERT(!parts.is_empty());
const char** args = (const char**)calloc(parts.size() + 1, sizeof(const char*));
for (size_t i = 0; i < parts.size(); i++) {
args[i] = parts[i].characters();
}
int rc = execvp(args[0], const_cast<char**>(args));
if (rc < 0) {
perror("execvp");
}
ASSERT_NOT_REACHED();
}
if (waitpid(pid, nullptr, WSTOPPED) != pid) {
perror("waitpid");
return nullptr;
}
if (ptrace(PT_ATTACH, pid, 0, 0) < 0) {
perror("PT_ATTACH");
return nullptr;
}
if (waitpid(pid, nullptr, WSTOPPED) != pid) {
perror("waitpid");
return nullptr;
}
if (ptrace(PT_CONTINUE, pid, 0, 0) < 0) {
perror("continue");
return nullptr;
}
// We want to continue until the exit from the 'execve' sycsall.
// This ensures that when we start debugging the process
// it executes the target image, and not the forked image of the tracing process.
// NOTE: we only need to do this when we are debugging a new process (i.e not attaching to a process that's already running!)
if (waitpid(pid, nullptr, WSTOPPED) != pid) {
perror("wait_pid");
return nullptr;
}
return make<DebugSession>(pid);
}
bool DebugSession::poke(u32* address, u32 data)
{
if (ptrace(PT_POKE, m_debugee_pid, (void*)address, data) < 0) {
perror("PT_POKE");
return false;
}
return true;
}
Optional<u32> DebugSession::peek(u32* address) const
{
Optional<u32> result;
int rc = ptrace(PT_PEEK, m_debugee_pid, (void*)address, 0);
if (errno == 0)
result = static_cast<u32>(rc);
return result;
}
bool DebugSession::insert_breakpoint(void* address)
{
// We insert a software breakpoint by
// patching the first byte of the instruction at 'address'
// with the breakpoint instruction (int3)
if (m_breakpoints.contains(address))
return false;
auto original_bytes = peek(reinterpret_cast<u32*>(address));
if (!original_bytes.has_value())
return false;
ASSERT((original_bytes.value() & 0xff) != BREAKPOINT_INSTRUCTION);
BreakPoint breakpoint { address, original_bytes.value(), BreakPointState::Disabled };
m_breakpoints.set(address, breakpoint);
enable_breakpoint(breakpoint.address);
return true;
}
bool DebugSession::disable_breakpoint(void* address)
{
auto breakpoint = m_breakpoints.get(address);
ASSERT(breakpoint.has_value());
if (!poke(reinterpret_cast<u32*>(reinterpret_cast<char*>(breakpoint.value().address)), breakpoint.value().original_first_word))
return false;
auto bp = m_breakpoints.get(breakpoint.value().address).value();
bp.state = BreakPointState::Disabled;
m_breakpoints.set(bp.address, bp);
return true;
}
bool DebugSession::enable_breakpoint(void* address)
{
auto breakpoint = m_breakpoints.get(address);
ASSERT(breakpoint.has_value());
if (!poke(reinterpret_cast<u32*>(breakpoint.value().address), (breakpoint.value().original_first_word & ~(uint32_t)0xff) | BREAKPOINT_INSTRUCTION))
return false;
auto bp = m_breakpoints.get(breakpoint.value().address).value();
bp.state = BreakPointState::Enabled;
m_breakpoints.set(bp.address, bp);
return true;
}
bool DebugSession::remove_breakpoint(void* address)
{
if (!disable_breakpoint(address))
return false;
m_breakpoints.remove(address);
return true;
}
bool DebugSession::breakpoint_exists(void* address) const
{
return m_breakpoints.contains(address);
}
PtraceRegisters DebugSession::get_registers() const
{
PtraceRegisters regs;
if (ptrace(PT_GETREGS, m_debugee_pid, &regs, 0) < 0) {
perror("PT_GETREGS");
ASSERT_NOT_REACHED();
}
return regs;
}
void DebugSession::set_registers(const PtraceRegisters& regs)
{
if (ptrace(PT_SETREGS, m_debugee_pid, reinterpret_cast<void*>(&const_cast<PtraceRegisters&>(regs)), 0) < 0) {
perror("PT_SETREGS");
ASSERT_NOT_REACHED();
}
}
void DebugSession::continue_debugee(ContinueType type)
{
int command = (type == ContinueType::FreeRun) ? PT_CONTINUE : PT_SYSCALL;
if (ptrace(command, m_debugee_pid, 0, 0) < 0) {
perror("continue");
ASSERT_NOT_REACHED();
}
}
int DebugSession::continue_debugee_and_wait(ContinueType type)
{
continue_debugee(type);
int wstatus = 0;
if (waitpid(m_debugee_pid, &wstatus, WSTOPPED | WEXITED) != m_debugee_pid) {
perror("waitpid");
ASSERT_NOT_REACHED();
}
return wstatus;
}
void* DebugSession::single_step()
{
// Single stepping works by setting the x86 TRAP flag bit in the eflags register.
// This flag causes the cpu to enter single-stepping mode, which causes
// Interupt 1 (debug interrupt) to be emitted after every instruction.
// To single step the program, we set the TRAP flag and continue the debugee.
// After the debugee has stopped, we clear the TRAP flag.
auto regs = get_registers();
constexpr u32 TRAP_FLAG = 0x100;
regs.eflags |= TRAP_FLAG;
set_registers(regs);
continue_debugee();
if (waitpid(m_debugee_pid, 0, WSTOPPED) != m_debugee_pid) {
perror("waitpid");
ASSERT_NOT_REACHED();
}
regs = get_registers();
regs.eflags &= ~(TRAP_FLAG);
set_registers(regs);
return (void*)regs.eip;
}