diff --git a/.gitmodules b/.gitmodules index ecfa049147..305705b06a 100644 --- a/.gitmodules +++ b/.gitmodules @@ -104,3 +104,7 @@ path = 3rdparty/discord-rpc/discord-rpc url = ../../Vestrel/discord-rpc ignore = dirty +[submodule "3rdparty/GPUOpen/VulkanMemoryAllocator"] + path = 3rdparty/GPUOpen/VulkanMemoryAllocator + url = ../../Megamouse/VulkanMemoryAllocator.git + ignore = dirty diff --git a/3rdparty/GPUOpen/VulkanMemoryAllocator b/3rdparty/GPUOpen/VulkanMemoryAllocator new file mode 160000 index 0000000000..3951bb11de --- /dev/null +++ b/3rdparty/GPUOpen/VulkanMemoryAllocator @@ -0,0 +1 @@ +Subproject commit 3951bb11de459d8019ce8b28e276170860c079c0 diff --git a/3rdparty/GPUOpen/include/vk_mem_alloc.h b/3rdparty/GPUOpen/include/vk_mem_alloc.h deleted file mode 100644 index bb72d53f57..0000000000 --- a/3rdparty/GPUOpen/include/vk_mem_alloc.h +++ /dev/null @@ -1,18120 +0,0 @@ -// -// Copyright (c) 2017-2019 Advanced Micro Devices, Inc. All rights reserved. -// -// Permission is hereby granted, free of charge, to any person obtaining a copy -// of this software and associated documentation files (the "Software"), to deal -// in the Software without restriction, including without limitation the rights -// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -// copies of the Software, and to permit persons to whom the Software is -// furnished to do so, subject to the following conditions: -// -// The above copyright notice and this permission notice shall be included in -// all copies or substantial portions of the Software. -// -// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN -// THE SOFTWARE. -// - -#ifndef AMD_VULKAN_MEMORY_ALLOCATOR_H -#define AMD_VULKAN_MEMORY_ALLOCATOR_H - -#ifdef __cplusplus -extern "C" { -#endif - -/** \mainpage Vulkan Memory Allocator - -Version 2.3.0 (2019-12-04) - -Copyright (c) 2017-2019 Advanced Micro Devices, Inc. All rights reserved. \n -License: MIT - -Documentation of all members: vk_mem_alloc.h - -\section main_table_of_contents Table of contents - -- User guide - - \subpage quick_start - - [Project setup](@ref quick_start_project_setup) - - [Initialization](@ref quick_start_initialization) - - [Resource allocation](@ref quick_start_resource_allocation) - - \subpage choosing_memory_type - - [Usage](@ref choosing_memory_type_usage) - - [Required and preferred flags](@ref choosing_memory_type_required_preferred_flags) - - [Explicit memory types](@ref choosing_memory_type_explicit_memory_types) - - [Custom memory pools](@ref choosing_memory_type_custom_memory_pools) - - [Dedicated allocations](@ref choosing_memory_type_dedicated_allocations) - - \subpage memory_mapping - - [Mapping functions](@ref memory_mapping_mapping_functions) - - [Persistently mapped memory](@ref memory_mapping_persistently_mapped_memory) - - [Cache flush and invalidate](@ref memory_mapping_cache_control) - - [Finding out if memory is mappable](@ref memory_mapping_finding_if_memory_mappable) - - \subpage staying_within_budget - - [Querying for budget](@ref staying_within_budget_querying_for_budget) - - [Controlling memory usage](@ref staying_within_budget_controlling_memory_usage) - - \subpage custom_memory_pools - - [Choosing memory type index](@ref custom_memory_pools_MemTypeIndex) - - [Linear allocation algorithm](@ref linear_algorithm) - - [Free-at-once](@ref linear_algorithm_free_at_once) - - [Stack](@ref linear_algorithm_stack) - - [Double stack](@ref linear_algorithm_double_stack) - - [Ring buffer](@ref linear_algorithm_ring_buffer) - - [Buddy allocation algorithm](@ref buddy_algorithm) - - \subpage defragmentation - - [Defragmenting CPU memory](@ref defragmentation_cpu) - - [Defragmenting GPU memory](@ref defragmentation_gpu) - - [Additional notes](@ref defragmentation_additional_notes) - - [Writing custom allocation algorithm](@ref defragmentation_custom_algorithm) - - \subpage lost_allocations - - \subpage statistics - - [Numeric statistics](@ref statistics_numeric_statistics) - - [JSON dump](@ref statistics_json_dump) - - \subpage allocation_annotation - - [Allocation user data](@ref allocation_user_data) - - [Allocation names](@ref allocation_names) - - \subpage debugging_memory_usage - - [Memory initialization](@ref debugging_memory_usage_initialization) - - [Margins](@ref debugging_memory_usage_margins) - - [Corruption detection](@ref debugging_memory_usage_corruption_detection) - - \subpage record_and_replay -- \subpage usage_patterns - - [Common mistakes](@ref usage_patterns_common_mistakes) - - [Simple patterns](@ref usage_patterns_simple) - - [Advanced patterns](@ref usage_patterns_advanced) -- \subpage configuration - - [Pointers to Vulkan functions](@ref config_Vulkan_functions) - - [Custom host memory allocator](@ref custom_memory_allocator) - - [Device memory allocation callbacks](@ref allocation_callbacks) - - [Device heap memory limit](@ref heap_memory_limit) - - \subpage vk_khr_dedicated_allocation -- \subpage general_considerations - - [Thread safety](@ref general_considerations_thread_safety) - - [Validation layer warnings](@ref general_considerations_validation_layer_warnings) - - [Allocation algorithm](@ref general_considerations_allocation_algorithm) - - [Features not supported](@ref general_considerations_features_not_supported) - -\section main_see_also See also - -- [Product page on GPUOpen](https://gpuopen.com/gaming-product/vulkan-memory-allocator/) -- [Source repository on GitHub](https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator) - - - - -\page quick_start Quick start - -\section quick_start_project_setup Project setup - -Vulkan Memory Allocator comes in form of a "stb-style" single header file. -You don't need to build it as a separate library project. -You can add this file directly to your project and submit it to code repository next to your other source files. - -"Single header" doesn't mean that everything is contained in C/C++ declarations, -like it tends to be in case of inline functions or C++ templates. -It means that implementation is bundled with interface in a single file and needs to be extracted using preprocessor macro. -If you don't do it properly, you will get linker errors. - -To do it properly: - --# Include "vk_mem_alloc.h" file in each CPP file where you want to use the library. - This includes declarations of all members of the library. --# In exacly one CPP file define following macro before this include. - It enables also internal definitions. - -\code -#define VMA_IMPLEMENTATION -#include "vk_mem_alloc.h" -\endcode - -It may be a good idea to create dedicated CPP file just for this purpose. - -Note on language: This library is written in C++, but has C-compatible interface. -Thus you can include and use vk_mem_alloc.h in C or C++ code, but full -implementation with `VMA_IMPLEMENTATION` macro must be compiled as C++, NOT as C. - -Please note that this library includes header ``, which in turn -includes `` on Windows. If you need some specific macros defined -before including these headers (like `WIN32_LEAN_AND_MEAN` or -`WINVER` for Windows, `VK_USE_PLATFORM_WIN32_KHR` for Vulkan), you must define -them before every `#include` of this library. - - -\section quick_start_initialization Initialization - -At program startup: - --# Initialize Vulkan to have `VkPhysicalDevice` and `VkDevice` object. --# Fill VmaAllocatorCreateInfo structure and create #VmaAllocator object by - calling vmaCreateAllocator(). - -\code -VmaAllocatorCreateInfo allocatorInfo = {}; -allocatorInfo.physicalDevice = physicalDevice; -allocatorInfo.device = device; - -VmaAllocator allocator; -vmaCreateAllocator(&allocatorInfo, &allocator); -\endcode - -\section quick_start_resource_allocation Resource allocation - -When you want to create a buffer or image: - --# Fill `VkBufferCreateInfo` / `VkImageCreateInfo` structure. --# Fill VmaAllocationCreateInfo structure. --# Call vmaCreateBuffer() / vmaCreateImage() to get `VkBuffer`/`VkImage` with memory - already allocated and bound to it. - -\code -VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; -bufferInfo.size = 65536; -bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; - -VmaAllocationCreateInfo allocInfo = {}; -allocInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; - -VkBuffer buffer; -VmaAllocation allocation; -vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); -\endcode - -Don't forget to destroy your objects when no longer needed: - -\code -vmaDestroyBuffer(allocator, buffer, allocation); -vmaDestroyAllocator(allocator); -\endcode - - -\page choosing_memory_type Choosing memory type - -Physical devices in Vulkan support various combinations of memory heaps and -types. Help with choosing correct and optimal memory type for your specific -resource is one of the key features of this library. You can use it by filling -appropriate members of VmaAllocationCreateInfo structure, as described below. -You can also combine multiple methods. - --# If you just want to find memory type index that meets your requirements, you - can use function: vmaFindMemoryTypeIndex(), vmaFindMemoryTypeIndexForBufferInfo(), - vmaFindMemoryTypeIndexForImageInfo(). --# If you want to allocate a region of device memory without association with any - specific image or buffer, you can use function vmaAllocateMemory(). Usage of - this function is not recommended and usually not needed. - vmaAllocateMemoryPages() function is also provided for creating multiple allocations at once, - which may be useful for sparse binding. --# If you already have a buffer or an image created, you want to allocate memory - for it and then you will bind it yourself, you can use function - vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage(). - For binding you should use functions: vmaBindBufferMemory(), vmaBindImageMemory() - or their extended versions: vmaBindBufferMemory2(), vmaBindImageMemory2(). --# If you want to create a buffer or an image, allocate memory for it and bind - them together, all in one call, you can use function vmaCreateBuffer(), - vmaCreateImage(). This is the easiest and recommended way to use this library. - -When using 3. or 4., the library internally queries Vulkan for memory types -supported for that buffer or image (function `vkGetBufferMemoryRequirements()`) -and uses only one of these types. - -If no memory type can be found that meets all the requirements, these functions -return `VK_ERROR_FEATURE_NOT_PRESENT`. - -You can leave VmaAllocationCreateInfo structure completely filled with zeros. -It means no requirements are specified for memory type. -It is valid, although not very useful. - -\section choosing_memory_type_usage Usage - -The easiest way to specify memory requirements is to fill member -VmaAllocationCreateInfo::usage using one of the values of enum #VmaMemoryUsage. -It defines high level, common usage types. -For more details, see description of this enum. - -For example, if you want to create a uniform buffer that will be filled using -transfer only once or infrequently and used for rendering every frame, you can -do it using following code: - -\code -VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; -bufferInfo.size = 65536; -bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; - -VmaAllocationCreateInfo allocInfo = {}; -allocInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; - -VkBuffer buffer; -VmaAllocation allocation; -vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); -\endcode - -\section choosing_memory_type_required_preferred_flags Required and preferred flags - -You can specify more detailed requirements by filling members -VmaAllocationCreateInfo::requiredFlags and VmaAllocationCreateInfo::preferredFlags -with a combination of bits from enum `VkMemoryPropertyFlags`. For example, -if you want to create a buffer that will be persistently mapped on host (so it -must be `HOST_VISIBLE`) and preferably will also be `HOST_COHERENT` and `HOST_CACHED`, -use following code: - -\code -VmaAllocationCreateInfo allocInfo = {}; -allocInfo.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; -allocInfo.preferredFlags = VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT; -allocInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT; - -VkBuffer buffer; -VmaAllocation allocation; -vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); -\endcode - -A memory type is chosen that has all the required flags and as many preferred -flags set as possible. - -If you use VmaAllocationCreateInfo::usage, it is just internally converted to -a set of required and preferred flags. - -\section choosing_memory_type_explicit_memory_types Explicit memory types - -If you inspected memory types available on the physical device and you have -a preference for memory types that you want to use, you can fill member -VmaAllocationCreateInfo::memoryTypeBits. It is a bit mask, where each bit set -means that a memory type with that index is allowed to be used for the -allocation. Special value 0, just like `UINT32_MAX`, means there are no -restrictions to memory type index. - -Please note that this member is NOT just a memory type index. -Still you can use it to choose just one, specific memory type. -For example, if you already determined that your buffer should be created in -memory type 2, use following code: - -\code -uint32_t memoryTypeIndex = 2; - -VmaAllocationCreateInfo allocInfo = {}; -allocInfo.memoryTypeBits = 1u << memoryTypeIndex; - -VkBuffer buffer; -VmaAllocation allocation; -vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); -\endcode - -\section choosing_memory_type_custom_memory_pools Custom memory pools - -If you allocate from custom memory pool, all the ways of specifying memory -requirements described above are not applicable and the aforementioned members -of VmaAllocationCreateInfo structure are ignored. Memory type is selected -explicitly when creating the pool and then used to make all the allocations from -that pool. For further details, see \ref custom_memory_pools. - -\section choosing_memory_type_dedicated_allocations Dedicated allocations - -Memory for allocations is reserved out of larger block of `VkDeviceMemory` -allocated from Vulkan internally. That's the main feature of this whole library. -You can still request a separate memory block to be created for an allocation, -just like you would do in a trivial solution without using any allocator. -In that case, a buffer or image is always bound to that memory at offset 0. -This is called a "dedicated allocation". -You can explicitly request it by using flag #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. -The library can also internally decide to use dedicated allocation in some cases, e.g.: - -- When the size of the allocation is large. -- When [VK_KHR_dedicated_allocation](@ref vk_khr_dedicated_allocation) extension is enabled - and it reports that dedicated allocation is required or recommended for the resource. -- When allocation of next big memory block fails due to not enough device memory, - but allocation with the exact requested size succeeds. - - -\page memory_mapping Memory mapping - -To "map memory" in Vulkan means to obtain a CPU pointer to `VkDeviceMemory`, -to be able to read from it or write to it in CPU code. -Mapping is possible only of memory allocated from a memory type that has -`VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag. -Functions `vkMapMemory()`, `vkUnmapMemory()` are designed for this purpose. -You can use them directly with memory allocated by this library, -but it is not recommended because of following issue: -Mapping the same `VkDeviceMemory` block multiple times is illegal - only one mapping at a time is allowed. -This includes mapping disjoint regions. Mapping is not reference-counted internally by Vulkan. -Because of this, Vulkan Memory Allocator provides following facilities: - -\section memory_mapping_mapping_functions Mapping functions - -The library provides following functions for mapping of a specific #VmaAllocation: vmaMapMemory(), vmaUnmapMemory(). -They are safer and more convenient to use than standard Vulkan functions. -You can map an allocation multiple times simultaneously - mapping is reference-counted internally. -You can also map different allocations simultaneously regardless of whether they use the same `VkDeviceMemory` block. -The way it's implemented is that the library always maps entire memory block, not just region of the allocation. -For further details, see description of vmaMapMemory() function. -Example: - -\code -// Having these objects initialized: - -struct ConstantBuffer -{ - ... -}; -ConstantBuffer constantBufferData; - -VmaAllocator allocator; -VkBuffer constantBuffer; -VmaAllocation constantBufferAllocation; - -// You can map and fill your buffer using following code: - -void* mappedData; -vmaMapMemory(allocator, constantBufferAllocation, &mappedData); -memcpy(mappedData, &constantBufferData, sizeof(constantBufferData)); -vmaUnmapMemory(allocator, constantBufferAllocation); -\endcode - -When mapping, you may see a warning from Vulkan validation layer similar to this one: - -Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used. - -It happens because the library maps entire `VkDeviceMemory` block, where different -types of images and buffers may end up together, especially on GPUs with unified memory like Intel. -You can safely ignore it if you are sure you access only memory of the intended -object that you wanted to map. - - -\section memory_mapping_persistently_mapped_memory Persistently mapped memory - -Kepping your memory persistently mapped is generally OK in Vulkan. -You don't need to unmap it before using its data on the GPU. -The library provides a special feature designed for that: -Allocations made with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag set in -VmaAllocationCreateInfo::flags stay mapped all the time, -so you can just access CPU pointer to it any time -without a need to call any "map" or "unmap" function. -Example: - -\code -VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; -bufCreateInfo.size = sizeof(ConstantBuffer); -bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; - -VmaAllocationCreateInfo allocCreateInfo = {}; -allocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY; -allocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT; - -VkBuffer buf; -VmaAllocation alloc; -VmaAllocationInfo allocInfo; -vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); - -// Buffer is already mapped. You can access its memory. -memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData)); -\endcode - -There are some exceptions though, when you should consider mapping memory only for a short period of time: - -- When operating system is Windows 7 or 8.x (Windows 10 is not affected because it uses WDDM2), - device is discrete AMD GPU, - and memory type is the special 256 MiB pool of `DEVICE_LOCAL + HOST_VISIBLE` memory - (selected when you use #VMA_MEMORY_USAGE_CPU_TO_GPU), - then whenever a memory block allocated from this memory type stays mapped - for the time of any call to `vkQueueSubmit()` or `vkQueuePresentKHR()`, this - block is migrated by WDDM to system RAM, which degrades performance. It doesn't - matter if that particular memory block is actually used by the command buffer - being submitted. -- On Mac/MoltenVK there is a known bug - [Issue #175](https://github.com/KhronosGroup/MoltenVK/issues/175) - which requires unmapping before GPU can see updated texture. -- Keeping many large memory blocks mapped may impact performance or stability of some debugging tools. - -\section memory_mapping_cache_control Cache flush and invalidate - -Memory in Vulkan doesn't need to be unmapped before using it on GPU, -but unless a memory types has `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT` flag set, -you need to manually **invalidate** cache before reading of mapped pointer -and **flush** cache after writing to mapped pointer. -Map/unmap operations don't do that automatically. -Vulkan provides following functions for this purpose `vkFlushMappedMemoryRanges()`, -`vkInvalidateMappedMemoryRanges()`, but this library provides more convenient -functions that refer to given allocation object: vmaFlushAllocation(), -vmaInvalidateAllocation(). - -Regions of memory specified for flush/invalidate must be aligned to -`VkPhysicalDeviceLimits::nonCoherentAtomSize`. This is automatically ensured by the library. -In any memory type that is `HOST_VISIBLE` but not `HOST_COHERENT`, all allocations -within blocks are aligned to this value, so their offsets are always multiply of -`nonCoherentAtomSize` and two different allocations never share same "line" of this size. - -Please note that memory allocated with #VMA_MEMORY_USAGE_CPU_ONLY is guaranteed to be `HOST_COHERENT`. - -Also, Windows drivers from all 3 **PC** GPU vendors (AMD, Intel, NVIDIA) -currently provide `HOST_COHERENT` flag on all memory types that are -`HOST_VISIBLE`, so on this platform you may not need to bother. - -\section memory_mapping_finding_if_memory_mappable Finding out if memory is mappable - -It may happen that your allocation ends up in memory that is `HOST_VISIBLE` (available for mapping) -despite it wasn't explicitly requested. -For example, application may work on integrated graphics with unified memory (like Intel) or -allocation from video memory might have failed, so the library chose system memory as fallback. - -You can detect this case and map such allocation to access its memory on CPU directly, -instead of launching a transfer operation. -In order to do that: inspect `allocInfo.memoryType`, call vmaGetMemoryTypeProperties(), -and look for `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag in properties of that memory type. - -\code -VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; -bufCreateInfo.size = sizeof(ConstantBuffer); -bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; - -VmaAllocationCreateInfo allocCreateInfo = {}; -allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; -allocCreateInfo.preferredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; - -VkBuffer buf; -VmaAllocation alloc; -VmaAllocationInfo allocInfo; -vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); - -VkMemoryPropertyFlags memFlags; -vmaGetMemoryTypeProperties(allocator, allocInfo.memoryType, &memFlags); -if((memFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) -{ - // Allocation ended up in mappable memory. You can map it and access it directly. - void* mappedData; - vmaMapMemory(allocator, alloc, &mappedData); - memcpy(mappedData, &constantBufferData, sizeof(constantBufferData)); - vmaUnmapMemory(allocator, alloc); -} -else -{ - // Allocation ended up in non-mappable memory. - // You need to create CPU-side buffer in VMA_MEMORY_USAGE_CPU_ONLY and make a transfer. -} -\endcode - -You can even use #VMA_ALLOCATION_CREATE_MAPPED_BIT flag while creating allocations -that are not necessarily `HOST_VISIBLE` (e.g. using #VMA_MEMORY_USAGE_GPU_ONLY). -If the allocation ends up in memory type that is `HOST_VISIBLE`, it will be persistently mapped and you can use it directly. -If not, the flag is just ignored. -Example: - -\code -VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; -bufCreateInfo.size = sizeof(ConstantBuffer); -bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; - -VmaAllocationCreateInfo allocCreateInfo = {}; -allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; -allocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT; - -VkBuffer buf; -VmaAllocation alloc; -VmaAllocationInfo allocInfo; -vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); - -if(allocInfo.pUserData != nullptr) -{ - // Allocation ended up in mappable memory. - // It's persistently mapped. You can access it directly. - memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData)); -} -else -{ - // Allocation ended up in non-mappable memory. - // You need to create CPU-side buffer in VMA_MEMORY_USAGE_CPU_ONLY and make a transfer. -} -\endcode - - -\page staying_within_budget Staying within budget - -When developing a graphics-intensive game or program, it is important to avoid allocating -more GPU memory than it's physically available. When the memory is over-committed, -various bad things can happen, depending on the specific GPU, graphics driver, and -operating system: - -- It may just work without any problems. -- The application may slow down because some memory blocks are moved to system RAM - and the GPU has to access them through PCI Express bus. -- A new allocation may take very long time to complete, even few seconds, and possibly - freeze entire system. -- The new allocation may fail with `VK_ERROR_OUT_OF_DEVICE_MEMORY`. -- It may even result in GPU crash (TDR), observed as `VK_ERROR_DEVICE_LOST` - returned somewhere later. - -\section staying_within_budget_querying_for_budget Querying for budget - -To query for current memory usage and available budget, use function vmaGetBudget(). -Returned structure #VmaBudget contains quantities expressed in bytes, per Vulkan memory heap. - -Please note that this function returns different information and works faster than -vmaCalculateStats(). vmaGetBudget() can be called every frame or even before every -allocation, while vmaCalculateStats() is intended to be used rarely, -only to obtain statistical information, e.g. for debugging purposes. - -It is recommended to use VK_EXT_memory_budget device extension to obtain information -about the budget from Vulkan device. VMA is able to use this extension automatically. -When not enabled, the allocator behaves same way, but then it estimates current usage -and available budget based on its internal information and Vulkan memory heap sizes, -which may be less precise. In order to use this extension: - -1. Make sure extensions VK_EXT_memory_budget and VK_KHR_get_physical_device_properties2 - required by it are available and enable them. Please note that the first is a device - extension and the second is instance extension! -2. Use flag #VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT when creating #VmaAllocator object. -3. Make sure to call vmaSetCurrentFrameIndex() every frame. Budget is queried from - Vulkan inside of it to avoid overhead of querying it with every allocation. - -\section staying_within_budget_controlling_memory_usage Controlling memory usage - -There are many ways in which you can try to stay within the budget. - -First, when making new allocation requires allocating a new memory block, the library -tries not to exceed the budget automatically. If a block with default recommended size -(e.g. 256 MB) would go over budget, a smaller block is allocated, possibly even -dedicated memory for just this resource. - -If the size of the requested resource plus current memory usage is more than the -budget, by default the library still tries to create it, leaving it to the Vulkan -implementation whether the allocation succeeds or fails. You can change this behavior -by using #VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT flag. With it, the allocation is -not made if it would exceed the budget or if the budget is already exceeded. -Some other allocations become lost instead to make room for it, if the mechanism of -[lost allocations](@ref lost_allocations) is used. -If that is not possible, the allocation fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`. -Example usage pattern may be to pass the #VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT flag -when creating resources that are not essential for the application (e.g. the texture -of a specific object) and not to pass it when creating critically important resources -(e.g. render targets). - -Finally, you can also use #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT flag to make sure -a new allocation is created only when it fits inside one of the existing memory blocks. -If it would require to allocate a new block, if fails instead with `VK_ERROR_OUT_OF_DEVICE_MEMORY`. -This also ensures that the function call is very fast because it never goes to Vulkan -to obtain a new block. - -Please note that creating \ref custom_memory_pools with VmaPoolCreateInfo::minBlockCount -set to more than 0 will try to allocate memory blocks without checking whether they -fit within budget. - - -\page custom_memory_pools Custom memory pools - -A memory pool contains a number of `VkDeviceMemory` blocks. -The library automatically creates and manages default pool for each memory type available on the device. -Default memory pool automatically grows in size. -Size of allocated blocks is also variable and managed automatically. - -You can create custom pool and allocate memory out of it. -It can be useful if you want to: - -- Keep certain kind of allocations separate from others. -- Enforce particular, fixed size of Vulkan memory blocks. -- Limit maximum amount of Vulkan memory allocated for that pool. -- Reserve minimum or fixed amount of Vulkan memory always preallocated for that pool. - -To use custom memory pools: - --# Fill VmaPoolCreateInfo structure. --# Call vmaCreatePool() to obtain #VmaPool handle. --# When making an allocation, set VmaAllocationCreateInfo::pool to this handle. - You don't need to specify any other parameters of this structure, like `usage`. - -Example: - -\code -// Create a pool that can have at most 2 blocks, 128 MiB each. -VmaPoolCreateInfo poolCreateInfo = {}; -poolCreateInfo.memoryTypeIndex = ... -poolCreateInfo.blockSize = 128ull * 1024 * 1024; -poolCreateInfo.maxBlockCount = 2; - -VmaPool pool; -vmaCreatePool(allocator, &poolCreateInfo, &pool); - -// Allocate a buffer out of it. -VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; -bufCreateInfo.size = 1024; -bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; - -VmaAllocationCreateInfo allocCreateInfo = {}; -allocCreateInfo.pool = pool; - -VkBuffer buf; -VmaAllocation alloc; -VmaAllocationInfo allocInfo; -vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); -\endcode - -You have to free all allocations made from this pool before destroying it. - -\code -vmaDestroyBuffer(allocator, buf, alloc); -vmaDestroyPool(allocator, pool); -\endcode - -\section custom_memory_pools_MemTypeIndex Choosing memory type index - -When creating a pool, you must explicitly specify memory type index. -To find the one suitable for your buffers or images, you can use helper functions -vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo(). -You need to provide structures with example parameters of buffers or images -that you are going to create in that pool. - -\code -VkBufferCreateInfo exampleBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; -exampleBufCreateInfo.size = 1024; // Whatever. -exampleBufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; // Change if needed. - -VmaAllocationCreateInfo allocCreateInfo = {}; -allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; // Change if needed. - -uint32_t memTypeIndex; -vmaFindMemoryTypeIndexForBufferInfo(allocator, &exampleBufCreateInfo, &allocCreateInfo, &memTypeIndex); - -VmaPoolCreateInfo poolCreateInfo = {}; -poolCreateInfo.memoryTypeIndex = memTypeIndex; -// ... -\endcode - -When creating buffers/images allocated in that pool, provide following parameters: - -- `VkBufferCreateInfo`: Prefer to pass same parameters as above. - Otherwise you risk creating resources in a memory type that is not suitable for them, which may result in undefined behavior. - Using different `VK_BUFFER_USAGE_` flags may work, but you shouldn't create images in a pool intended for buffers - or the other way around. -- VmaAllocationCreateInfo: You don't need to pass same parameters. Fill only `pool` member. - Other members are ignored anyway. - -\section linear_algorithm Linear allocation algorithm - -Each Vulkan memory block managed by this library has accompanying metadata that -keeps track of used and unused regions. By default, the metadata structure and -algorithm tries to find best place for new allocations among free regions to -optimize memory usage. This way you can allocate and free objects in any order. - -![Default allocation algorithm](../gfx/Linear_allocator_1_algo_default.png) - -Sometimes there is a need to use simpler, linear allocation algorithm. You can -create custom pool that uses such algorithm by adding flag -#VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT to VmaPoolCreateInfo::flags while creating -#VmaPool object. Then an alternative metadata management is used. It always -creates new allocations after last one and doesn't reuse free regions after -allocations freed in the middle. It results in better allocation performance and -less memory consumed by metadata. - -![Linear allocation algorithm](../gfx/Linear_allocator_2_algo_linear.png) - -With this one flag, you can create a custom pool that can be used in many ways: -free-at-once, stack, double stack, and ring buffer. See below for details. - -\subsection linear_algorithm_free_at_once Free-at-once - -In a pool that uses linear algorithm, you still need to free all the allocations -individually, e.g. by using vmaFreeMemory() or vmaDestroyBuffer(). You can free -them in any order. New allocations are always made after last one - free space -in the middle is not reused. However, when you release all the allocation and -the pool becomes empty, allocation starts from the beginning again. This way you -can use linear algorithm to speed up creation of allocations that you are going -to release all at once. - -![Free-at-once](../gfx/Linear_allocator_3_free_at_once.png) - -This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount -value that allows multiple memory blocks. - -\subsection linear_algorithm_stack Stack - -When you free an allocation that was created last, its space can be reused. -Thanks to this, if you always release allocations in the order opposite to their -creation (LIFO - Last In First Out), you can achieve behavior of a stack. - -![Stack](../gfx/Linear_allocator_4_stack.png) - -This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount -value that allows multiple memory blocks. - -\subsection linear_algorithm_double_stack Double stack - -The space reserved by a custom pool with linear algorithm may be used by two -stacks: - -- First, default one, growing up from offset 0. -- Second, "upper" one, growing down from the end towards lower offsets. - -To make allocation from upper stack, add flag #VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT -to VmaAllocationCreateInfo::flags. - -![Double stack](../gfx/Linear_allocator_7_double_stack.png) - -Double stack is available only in pools with one memory block - -VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined. - -When the two stacks' ends meet so there is not enough space between them for a -new allocation, such allocation fails with usual -`VK_ERROR_OUT_OF_DEVICE_MEMORY` error. - -\subsection linear_algorithm_ring_buffer Ring buffer - -When you free some allocations from the beginning and there is not enough free space -for a new one at the end of a pool, allocator's "cursor" wraps around to the -beginning and starts allocation there. Thanks to this, if you always release -allocations in the same order as you created them (FIFO - First In First Out), -you can achieve behavior of a ring buffer / queue. - -![Ring buffer](../gfx/Linear_allocator_5_ring_buffer.png) - -Pools with linear algorithm support [lost allocations](@ref lost_allocations) when used as ring buffer. -If there is not enough free space for a new allocation, but existing allocations -from the front of the queue can become lost, they become lost and the allocation -succeeds. - -![Ring buffer with lost allocations](../gfx/Linear_allocator_6_ring_buffer_lost.png) - -Ring buffer is available only in pools with one memory block - -VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined. - -\section buddy_algorithm Buddy allocation algorithm - -There is another allocation algorithm that can be used with custom pools, called -"buddy". Its internal data structure is based on a tree of blocks, each having -size that is a power of two and a half of its parent's size. When you want to -allocate memory of certain size, a free node in the tree is located. If it's too -large, it is recursively split into two halves (called "buddies"). However, if -requested allocation size is not a power of two, the size of a tree node is -aligned up to the nearest power of two and the remaining space is wasted. When -two buddy nodes become free, they are merged back into one larger node. - -![Buddy allocator](../gfx/Buddy_allocator.png) - -The advantage of buddy allocation algorithm over default algorithm is faster -allocation and deallocation, as well as smaller external fragmentation. The -disadvantage is more wasted space (internal fragmentation). - -For more information, please read ["Buddy memory allocation" on Wikipedia](https://en.wikipedia.org/wiki/Buddy_memory_allocation) -or other sources that describe this concept in general. - -To use buddy allocation algorithm with a custom pool, add flag -#VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT to VmaPoolCreateInfo::flags while creating -#VmaPool object. - -Several limitations apply to pools that use buddy algorithm: - -- It is recommended to use VmaPoolCreateInfo::blockSize that is a power of two. - Otherwise, only largest power of two smaller than the size is used for - allocations. The remaining space always stays unused. -- [Margins](@ref debugging_memory_usage_margins) and - [corruption detection](@ref debugging_memory_usage_corruption_detection) - don't work in such pools. -- [Lost allocations](@ref lost_allocations) don't work in such pools. You can - use them, but they never become lost. Support may be added in the future. -- [Defragmentation](@ref defragmentation) doesn't work with allocations made from - such pool. - -\page defragmentation Defragmentation - -Interleaved allocations and deallocations of many objects of varying size can -cause fragmentation over time, which can lead to a situation where the library is unable -to find a continuous range of free memory for a new allocation despite there is -enough free space, just scattered across many small free ranges between existing -allocations. - -To mitigate this problem, you can use defragmentation feature: -structure #VmaDefragmentationInfo2, function vmaDefragmentationBegin(), vmaDefragmentationEnd(). -Given set of allocations, -this function can move them to compact used memory, ensure more continuous free -space and possibly also free some `VkDeviceMemory` blocks. - -What the defragmentation does is: - -- Updates #VmaAllocation objects to point to new `VkDeviceMemory` and offset. - After allocation has been moved, its VmaAllocationInfo::deviceMemory and/or - VmaAllocationInfo::offset changes. You must query them again using - vmaGetAllocationInfo() if you need them. -- Moves actual data in memory. - -What it doesn't do, so you need to do it yourself: - -- Recreate buffers and images that were bound to allocations that were defragmented and - bind them with their new places in memory. - You must use `vkDestroyBuffer()`, `vkDestroyImage()`, - `vkCreateBuffer()`, `vkCreateImage()`, vmaBindBufferMemory(), vmaBindImageMemory() - for that purpose and NOT vmaDestroyBuffer(), - vmaDestroyImage(), vmaCreateBuffer(), vmaCreateImage(), because you don't need to - destroy or create allocation objects! -- Recreate views and update descriptors that point to these buffers and images. - -\section defragmentation_cpu Defragmenting CPU memory - -Following example demonstrates how you can run defragmentation on CPU. -Only allocations created in memory types that are `HOST_VISIBLE` can be defragmented. -Others are ignored. - -The way it works is: - -- It temporarily maps entire memory blocks when necessary. -- It moves data using `memmove()` function. - -\code -// Given following variables already initialized: -VkDevice device; -VmaAllocator allocator; -std::vector buffers; -std::vector allocations; - - -const uint32_t allocCount = (uint32_t)allocations.size(); -std::vector allocationsChanged(allocCount); - -VmaDefragmentationInfo2 defragInfo = {}; -defragInfo.allocationCount = allocCount; -defragInfo.pAllocations = allocations.data(); -defragInfo.pAllocationsChanged = allocationsChanged.data(); -defragInfo.maxCpuBytesToMove = VK_WHOLE_SIZE; // No limit. -defragInfo.maxCpuAllocationsToMove = UINT32_MAX; // No limit. - -VmaDefragmentationContext defragCtx; -vmaDefragmentationBegin(allocator, &defragInfo, nullptr, &defragCtx); -vmaDefragmentationEnd(allocator, defragCtx); - -for(uint32_t i = 0; i < allocCount; ++i) -{ - if(allocationsChanged[i]) - { - // Destroy buffer that is immutably bound to memory region which is no longer valid. - vkDestroyBuffer(device, buffers[i], nullptr); - - // Create new buffer with same parameters. - VkBufferCreateInfo bufferInfo = ...; - vkCreateBuffer(device, &bufferInfo, nullptr, &buffers[i]); - - // You can make dummy call to vkGetBufferMemoryRequirements here to silence validation layer warning. - - // Bind new buffer to new memory region. Data contained in it is already moved. - VmaAllocationInfo allocInfo; - vmaGetAllocationInfo(allocator, allocations[i], &allocInfo); - vmaBindBufferMemory(allocator, allocations[i], buffers[i]); - } -} -\endcode - -Setting VmaDefragmentationInfo2::pAllocationsChanged is optional. -This output array tells whether particular allocation in VmaDefragmentationInfo2::pAllocations at the same index -has been modified during defragmentation. -You can pass null, but you then need to query every allocation passed to defragmentation -for new parameters using vmaGetAllocationInfo() if you might need to recreate and rebind a buffer or image associated with it. - -If you use [Custom memory pools](@ref choosing_memory_type_custom_memory_pools), -you can fill VmaDefragmentationInfo2::poolCount and VmaDefragmentationInfo2::pPools -instead of VmaDefragmentationInfo2::allocationCount and VmaDefragmentationInfo2::pAllocations -to defragment all allocations in given pools. -You cannot use VmaDefragmentationInfo2::pAllocationsChanged in that case. -You can also combine both methods. - -\section defragmentation_gpu Defragmenting GPU memory - -It is also possible to defragment allocations created in memory types that are not `HOST_VISIBLE`. -To do that, you need to pass a command buffer that meets requirements as described in -VmaDefragmentationInfo2::commandBuffer. The way it works is: - -- It creates temporary buffers and binds them to entire memory blocks when necessary. -- It issues `vkCmdCopyBuffer()` to passed command buffer. - -Example: - -\code -// Given following variables already initialized: -VkDevice device; -VmaAllocator allocator; -VkCommandBuffer commandBuffer; -std::vector buffers; -std::vector allocations; - - -const uint32_t allocCount = (uint32_t)allocations.size(); -std::vector allocationsChanged(allocCount); - -VkCommandBufferBeginInfo cmdBufBeginInfo = ...; -vkBeginCommandBuffer(commandBuffer, &cmdBufBeginInfo); - -VmaDefragmentationInfo2 defragInfo = {}; -defragInfo.allocationCount = allocCount; -defragInfo.pAllocations = allocations.data(); -defragInfo.pAllocationsChanged = allocationsChanged.data(); -defragInfo.maxGpuBytesToMove = VK_WHOLE_SIZE; // Notice it's "GPU" this time. -defragInfo.maxGpuAllocationsToMove = UINT32_MAX; // Notice it's "GPU" this time. -defragInfo.commandBuffer = commandBuffer; - -VmaDefragmentationContext defragCtx; -vmaDefragmentationBegin(allocator, &defragInfo, nullptr, &defragCtx); - -vkEndCommandBuffer(commandBuffer); - -// Submit commandBuffer. -// Wait for a fence that ensures commandBuffer execution finished. - -vmaDefragmentationEnd(allocator, defragCtx); - -for(uint32_t i = 0; i < allocCount; ++i) -{ - if(allocationsChanged[i]) - { - // Destroy buffer that is immutably bound to memory region which is no longer valid. - vkDestroyBuffer(device, buffers[i], nullptr); - - // Create new buffer with same parameters. - VkBufferCreateInfo bufferInfo = ...; - vkCreateBuffer(device, &bufferInfo, nullptr, &buffers[i]); - - // You can make dummy call to vkGetBufferMemoryRequirements here to silence validation layer warning. - - // Bind new buffer to new memory region. Data contained in it is already moved. - VmaAllocationInfo allocInfo; - vmaGetAllocationInfo(allocator, allocations[i], &allocInfo); - vmaBindBufferMemory(allocator, allocations[i], buffers[i]); - } -} -\endcode - -You can combine these two methods by specifying non-zero `maxGpu*` as well as `maxCpu*` parameters. -The library automatically chooses best method to defragment each memory pool. - -You may try not to block your entire program to wait until defragmentation finishes, -but do it in the background, as long as you carefully fullfill requirements described -in function vmaDefragmentationBegin(). - -\section defragmentation_additional_notes Additional notes - -It is only legal to defragment allocations bound to: - -- buffers -- images created with `VK_IMAGE_CREATE_ALIAS_BIT`, `VK_IMAGE_TILING_LINEAR`, and - being currently in `VK_IMAGE_LAYOUT_GENERAL` or `VK_IMAGE_LAYOUT_PREINITIALIZED`. - -Defragmentation of images created with `VK_IMAGE_TILING_OPTIMAL` or in any other -layout may give undefined results. - -If you defragment allocations bound to images, new images to be bound to new -memory region after defragmentation should be created with `VK_IMAGE_LAYOUT_PREINITIALIZED` -and then transitioned to their original layout from before defragmentation if -needed using an image memory barrier. - -While using defragmentation, you may experience validation layer warnings, which you just need to ignore. -See [Validation layer warnings](@ref general_considerations_validation_layer_warnings). - -Please don't expect memory to be fully compacted after defragmentation. -Algorithms inside are based on some heuristics that try to maximize number of Vulkan -memory blocks to make totally empty to release them, as well as to maximimze continuous -empty space inside remaining blocks, while minimizing the number and size of allocations that -need to be moved. Some fragmentation may still remain - this is normal. - -\section defragmentation_custom_algorithm Writing custom defragmentation algorithm - -If you want to implement your own, custom defragmentation algorithm, -there is infrastructure prepared for that, -but it is not exposed through the library API - you need to hack its source code. -Here are steps needed to do this: - --# Main thing you need to do is to define your own class derived from base abstract - class `VmaDefragmentationAlgorithm` and implement your version of its pure virtual methods. - See definition and comments of this class for details. --# Your code needs to interact with device memory block metadata. - If you need more access to its data than it's provided by its public interface, - declare your new class as a friend class e.g. in class `VmaBlockMetadata_Generic`. --# If you want to create a flag that would enable your algorithm or pass some additional - flags to configure it, add them to `VmaDefragmentationFlagBits` and use them in - VmaDefragmentationInfo2::flags. --# Modify function `VmaBlockVectorDefragmentationContext::Begin` to create object - of your new class whenever needed. - - -\page lost_allocations Lost allocations - -If your game oversubscribes video memory, if may work OK in previous-generation -graphics APIs (DirectX 9, 10, 11, OpenGL) because resources are automatically -paged to system RAM. In Vulkan you can't do it because when you run out of -memory, an allocation just fails. If you have more data (e.g. textures) that can -fit into VRAM and you don't need it all at once, you may want to upload them to -GPU on demand and "push out" ones that are not used for a long time to make room -for the new ones, effectively using VRAM (or a cartain memory pool) as a form of -cache. Vulkan Memory Allocator can help you with that by supporting a concept of -"lost allocations". - -To create an allocation that can become lost, include #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT -flag in VmaAllocationCreateInfo::flags. Before using a buffer or image bound to -such allocation in every new frame, you need to query it if it's not lost. -To check it, call vmaTouchAllocation(). -If the allocation is lost, you should not use it or buffer/image bound to it. -You mustn't forget to destroy this allocation and this buffer/image. -vmaGetAllocationInfo() can also be used for checking status of the allocation. -Allocation is lost when returned VmaAllocationInfo::deviceMemory == `VK_NULL_HANDLE`. - -To create an allocation that can make some other allocations lost to make room -for it, use #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag. You will -usually use both flags #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT and -#VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT at the same time. - -Warning! Current implementation uses quite naive, brute force algorithm, -which can make allocation calls that use #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT -flag quite slow. A new, more optimal algorithm and data structure to speed this -up is planned for the future. - -Q: When interleaving creation of new allocations with usage of existing ones, -how do you make sure that an allocation won't become lost while it's used in the -current frame? - -It is ensured because vmaTouchAllocation() / vmaGetAllocationInfo() not only returns allocation -status/parameters and checks whether it's not lost, but when it's not, it also -atomically marks it as used in the current frame, which makes it impossible to -become lost in that frame. It uses lockless algorithm, so it works fast and -doesn't involve locking any internal mutex. - -Q: What if my allocation may still be in use by the GPU when it's rendering a -previous frame while I already submit new frame on the CPU? - -You can make sure that allocations "touched" by vmaTouchAllocation() / vmaGetAllocationInfo() will not -become lost for a number of additional frames back from the current one by -specifying this number as VmaAllocatorCreateInfo::frameInUseCount (for default -memory pool) and VmaPoolCreateInfo::frameInUseCount (for custom pool). - -Q: How do you inform the library when new frame starts? - -You need to call function vmaSetCurrentFrameIndex(). - -Example code: - -\code -struct MyBuffer -{ - VkBuffer m_Buf = nullptr; - VmaAllocation m_Alloc = nullptr; - - // Called when the buffer is really needed in the current frame. - void EnsureBuffer(); -}; - -void MyBuffer::EnsureBuffer() -{ - // Buffer has been created. - if(m_Buf != VK_NULL_HANDLE) - { - // Check if its allocation is not lost + mark it as used in current frame. - if(vmaTouchAllocation(allocator, m_Alloc)) - { - // It's all OK - safe to use m_Buf. - return; - } - } - - // Buffer not yet exists or lost - destroy and recreate it. - - vmaDestroyBuffer(allocator, m_Buf, m_Alloc); - - VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; - bufCreateInfo.size = 1024; - bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; - - VmaAllocationCreateInfo allocCreateInfo = {}; - allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; - allocCreateInfo.flags = VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT | - VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT; - - vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &m_Buf, &m_Alloc, nullptr); -} -\endcode - -When using lost allocations, you may see some Vulkan validation layer warnings -about overlapping regions of memory bound to different kinds of buffers and -images. This is still valid as long as you implement proper handling of lost -allocations (like in the example above) and don't use them. - -You can create an allocation that is already in lost state from the beginning using function -vmaCreateLostAllocation(). It may be useful if you need a "dummy" allocation that is not null. - -You can call function vmaMakePoolAllocationsLost() to set all eligible allocations -in a specified custom pool to lost state. -Allocations that have been "touched" in current frame or VmaPoolCreateInfo::frameInUseCount frames back -cannot become lost. - -Q: Can I touch allocation that cannot become lost? - -Yes, although it has no visible effect. -Calls to vmaGetAllocationInfo() and vmaTouchAllocation() update last use frame index -also for allocations that cannot become lost, but the only way to observe it is to dump -internal allocator state using vmaBuildStatsString(). -You can use this feature for debugging purposes to explicitly mark allocations that you use -in current frame and then analyze JSON dump to see for how long each allocation stays unused. - - -\page statistics Statistics - -This library contains functions that return information about its internal state, -especially the amount of memory allocated from Vulkan. -Please keep in mind that these functions need to traverse all internal data structures -to gather these information, so they may be quite time-consuming. -Don't call them too often. - -\section statistics_numeric_statistics Numeric statistics - -You can query for overall statistics of the allocator using function vmaCalculateStats(). -Information are returned using structure #VmaStats. -It contains #VmaStatInfo - number of allocated blocks, number of allocations -(occupied ranges in these blocks), number of unused (free) ranges in these blocks, -number of bytes used and unused (but still allocated from Vulkan) and other information. -They are summed across memory heaps, memory types and total for whole allocator. - -You can query for statistics of a custom pool using function vmaGetPoolStats(). -Information are returned using structure #VmaPoolStats. - -You can query for information about specific allocation using function vmaGetAllocationInfo(). -It fill structure #VmaAllocationInfo. - -\section statistics_json_dump JSON dump - -You can dump internal state of the allocator to a string in JSON format using function vmaBuildStatsString(). -The result is guaranteed to be correct JSON. -It uses ANSI encoding. -Any strings provided by user (see [Allocation names](@ref allocation_names)) -are copied as-is and properly escaped for JSON, so if they use UTF-8, ISO-8859-2 or any other encoding, -this JSON string can be treated as using this encoding. -It must be freed using function vmaFreeStatsString(). - -The format of this JSON string is not part of official documentation of the library, -but it will not change in backward-incompatible way without increasing library major version number -and appropriate mention in changelog. - -The JSON string contains all the data that can be obtained using vmaCalculateStats(). -It can also contain detailed map of allocated memory blocks and their regions - -free and occupied by allocations. -This allows e.g. to visualize the memory or assess fragmentation. - - -\page allocation_annotation Allocation names and user data - -\section allocation_user_data Allocation user data - -You can annotate allocations with your own information, e.g. for debugging purposes. -To do that, fill VmaAllocationCreateInfo::pUserData field when creating -an allocation. It's an opaque `void*` pointer. You can use it e.g. as a pointer, -some handle, index, key, ordinal number or any other value that would associate -the allocation with your custom metadata. - -\code -VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; -// Fill bufferInfo... - -MyBufferMetadata* pMetadata = CreateBufferMetadata(); - -VmaAllocationCreateInfo allocCreateInfo = {}; -allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; -allocCreateInfo.pUserData = pMetadata; - -VkBuffer buffer; -VmaAllocation allocation; -vmaCreateBuffer(allocator, &bufferInfo, &allocCreateInfo, &buffer, &allocation, nullptr); -\endcode - -The pointer may be later retrieved as VmaAllocationInfo::pUserData: - -\code -VmaAllocationInfo allocInfo; -vmaGetAllocationInfo(allocator, allocation, &allocInfo); -MyBufferMetadata* pMetadata = (MyBufferMetadata*)allocInfo.pUserData; -\endcode - -It can also be changed using function vmaSetAllocationUserData(). - -Values of (non-zero) allocations' `pUserData` are printed in JSON report created by -vmaBuildStatsString(), in hexadecimal form. - -\section allocation_names Allocation names - -There is alternative mode available where `pUserData` pointer is used to point to -a null-terminated string, giving a name to the allocation. To use this mode, -set #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT flag in VmaAllocationCreateInfo::flags. -Then `pUserData` passed as VmaAllocationCreateInfo::pUserData or argument to -vmaSetAllocationUserData() must be either null or pointer to a null-terminated string. -The library creates internal copy of the string, so the pointer you pass doesn't need -to be valid for whole lifetime of the allocation. You can free it after the call. - -\code -VkImageCreateInfo imageInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO }; -// Fill imageInfo... - -std::string imageName = "Texture: "; -imageName += fileName; - -VmaAllocationCreateInfo allocCreateInfo = {}; -allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; -allocCreateInfo.flags = VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT; -allocCreateInfo.pUserData = imageName.c_str(); - -VkImage image; -VmaAllocation allocation; -vmaCreateImage(allocator, &imageInfo, &allocCreateInfo, &image, &allocation, nullptr); -\endcode - -The value of `pUserData` pointer of the allocation will be different than the one -you passed when setting allocation's name - pointing to a buffer managed -internally that holds copy of the string. - -\code -VmaAllocationInfo allocInfo; -vmaGetAllocationInfo(allocator, allocation, &allocInfo); -const char* imageName = (const char*)allocInfo.pUserData; -printf("Image name: %s\n", imageName); -\endcode - -That string is also printed in JSON report created by vmaBuildStatsString(). - -\note Passing string name to VMA allocation doesn't automatically set it to the Vulkan buffer or image created with it. -You must do it manually using an extension like VK_EXT_debug_utils, which is independent of this library. - - -\page debugging_memory_usage Debugging incorrect memory usage - -If you suspect a bug with memory usage, like usage of uninitialized memory or -memory being overwritten out of bounds of an allocation, -you can use debug features of this library to verify this. - -\section debugging_memory_usage_initialization Memory initialization - -If you experience a bug with incorrect and nondeterministic data in your program and you suspect uninitialized memory to be used, -you can enable automatic memory initialization to verify this. -To do it, define macro `VMA_DEBUG_INITIALIZE_ALLOCATIONS` to 1. - -\code -#define VMA_DEBUG_INITIALIZE_ALLOCATIONS 1 -#include "vk_mem_alloc.h" -\endcode - -It makes memory of all new allocations initialized to bit pattern `0xDCDCDCDC`. -Before an allocation is destroyed, its memory is filled with bit pattern `0xEFEFEFEF`. -Memory is automatically mapped and unmapped if necessary. - -If you find these values while debugging your program, good chances are that you incorrectly -read Vulkan memory that is allocated but not initialized, or already freed, respectively. - -Memory initialization works only with memory types that are `HOST_VISIBLE`. -It works also with dedicated allocations. -It doesn't work with allocations created with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag, -as they cannot be mapped. - -\section debugging_memory_usage_margins Margins - -By default, allocations are laid out in memory blocks next to each other if possible -(considering required alignment, `bufferImageGranularity`, and `nonCoherentAtomSize`). - -![Allocations without margin](../gfx/Margins_1.png) - -Define macro `VMA_DEBUG_MARGIN` to some non-zero value (e.g. 16) to enforce specified -number of bytes as a margin before and after every allocation. - -\code -#define VMA_DEBUG_MARGIN 16 -#include "vk_mem_alloc.h" -\endcode - -![Allocations with margin](../gfx/Margins_2.png) - -If your bug goes away after enabling margins, it means it may be caused by memory -being overwritten outside of allocation boundaries. It is not 100% certain though. -Change in application behavior may also be caused by different order and distribution -of allocations across memory blocks after margins are applied. - -The margin is applied also before first and after last allocation in a block. -It may occur only once between two adjacent allocations. - -Margins work with all types of memory. - -Margin is applied only to allocations made out of memory blocks and not to dedicated -allocations, which have their own memory block of specific size. -It is thus not applied to allocations made using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT flag -or those automatically decided to put into dedicated allocations, e.g. due to its -large size or recommended by VK_KHR_dedicated_allocation extension. -Margins are also not active in custom pools created with #VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT flag. - -Margins appear in [JSON dump](@ref statistics_json_dump) as part of free space. - -Note that enabling margins increases memory usage and fragmentation. - -\section debugging_memory_usage_corruption_detection Corruption detection - -You can additionally define macro `VMA_DEBUG_DETECT_CORRUPTION` to 1 to enable validation -of contents of the margins. - -\code -#define VMA_DEBUG_MARGIN 16 -#define VMA_DEBUG_DETECT_CORRUPTION 1 -#include "vk_mem_alloc.h" -\endcode - -When this feature is enabled, number of bytes specified as `VMA_DEBUG_MARGIN` -(it must be multiply of 4) before and after every allocation is filled with a magic number. -This idea is also know as "canary". -Memory is automatically mapped and unmapped if necessary. - -This number is validated automatically when the allocation is destroyed. -If it's not equal to the expected value, `VMA_ASSERT()` is executed. -It clearly means that either CPU or GPU overwritten the memory outside of boundaries of the allocation, -which indicates a serious bug. - -You can also explicitly request checking margins of all allocations in all memory blocks -that belong to specified memory types by using function vmaCheckCorruption(), -or in memory blocks that belong to specified custom pool, by using function -vmaCheckPoolCorruption(). - -Margin validation (corruption detection) works only for memory types that are -`HOST_VISIBLE` and `HOST_COHERENT`. - - -\page record_and_replay Record and replay - -\section record_and_replay_introduction Introduction - -While using the library, sequence of calls to its functions together with their -parameters can be recorded to a file and later replayed using standalone player -application. It can be useful to: - -- Test correctness - check if same sequence of calls will not cause crash or - failures on a target platform. -- Gather statistics - see number of allocations, peak memory usage, number of - calls etc. -- Benchmark performance - see how much time it takes to replay the whole - sequence. - -\section record_and_replay_usage Usage - -Recording functionality is disabled by default. -To enable it, define following macro before every include of this library: - -\code -#define VMA_RECORDING_ENABLED 1 -\endcode - -To record sequence of calls to a file: Fill in -VmaAllocatorCreateInfo::pRecordSettings member while creating #VmaAllocator -object. File is opened and written during whole lifetime of the allocator. - -To replay file: Use VmaReplay - standalone command-line program. -Precompiled binary can be found in "bin" directory. -Its source can be found in "src/VmaReplay" directory. -Its project is generated by Premake. -Command line syntax is printed when the program is launched without parameters. -Basic usage: - - VmaReplay.exe MyRecording.csv - -Documentation of file format can be found in file: "docs/Recording file format.md". -It's a human-readable, text file in CSV format (Comma Separated Values). - -\section record_and_replay_additional_considerations Additional considerations - -- Replaying file that was recorded on a different GPU (with different parameters - like `bufferImageGranularity`, `nonCoherentAtomSize`, and especially different - set of memory heaps and types) may give different performance and memory usage - results, as well as issue some warnings and errors. -- Current implementation of recording in VMA, as well as VmaReplay application, is - coded and tested only on Windows. Inclusion of recording code is driven by - `VMA_RECORDING_ENABLED` macro. Support for other platforms should be easy to - add. Contributions are welcomed. - - -\page usage_patterns Recommended usage patterns - -See also slides from talk: -[Sawicki, Adam. Advanced Graphics Techniques Tutorial: Memory management in Vulkan and DX12. Game Developers Conference, 2018](https://www.gdcvault.com/play/1025458/Advanced-Graphics-Techniques-Tutorial-New) - - -\section usage_patterns_common_mistakes Common mistakes - -Use of CPU_TO_GPU instead of CPU_ONLY memory - -#VMA_MEMORY_USAGE_CPU_TO_GPU is recommended only for resources that will be -mapped and written by the CPU, as well as read directly by the GPU - like some -buffers or textures updated every frame (dynamic). If you create a staging copy -of a resource to be written by CPU and then used as a source of transfer to -another resource placed in the GPU memory, that staging resource should be -created with #VMA_MEMORY_USAGE_CPU_ONLY. Please read the descriptions of these -enums carefully for details. - -Unnecessary use of custom pools - -\ref custom_memory_pools may be useful for special purposes - when you want to -keep certain type of resources separate e.g. to reserve minimum amount of memory -for them, limit maximum amount of memory they can occupy, or make some of them -push out the other through the mechanism of \ref lost_allocations. For most -resources this is not needed and so it is not recommended to create #VmaPool -objects and allocations out of them. Allocating from the default pool is sufficient. - -\section usage_patterns_simple Simple patterns - -\subsection usage_patterns_simple_render_targets Render targets - -When: -Any resources that you frequently write and read on GPU, -e.g. images used as color attachments (aka "render targets"), depth-stencil attachments, -images/buffers used as storage image/buffer (aka "Unordered Access View (UAV)"). - -What to do: -Create them in video memory that is fastest to access from GPU using -#VMA_MEMORY_USAGE_GPU_ONLY. - -Consider using [VK_KHR_dedicated_allocation](@ref vk_khr_dedicated_allocation) extension -and/or manually creating them as dedicated allocations using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT, -especially if they are large or if you plan to destroy and recreate them e.g. when -display resolution changes. -Prefer to create such resources first and all other GPU resources (like textures and vertex buffers) later. - -\subsection usage_patterns_simple_immutable_resources Immutable resources - -When: -Any resources that you fill on CPU only once (aka "immutable") or infrequently -and then read frequently on GPU, -e.g. textures, vertex and index buffers, constant buffers that don't change often. - -What to do: -Create them in video memory that is fastest to access from GPU using -#VMA_MEMORY_USAGE_GPU_ONLY. - -To initialize content of such resource, create a CPU-side (aka "staging") copy of it -in system memory - #VMA_MEMORY_USAGE_CPU_ONLY, map it, fill it, -and submit a transfer from it to the GPU resource. -You can keep the staging copy if you need it for another upload transfer in the future. -If you don't, you can destroy it or reuse this buffer for uploading different resource -after the transfer finishes. - -Prefer to create just buffers in system memory rather than images, even for uploading textures. -Use `vkCmdCopyBufferToImage()`. -Dont use images with `VK_IMAGE_TILING_LINEAR`. - -\subsection usage_patterns_dynamic_resources Dynamic resources - -When: -Any resources that change frequently (aka "dynamic"), e.g. every frame or every draw call, -written on CPU, read on GPU. - -What to do: -Create them using #VMA_MEMORY_USAGE_CPU_TO_GPU. -You can map it and write to it directly on CPU, as well as read from it on GPU. - -This is a more complex situation. Different solutions are possible, -and the best one depends on specific GPU type, but you can use this simple approach for the start. -Prefer to write to such resource sequentially (e.g. using `memcpy`). -Don't perform random access or any reads from it on CPU, as it may be very slow. - -\subsection usage_patterns_readback Readback - -When: -Resources that contain data written by GPU that you want to read back on CPU, -e.g. results of some computations. - -What to do: -Create them using #VMA_MEMORY_USAGE_GPU_TO_CPU. -You can write to them directly on GPU, as well as map and read them on CPU. - -\section usage_patterns_advanced Advanced patterns - -\subsection usage_patterns_integrated_graphics Detecting integrated graphics - -You can support integrated graphics (like Intel HD Graphics, AMD APU) better -by detecting it in Vulkan. -To do it, call `vkGetPhysicalDeviceProperties()`, inspect -`VkPhysicalDeviceProperties::deviceType` and look for `VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU`. -When you find it, you can assume that memory is unified and all memory types are comparably fast -to access from GPU, regardless of `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`. - -You can then sum up sizes of all available memory heaps and treat them as useful for -your GPU resources, instead of only `DEVICE_LOCAL` ones. -You can also prefer to create your resources in memory types that are `HOST_VISIBLE` to map them -directly instead of submitting explicit transfer (see below). - -\subsection usage_patterns_direct_vs_transfer Direct access versus transfer - -For resources that you frequently write on CPU and read on GPU, many solutions are possible: - --# Create one copy in video memory using #VMA_MEMORY_USAGE_GPU_ONLY, - second copy in system memory using #VMA_MEMORY_USAGE_CPU_ONLY and submit explicit tranfer each time. --# Create just single copy using #VMA_MEMORY_USAGE_CPU_TO_GPU, map it and fill it on CPU, - read it directly on GPU. --# Create just single copy using #VMA_MEMORY_USAGE_CPU_ONLY, map it and fill it on CPU, - read it directly on GPU. - -Which solution is the most efficient depends on your resource and especially on the GPU. -It is best to measure it and then make the decision. -Some general recommendations: - -- On integrated graphics use (2) or (3) to avoid unnecesary time and memory overhead - related to using a second copy and making transfer. -- For small resources (e.g. constant buffers) use (2). - Discrete AMD cards have special 256 MiB pool of video memory that is directly mappable. - Even if the resource ends up in system memory, its data may be cached on GPU after first - fetch over PCIe bus. -- For larger resources (e.g. textures), decide between (1) and (2). - You may want to differentiate NVIDIA and AMD, e.g. by looking for memory type that is - both `DEVICE_LOCAL` and `HOST_VISIBLE`. When you find it, use (2), otherwise use (1). - -Similarly, for resources that you frequently write on GPU and read on CPU, multiple -solutions are possible: - --# Create one copy in video memory using #VMA_MEMORY_USAGE_GPU_ONLY, - second copy in system memory using #VMA_MEMORY_USAGE_GPU_TO_CPU and submit explicit tranfer each time. --# Create just single copy using #VMA_MEMORY_USAGE_GPU_TO_CPU, write to it directly on GPU, - map it and read it on CPU. - -You should take some measurements to decide which option is faster in case of your specific -resource. - -If you don't want to specialize your code for specific types of GPUs, you can still make -an simple optimization for cases when your resource ends up in mappable memory to use it -directly in this case instead of creating CPU-side staging copy. -For details see [Finding out if memory is mappable](@ref memory_mapping_finding_if_memory_mappable). - - -\page configuration Configuration - -Please check "CONFIGURATION SECTION" in the code to find macros that you can define -before each include of this file or change directly in this file to provide -your own implementation of basic facilities like assert, `min()` and `max()` functions, -mutex, atomic etc. -The library uses its own implementation of containers by default, but you can switch to using -STL containers instead. - -For example, define `VMA_ASSERT(expr)` before including the library to provide -custom implementation of the assertion, compatible with your project. -By default it is defined to standard C `assert(expr)` in `_DEBUG` configuration -and empty otherwise. - -\section config_Vulkan_functions Pointers to Vulkan functions - -The library uses Vulkan functions straight from the `vulkan.h` header by default. -If you want to provide your own pointers to these functions, e.g. fetched using -`vkGetInstanceProcAddr()` and `vkGetDeviceProcAddr()`: - --# Define `VMA_STATIC_VULKAN_FUNCTIONS 0`. --# Provide valid pointers through VmaAllocatorCreateInfo::pVulkanFunctions. - -\section custom_memory_allocator Custom host memory allocator - -If you use custom allocator for CPU memory rather than default operator `new` -and `delete` from C++, you can make this library using your allocator as well -by filling optional member VmaAllocatorCreateInfo::pAllocationCallbacks. These -functions will be passed to Vulkan, as well as used by the library itself to -make any CPU-side allocations. - -\section allocation_callbacks Device memory allocation callbacks - -The library makes calls to `vkAllocateMemory()` and `vkFreeMemory()` internally. -You can setup callbacks to be informed about these calls, e.g. for the purpose -of gathering some statistics. To do it, fill optional member -VmaAllocatorCreateInfo::pDeviceMemoryCallbacks. - -\section heap_memory_limit Device heap memory limit - -When device memory of certain heap runs out of free space, new allocations may -fail (returning error code) or they may succeed, silently pushing some existing -memory blocks from GPU VRAM to system RAM (which degrades performance). This -behavior is implementation-dependant - it depends on GPU vendor and graphics -driver. - -On AMD cards it can be controlled while creating Vulkan device object by using -VK_AMD_memory_overallocation_behavior extension, if available. - -Alternatively, if you want to test how your program behaves with limited amount of Vulkan device -memory available without switching your graphics card to one that really has -smaller VRAM, you can use a feature of this library intended for this purpose. -To do it, fill optional member VmaAllocatorCreateInfo::pHeapSizeLimit. - - - -\page vk_khr_dedicated_allocation VK_KHR_dedicated_allocation - -VK_KHR_dedicated_allocation is a Vulkan extension which can be used to improve -performance on some GPUs. It augments Vulkan API with possibility to query -driver whether it prefers particular buffer or image to have its own, dedicated -allocation (separate `VkDeviceMemory` block) for better efficiency - to be able -to do some internal optimizations. - -The extension is supported by this library. It will be used automatically when -enabled. To enable it: - -1 . When creating Vulkan device, check if following 2 device extensions are -supported (call `vkEnumerateDeviceExtensionProperties()`). -If yes, enable them (fill `VkDeviceCreateInfo::ppEnabledExtensionNames`). - -- VK_KHR_get_memory_requirements2 -- VK_KHR_dedicated_allocation - -If you enabled these extensions: - -2 . Use #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag when creating -your #VmaAllocator`to inform the library that you enabled required extensions -and you want the library to use them. - -\code -allocatorInfo.flags |= VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT; - -vmaCreateAllocator(&allocatorInfo, &allocator); -\endcode - -That's all. The extension will be automatically used whenever you create a -buffer using vmaCreateBuffer() or image using vmaCreateImage(). - -When using the extension together with Vulkan Validation Layer, you will receive -warnings like this: - - vkBindBufferMemory(): Binding memory to buffer 0x33 but vkGetBufferMemoryRequirements() has not been called on that buffer. - -It is OK, you should just ignore it. It happens because you use function -`vkGetBufferMemoryRequirements2KHR()` instead of standard -`vkGetBufferMemoryRequirements()`, while the validation layer seems to be -unaware of it. - -To learn more about this extension, see: - -- [VK_KHR_dedicated_allocation in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.0-extensions/html/vkspec.html#VK_KHR_dedicated_allocation) -- [VK_KHR_dedicated_allocation unofficial manual](http://asawicki.info/articles/VK_KHR_dedicated_allocation.php5) - - - -\page general_considerations General considerations - -\section general_considerations_thread_safety Thread safety - -- The library has no global state, so separate #VmaAllocator objects can be used - independently. - There should be no need to create multiple such objects though - one per `VkDevice` is enough. -- By default, all calls to functions that take #VmaAllocator as first parameter - are safe to call from multiple threads simultaneously because they are - synchronized internally when needed. -- When the allocator is created with #VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT - flag, calls to functions that take such #VmaAllocator object must be - synchronized externally. -- Access to a #VmaAllocation object must be externally synchronized. For example, - you must not call vmaGetAllocationInfo() and vmaMapMemory() from different - threads at the same time if you pass the same #VmaAllocation object to these - functions. - -\section general_considerations_validation_layer_warnings Validation layer warnings - -When using this library, you can meet following types of warnings issued by -Vulkan validation layer. They don't necessarily indicate a bug, so you may need -to just ignore them. - -- *vkBindBufferMemory(): Binding memory to buffer 0xeb8e4 but vkGetBufferMemoryRequirements() has not been called on that buffer.* - - It happens when VK_KHR_dedicated_allocation extension is enabled. - `vkGetBufferMemoryRequirements2KHR` function is used instead, while validation layer seems to be unaware of it. -- *Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used.* - - It happens when you map a buffer or image, because the library maps entire - `VkDeviceMemory` block, where different types of images and buffers may end - up together, especially on GPUs with unified memory like Intel. -- *Non-linear image 0xebc91 is aliased with linear buffer 0xeb8e4 which may indicate a bug.* - - It happens when you use lost allocations, and a new image or buffer is - created in place of an existing object that bacame lost. - - It may happen also when you use [defragmentation](@ref defragmentation). - -\section general_considerations_allocation_algorithm Allocation algorithm - -The library uses following algorithm for allocation, in order: - --# Try to find free range of memory in existing blocks. --# If failed, try to create a new block of `VkDeviceMemory`, with preferred block size. --# If failed, try to create such block with size/2, size/4, size/8. --# If failed and #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag was - specified, try to find space in existing blocks, possilby making some other - allocations lost. --# If failed, try to allocate separate `VkDeviceMemory` for this allocation, - just like when you use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. --# If failed, choose other memory type that meets the requirements specified in - VmaAllocationCreateInfo and go to point 1. --# If failed, return `VK_ERROR_OUT_OF_DEVICE_MEMORY`. - -\section general_considerations_features_not_supported Features not supported - -Features deliberately excluded from the scope of this library: - -- Data transfer. Uploading (straming) and downloading data of buffers and images - between CPU and GPU memory and related synchronization is responsibility of the user. - Defining some "texture" object that would automatically stream its data from a - staging copy in CPU memory to GPU memory would rather be a feature of another, - higher-level library implemented on top of VMA. -- Allocations for imported/exported external memory. They tend to require - explicit memory type index and dedicated allocation anyway, so they don't - interact with main features of this library. Such special purpose allocations - should be made manually, using `vkCreateBuffer()` and `vkAllocateMemory()`. -- Recreation of buffers and images. Although the library has functions for - buffer and image creation (vmaCreateBuffer(), vmaCreateImage()), you need to - recreate these objects yourself after defragmentation. That's because the big - structures `VkBufferCreateInfo`, `VkImageCreateInfo` are not stored in - #VmaAllocation object. -- Handling CPU memory allocation failures. When dynamically creating small C++ - objects in CPU memory (not Vulkan memory), allocation failures are not checked - and handled gracefully, because that would complicate code significantly and - is usually not needed in desktop PC applications anyway. -- Code free of any compiler warnings. Maintaining the library to compile and - work correctly on so many different platforms is hard enough. Being free of - any warnings, on any version of any compiler, is simply not feasible. -- This is a C++ library with C interface. - Bindings or ports to any other programming languages are welcomed as external projects and - are not going to be included into this repository. - -*/ - -/* -Define this macro to 0/1 to disable/enable support for recording functionality, -available through VmaAllocatorCreateInfo::pRecordSettings. -*/ -#ifndef VMA_RECORDING_ENABLED - #define VMA_RECORDING_ENABLED 0 -#endif - -#ifndef NOMINMAX - #define NOMINMAX // For windows.h -#endif - -#ifndef VULKAN_H_ - #include -#endif - -#if VMA_RECORDING_ENABLED - #include -#endif - -// Define this macro to declare maximum supported Vulkan version in format AAABBBCCC, -// where AAA = major, BBB = minor, CCC = patch. -// If you want to use version > 1.0, it still needs to be enabled via VmaAllocatorCreateInfo::vulkanApiVersion. -#if !defined(VMA_VULKAN_VERSION) - #if defined(VK_VERSION_1_1) - #define VMA_VULKAN_VERSION 1001000 - #else - #define VMA_VULKAN_VERSION 1000000 - #endif -#endif - -#if !defined(VMA_DEDICATED_ALLOCATION) - #if VK_KHR_get_memory_requirements2 && VK_KHR_dedicated_allocation - #define VMA_DEDICATED_ALLOCATION 1 - #else - #define VMA_DEDICATED_ALLOCATION 0 - #endif -#endif - -#if !defined(VMA_BIND_MEMORY2) - #if VK_KHR_bind_memory2 - #define VMA_BIND_MEMORY2 1 - #else - #define VMA_BIND_MEMORY2 0 - #endif -#endif - -#if !defined(VMA_MEMORY_BUDGET) - #if VK_EXT_memory_budget && (VK_KHR_get_physical_device_properties2 || VMA_VULKAN_VERSION >= 1001000) - #define VMA_MEMORY_BUDGET 1 - #else - #define VMA_MEMORY_BUDGET 0 - #endif -#endif - -// Define these macros to decorate all public functions with additional code, -// before and after returned type, appropriately. This may be useful for -// exporing the functions when compiling VMA as a separate library. Example: -// #define VMA_CALL_PRE __declspec(dllexport) -// #define VMA_CALL_POST __cdecl -#ifndef VMA_CALL_PRE - #define VMA_CALL_PRE -#endif -#ifndef VMA_CALL_POST - #define VMA_CALL_POST -#endif - -/** \struct VmaAllocator -\brief Represents main object of this library initialized. - -Fill structure #VmaAllocatorCreateInfo and call function vmaCreateAllocator() to create it. -Call function vmaDestroyAllocator() to destroy it. - -It is recommended to create just one object of this type per `VkDevice` object, -right after Vulkan is initialized and keep it alive until before Vulkan device is destroyed. -*/ -VK_DEFINE_HANDLE(VmaAllocator) - -/// Callback function called after successful vkAllocateMemory. -typedef void (VKAPI_PTR *PFN_vmaAllocateDeviceMemoryFunction)( - VmaAllocator allocator, - uint32_t memoryType, - VkDeviceMemory memory, - VkDeviceSize size); -/// Callback function called before vkFreeMemory. -typedef void (VKAPI_PTR *PFN_vmaFreeDeviceMemoryFunction)( - VmaAllocator allocator, - uint32_t memoryType, - VkDeviceMemory memory, - VkDeviceSize size); - -/** \brief Set of callbacks that the library will call for `vkAllocateMemory` and `vkFreeMemory`. - -Provided for informative purpose, e.g. to gather statistics about number of -allocations or total amount of memory allocated in Vulkan. - -Used in VmaAllocatorCreateInfo::pDeviceMemoryCallbacks. -*/ -typedef struct VmaDeviceMemoryCallbacks { - /// Optional, can be null. - PFN_vmaAllocateDeviceMemoryFunction pfnAllocate; - /// Optional, can be null. - PFN_vmaFreeDeviceMemoryFunction pfnFree; -} VmaDeviceMemoryCallbacks; - -/// Flags for created #VmaAllocator. -typedef enum VmaAllocatorCreateFlagBits { - /** \brief Allocator and all objects created from it will not be synchronized internally, so you must guarantee they are used from only one thread at a time or synchronized externally by you. - - Using this flag may increase performance because internal mutexes are not used. - */ - VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT = 0x00000001, - /** \brief Enables usage of VK_KHR_dedicated_allocation extension. - - The flag works only if VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_0`. - When it's `VK_API_VERSION_1_1`, the flag is ignored because the extension has been promoted to Vulkan 1.1. - - Using this extenion will automatically allocate dedicated blocks of memory for - some buffers and images instead of suballocating place for them out of bigger - memory blocks (as if you explicitly used #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT - flag) when it is recommended by the driver. It may improve performance on some - GPUs. - - You may set this flag only if you found out that following device extensions are - supported, you enabled them while creating Vulkan device passed as - VmaAllocatorCreateInfo::device, and you want them to be used internally by this - library: - - - VK_KHR_get_memory_requirements2 (device extension) - - VK_KHR_dedicated_allocation (device extension) - - When this flag is set, you can experience following warnings reported by Vulkan - validation layer. You can ignore them. - - > vkBindBufferMemory(): Binding memory to buffer 0x2d but vkGetBufferMemoryRequirements() has not been called on that buffer. - */ - VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT = 0x00000002, - /** - Enables usage of VK_KHR_bind_memory2 extension. - - The flag works only if VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_0`. - When it's `VK_API_VERSION_1_1`, the flag is ignored because the extension has been promoted to Vulkan 1.1. - - You may set this flag only if you found out that this device extension is supported, - you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device, - and you want it to be used internally by this library. - - The extension provides functions `vkBindBufferMemory2KHR` and `vkBindImageMemory2KHR`, - which allow to pass a chain of `pNext` structures while binding. - This flag is required if you use `pNext` parameter in vmaBindBufferMemory2() or vmaBindImageMemory2(). - */ - VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT = 0x00000004, - /** - Enables usage of VK_EXT_memory_budget extension. - - You may set this flag only if you found out that this device extension is supported, - you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device, - and you want it to be used internally by this library, along with another instance extension - VK_KHR_get_physical_device_properties2, which is required by it (or Vulkan 1.1, where this extension is promoted). - - The extension provides query for current memory usage and budget, which will probably - be more accurate than an estimation used by the library otherwise. - */ - VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT = 0x00000008, - - VMA_ALLOCATOR_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF -} VmaAllocatorCreateFlagBits; -typedef VkFlags VmaAllocatorCreateFlags; - -/** \brief Pointers to some Vulkan functions - a subset used by the library. - -Used in VmaAllocatorCreateInfo::pVulkanFunctions. -*/ -typedef struct VmaVulkanFunctions { - PFN_vkGetPhysicalDeviceProperties vkGetPhysicalDeviceProperties; - PFN_vkGetPhysicalDeviceMemoryProperties vkGetPhysicalDeviceMemoryProperties; - PFN_vkAllocateMemory vkAllocateMemory; - PFN_vkFreeMemory vkFreeMemory; - PFN_vkMapMemory vkMapMemory; - PFN_vkUnmapMemory vkUnmapMemory; - PFN_vkFlushMappedMemoryRanges vkFlushMappedMemoryRanges; - PFN_vkInvalidateMappedMemoryRanges vkInvalidateMappedMemoryRanges; - PFN_vkBindBufferMemory vkBindBufferMemory; - PFN_vkBindImageMemory vkBindImageMemory; - PFN_vkGetBufferMemoryRequirements vkGetBufferMemoryRequirements; - PFN_vkGetImageMemoryRequirements vkGetImageMemoryRequirements; - PFN_vkCreateBuffer vkCreateBuffer; - PFN_vkDestroyBuffer vkDestroyBuffer; - PFN_vkCreateImage vkCreateImage; - PFN_vkDestroyImage vkDestroyImage; - PFN_vkCmdCopyBuffer vkCmdCopyBuffer; -#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 - PFN_vkGetBufferMemoryRequirements2KHR vkGetBufferMemoryRequirements2KHR; - PFN_vkGetImageMemoryRequirements2KHR vkGetImageMemoryRequirements2KHR; -#endif -#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000 - PFN_vkBindBufferMemory2KHR vkBindBufferMemory2KHR; - PFN_vkBindImageMemory2KHR vkBindImageMemory2KHR; -#endif -#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000 - PFN_vkGetPhysicalDeviceMemoryProperties2KHR vkGetPhysicalDeviceMemoryProperties2KHR; -#endif -} VmaVulkanFunctions; - -/// Flags to be used in VmaRecordSettings::flags. -typedef enum VmaRecordFlagBits { - /** \brief Enables flush after recording every function call. - - Enable it if you expect your application to crash, which may leave recording file truncated. - It may degrade performance though. - */ - VMA_RECORD_FLUSH_AFTER_CALL_BIT = 0x00000001, - - VMA_RECORD_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF -} VmaRecordFlagBits; -typedef VkFlags VmaRecordFlags; - -/// Parameters for recording calls to VMA functions. To be used in VmaAllocatorCreateInfo::pRecordSettings. -typedef struct VmaRecordSettings -{ - /// Flags for recording. Use #VmaRecordFlagBits enum. - VmaRecordFlags flags; - /** \brief Path to the file that should be written by the recording. - - Suggested extension: "csv". - If the file already exists, it will be overwritten. - It will be opened for the whole time #VmaAllocator object is alive. - If opening this file fails, creation of the whole allocator object fails. - */ - const char* pFilePath; -} VmaRecordSettings; - -/// Description of a Allocator to be created. -typedef struct VmaAllocatorCreateInfo -{ - /// Flags for created allocator. Use #VmaAllocatorCreateFlagBits enum. - VmaAllocatorCreateFlags flags; - /// Vulkan physical device. - /** It must be valid throughout whole lifetime of created allocator. */ - VkPhysicalDevice physicalDevice; - /// Vulkan device. - /** It must be valid throughout whole lifetime of created allocator. */ - VkDevice device; - /// Preferred size of a single `VkDeviceMemory` block to be allocated from large heaps > 1 GiB. Optional. - /** Set to 0 to use default, which is currently 256 MiB. */ - VkDeviceSize preferredLargeHeapBlockSize; - /// Custom CPU memory allocation callbacks. Optional. - /** Optional, can be null. When specified, will also be used for all CPU-side memory allocations. */ - const VkAllocationCallbacks* pAllocationCallbacks; - /// Informative callbacks for `vkAllocateMemory`, `vkFreeMemory`. Optional. - /** Optional, can be null. */ - const VmaDeviceMemoryCallbacks* pDeviceMemoryCallbacks; - /** \brief Maximum number of additional frames that are in use at the same time as current frame. - - This value is used only when you make allocations with - VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocation cannot become - lost if allocation.lastUseFrameIndex >= allocator.currentFrameIndex - frameInUseCount. - - For example, if you double-buffer your command buffers, so resources used for - rendering in previous frame may still be in use by the GPU at the moment you - allocate resources needed for the current frame, set this value to 1. - - If you want to allow any allocations other than used in the current frame to - become lost, set this value to 0. - */ - uint32_t frameInUseCount; - /** \brief Either null or a pointer to an array of limits on maximum number of bytes that can be allocated out of particular Vulkan memory heap. - - If not NULL, it must be a pointer to an array of - `VkPhysicalDeviceMemoryProperties::memoryHeapCount` elements, defining limit on - maximum number of bytes that can be allocated out of particular Vulkan memory - heap. - - Any of the elements may be equal to `VK_WHOLE_SIZE`, which means no limit on that - heap. This is also the default in case of `pHeapSizeLimit` = NULL. - - If there is a limit defined for a heap: - - - If user tries to allocate more memory from that heap using this allocator, - the allocation fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`. - - If the limit is smaller than heap size reported in `VkMemoryHeap::size`, the - value of this limit will be reported instead when using vmaGetMemoryProperties(). - - Warning! Using this feature may not be equivalent to installing a GPU with - smaller amount of memory, because graphics driver doesn't necessary fail new - allocations with `VK_ERROR_OUT_OF_DEVICE_MEMORY` result when memory capacity is - exceeded. It may return success and just silently migrate some device memory - blocks to system RAM. This driver behavior can also be controlled using - VK_AMD_memory_overallocation_behavior extension. - */ - const VkDeviceSize* pHeapSizeLimit; - /** \brief Pointers to Vulkan functions. Can be null if you leave define `VMA_STATIC_VULKAN_FUNCTIONS 1`. - - If you leave define `VMA_STATIC_VULKAN_FUNCTIONS 1` in configuration section, - you can pass null as this member, because the library will fetch pointers to - Vulkan functions internally in a static way, like: - - vulkanFunctions.vkAllocateMemory = &vkAllocateMemory; - - Fill this member if you want to provide your own pointers to Vulkan functions, - e.g. fetched using `vkGetInstanceProcAddr()` and `vkGetDeviceProcAddr()`. - */ - const VmaVulkanFunctions* pVulkanFunctions; - /** \brief Parameters for recording of VMA calls. Can be null. - - If not null, it enables recording of calls to VMA functions to a file. - If support for recording is not enabled using `VMA_RECORDING_ENABLED` macro, - creation of the allocator object fails with `VK_ERROR_FEATURE_NOT_PRESENT`. - */ - const VmaRecordSettings* pRecordSettings; - /** \brief Optional handle to Vulkan instance object. - - Optional, can be null. Must be set if #VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT flas is used - or if `vulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)`. - */ - VkInstance instance; - /** \brief Optional. The highest version of Vulkan that the application is designed to use. - - It must be a value in the format as created by macro `VK_MAKE_VERSION` or a constant like: `VK_API_VERSION_1_1`, `VK_API_VERSION_1_0`. - The patch version number specified is ignored. Only the major and minor versions are considered. - It must be less or euqal (preferably equal) to value as passed to `vkCreateInstance` as `VkApplicationInfo::apiVersion`. - Only versions 1.0 and 1.1 are supported by the current implementation. - Leaving it initialized to zero is equivalent to `VK_API_VERSION_1_0`. - */ - uint32_t vulkanApiVersion; -} VmaAllocatorCreateInfo; - -/// Creates Allocator object. -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAllocator( - const VmaAllocatorCreateInfo* pCreateInfo, - VmaAllocator* pAllocator); - -/// Destroys allocator object. -VMA_CALL_PRE void VMA_CALL_POST vmaDestroyAllocator( - VmaAllocator allocator); - -/** -PhysicalDeviceProperties are fetched from physicalDevice by the allocator. -You can access it here, without fetching it again on your own. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaGetPhysicalDeviceProperties( - VmaAllocator allocator, - const VkPhysicalDeviceProperties** ppPhysicalDeviceProperties); - -/** -PhysicalDeviceMemoryProperties are fetched from physicalDevice by the allocator. -You can access it here, without fetching it again on your own. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryProperties( - VmaAllocator allocator, - const VkPhysicalDeviceMemoryProperties** ppPhysicalDeviceMemoryProperties); - -/** -\brief Given Memory Type Index, returns Property Flags of this memory type. - -This is just a convenience function. Same information can be obtained using -vmaGetMemoryProperties(). -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryTypeProperties( - VmaAllocator allocator, - uint32_t memoryTypeIndex, - VkMemoryPropertyFlags* pFlags); - -/** \brief Sets index of the current frame. - -This function must be used if you make allocations with -#VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT and -#VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flags to inform the allocator -when a new frame begins. Allocations queried using vmaGetAllocationInfo() cannot -become lost in the current frame. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaSetCurrentFrameIndex( - VmaAllocator allocator, - uint32_t frameIndex); - -/** \brief Calculated statistics of memory usage in entire allocator. -*/ -typedef struct VmaStatInfo -{ - /// Number of `VkDeviceMemory` Vulkan memory blocks allocated. - uint32_t blockCount; - /// Number of #VmaAllocation allocation objects allocated. - uint32_t allocationCount; - /// Number of free ranges of memory between allocations. - uint32_t unusedRangeCount; - /// Total number of bytes occupied by all allocations. - VkDeviceSize usedBytes; - /// Total number of bytes occupied by unused ranges. - VkDeviceSize unusedBytes; - VkDeviceSize allocationSizeMin, allocationSizeAvg, allocationSizeMax; - VkDeviceSize unusedRangeSizeMin, unusedRangeSizeAvg, unusedRangeSizeMax; -} VmaStatInfo; - -/// General statistics from current state of Allocator. -typedef struct VmaStats -{ - VmaStatInfo memoryType[VK_MAX_MEMORY_TYPES]; - VmaStatInfo memoryHeap[VK_MAX_MEMORY_HEAPS]; - VmaStatInfo total; -} VmaStats; - -/** \brief Retrieves statistics from current state of the Allocator. - -This function is called "calculate" not "get" because it has to traverse all -internal data structures, so it may be quite slow. For faster but more brief statistics -suitable to be called every frame or every allocation, use vmaGetBudget(). - -Note that when using allocator from multiple threads, returned information may immediately -become outdated. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaCalculateStats( - VmaAllocator allocator, - VmaStats* pStats); - -/** \brief Statistics of current memory usage and available budget, in bytes, for specific memory heap. -*/ -typedef struct VmaBudget -{ - /** \brief Sum size of all `VkDeviceMemory` blocks allocated from particular heap, in bytes. - */ - VkDeviceSize blockBytes; - - /** \brief Sum size of all allocations created in particular heap, in bytes. - - Usually less or equal than `blockBytes`. - Difference `blockBytes - allocationBytes` is the amount of memory allocated but unused - - available for new allocations or wasted due to fragmentation. - - It might be greater than `blockBytes` if there are some allocations in lost state, as they account - to this value as well. - */ - VkDeviceSize allocationBytes; - - /** \brief Estimated current memory usage of the program, in bytes. - - Fetched from system using `VK_EXT_memory_budget` extension if enabled. - - It might be different than `blockBytes` (usually higher) due to additional implicit objects - also occupying the memory, like swapchain, pipelines, descriptor heaps, command buffers, or - `VkDeviceMemory` blocks allocated outside of this library, if any. - */ - VkDeviceSize usage; - - /** \brief Estimated amount of memory available to the program, in bytes. - - Fetched from system using `VK_EXT_memory_budget` extension if enabled. - - It might be different (most probably smaller) than `VkMemoryHeap::size[heapIndex]` due to factors - external to the program, like other programs also consuming system resources. - Difference `budget - usage` is the amount of additional memory that can probably - be allocated without problems. Exceeding the budget may result in various problems. - */ - VkDeviceSize budget; -} VmaBudget; - -/** \brief Retrieves information about current memory budget for all memory heaps. - -\param[out] pBudget Must point to array with number of elements at least equal to number of memory heaps in physical device used. - -This function is called "get" not "calculate" because it is very fast, suitable to be called -every frame or every allocation. For more detailed statistics use vmaCalculateStats(). - -Note that when using allocator from multiple threads, returned information may immediately -become outdated. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaGetBudget( - VmaAllocator allocator, - VmaBudget* pBudget); - -#ifndef VMA_STATS_STRING_ENABLED -#define VMA_STATS_STRING_ENABLED 1 -#endif - -#if VMA_STATS_STRING_ENABLED - -/// Builds and returns statistics as string in JSON format. -/** @param[out] ppStatsString Must be freed using vmaFreeStatsString() function. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaBuildStatsString( - VmaAllocator allocator, - char** ppStatsString, - VkBool32 detailedMap); - -VMA_CALL_PRE void VMA_CALL_POST vmaFreeStatsString( - VmaAllocator allocator, - char* pStatsString); - -#endif // #if VMA_STATS_STRING_ENABLED - -/** \struct VmaPool -\brief Represents custom memory pool - -Fill structure VmaPoolCreateInfo and call function vmaCreatePool() to create it. -Call function vmaDestroyPool() to destroy it. - -For more information see [Custom memory pools](@ref choosing_memory_type_custom_memory_pools). -*/ -VK_DEFINE_HANDLE(VmaPool) - -typedef enum VmaMemoryUsage -{ - /** No intended memory usage specified. - Use other members of VmaAllocationCreateInfo to specify your requirements. - */ - VMA_MEMORY_USAGE_UNKNOWN = 0, - /** Memory will be used on device only, so fast access from the device is preferred. - It usually means device-local GPU (video) memory. - No need to be mappable on host. - It is roughly equivalent of `D3D12_HEAP_TYPE_DEFAULT`. - - Usage: - - - Resources written and read by device, e.g. images used as attachments. - - Resources transferred from host once (immutable) or infrequently and read by - device multiple times, e.g. textures to be sampled, vertex buffers, uniform - (constant) buffers, and majority of other types of resources used on GPU. - - Allocation may still end up in `HOST_VISIBLE` memory on some implementations. - In such case, you are free to map it. - You can use #VMA_ALLOCATION_CREATE_MAPPED_BIT with this usage type. - */ - VMA_MEMORY_USAGE_GPU_ONLY = 1, - /** Memory will be mappable on host. - It usually means CPU (system) memory. - Guarantees to be `HOST_VISIBLE` and `HOST_COHERENT`. - CPU access is typically uncached. Writes may be write-combined. - Resources created in this pool may still be accessible to the device, but access to them can be slow. - It is roughly equivalent of `D3D12_HEAP_TYPE_UPLOAD`. - - Usage: Staging copy of resources used as transfer source. - */ - VMA_MEMORY_USAGE_CPU_ONLY = 2, - /** - Memory that is both mappable on host (guarantees to be `HOST_VISIBLE`) and preferably fast to access by GPU. - CPU access is typically uncached. Writes may be write-combined. - - Usage: Resources written frequently by host (dynamic), read by device. E.g. textures, vertex buffers, uniform buffers updated every frame or every draw call. - */ - VMA_MEMORY_USAGE_CPU_TO_GPU = 3, - /** Memory mappable on host (guarantees to be `HOST_VISIBLE`) and cached. - It is roughly equivalent of `D3D12_HEAP_TYPE_READBACK`. - - Usage: - - - Resources written by device, read by host - results of some computations, e.g. screen capture, average scene luminance for HDR tone mapping. - - Any resources read or accessed randomly on host, e.g. CPU-side copy of vertex buffer used as source of transfer, but also used for collision detection. - */ - VMA_MEMORY_USAGE_GPU_TO_CPU = 4, - /** CPU memory - memory that is preferably not `DEVICE_LOCAL`, but also not guaranteed to be `HOST_VISIBLE`. - - Usage: Staging copy of resources moved from GPU memory to CPU memory as part - of custom paging/residency mechanism, to be moved back to GPU memory when needed. - */ - VMA_MEMORY_USAGE_CPU_COPY = 5, - /** Lazily allocated GPU memory having `VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT`. - Exists mostly on mobile platforms. Using it on desktop PC or other GPUs with no such memory type present will fail the allocation. - - Usage: Memory for transient attachment images (color attachments, depth attachments etc.), created with `VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT`. - - Allocations with this usage are always created as dedicated - it implies #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. - */ - VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED = 6, - - VMA_MEMORY_USAGE_MAX_ENUM = 0x7FFFFFFF -} VmaMemoryUsage; - -/// Flags to be passed as VmaAllocationCreateInfo::flags. -typedef enum VmaAllocationCreateFlagBits { - /** \brief Set this flag if the allocation should have its own memory block. - - Use it for special, big resources, like fullscreen images used as attachments. - - You should not use this flag if VmaAllocationCreateInfo::pool is not null. - */ - VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT = 0x00000001, - - /** \brief Set this flag to only try to allocate from existing `VkDeviceMemory` blocks and never create new such block. - - If new allocation cannot be placed in any of the existing blocks, allocation - fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY` error. - - You should not use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT and - #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT at the same time. It makes no sense. - - If VmaAllocationCreateInfo::pool is not null, this flag is implied and ignored. */ - VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT = 0x00000002, - /** \brief Set this flag to use a memory that will be persistently mapped and retrieve pointer to it. - - Pointer to mapped memory will be returned through VmaAllocationInfo::pMappedData. - - Is it valid to use this flag for allocation made from memory type that is not - `HOST_VISIBLE`. This flag is then ignored and memory is not mapped. This is - useful if you need an allocation that is efficient to use on GPU - (`DEVICE_LOCAL`) and still want to map it directly if possible on platforms that - support it (e.g. Intel GPU). - - You should not use this flag together with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT. - */ - VMA_ALLOCATION_CREATE_MAPPED_BIT = 0x00000004, - /** Allocation created with this flag can become lost as a result of another - allocation with #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag, so you - must check it before use. - - To check if allocation is not lost, call vmaGetAllocationInfo() and check if - VmaAllocationInfo::deviceMemory is not `VK_NULL_HANDLE`. - - For details about supporting lost allocations, see Lost Allocations - chapter of User Guide on Main Page. - - You should not use this flag together with #VMA_ALLOCATION_CREATE_MAPPED_BIT. - */ - VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT = 0x00000008, - /** While creating allocation using this flag, other allocations that were - created with flag #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT can become lost. - - For details about supporting lost allocations, see Lost Allocations - chapter of User Guide on Main Page. - */ - VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT = 0x00000010, - /** Set this flag to treat VmaAllocationCreateInfo::pUserData as pointer to a - null-terminated string. Instead of copying pointer value, a local copy of the - string is made and stored in allocation's `pUserData`. The string is automatically - freed together with the allocation. It is also used in vmaBuildStatsString(). - */ - VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT = 0x00000020, - /** Allocation will be created from upper stack in a double stack pool. - - This flag is only allowed for custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT flag. - */ - VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT = 0x00000040, - /** Create both buffer/image and allocation, but don't bind them together. - It is useful when you want to bind yourself to do some more advanced binding, e.g. using some extensions. - The flag is meaningful only with functions that bind by default: vmaCreateBuffer(), vmaCreateImage(). - Otherwise it is ignored. - */ - VMA_ALLOCATION_CREATE_DONT_BIND_BIT = 0x00000080, - /** Create allocation only if additional device memory required for it, if any, won't exceed - memory budget. Otherwise return `VK_ERROR_OUT_OF_DEVICE_MEMORY`. - */ - VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT = 0x00000100, - - /** Allocation strategy that chooses smallest possible free range for the - allocation. - */ - VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT = 0x00010000, - /** Allocation strategy that chooses biggest possible free range for the - allocation. - */ - VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT = 0x00020000, - /** Allocation strategy that chooses first suitable free range for the - allocation. - - "First" doesn't necessarily means the one with smallest offset in memory, - but rather the one that is easiest and fastest to find. - */ - VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT = 0x00040000, - - /** Allocation strategy that tries to minimize memory usage. - */ - VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT = VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT, - /** Allocation strategy that tries to minimize allocation time. - */ - VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT = VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT, - /** Allocation strategy that tries to minimize memory fragmentation. - */ - VMA_ALLOCATION_CREATE_STRATEGY_MIN_FRAGMENTATION_BIT = VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT, - - /** A bit mask to extract only `STRATEGY` bits from entire set of flags. - */ - VMA_ALLOCATION_CREATE_STRATEGY_MASK = - VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT | - VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT | - VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT, - - VMA_ALLOCATION_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF -} VmaAllocationCreateFlagBits; -typedef VkFlags VmaAllocationCreateFlags; - -typedef struct VmaAllocationCreateInfo -{ - /// Use #VmaAllocationCreateFlagBits enum. - VmaAllocationCreateFlags flags; - /** \brief Intended usage of memory. - - You can leave #VMA_MEMORY_USAGE_UNKNOWN if you specify memory requirements in other way. \n - If `pool` is not null, this member is ignored. - */ - VmaMemoryUsage usage; - /** \brief Flags that must be set in a Memory Type chosen for an allocation. - - Leave 0 if you specify memory requirements in other way. \n - If `pool` is not null, this member is ignored.*/ - VkMemoryPropertyFlags requiredFlags; - /** \brief Flags that preferably should be set in a memory type chosen for an allocation. - - Set to 0 if no additional flags are prefered. \n - If `pool` is not null, this member is ignored. */ - VkMemoryPropertyFlags preferredFlags; - /** \brief Bitmask containing one bit set for every memory type acceptable for this allocation. - - Value 0 is equivalent to `UINT32_MAX` - it means any memory type is accepted if - it meets other requirements specified by this structure, with no further - restrictions on memory type index. \n - If `pool` is not null, this member is ignored. - */ - uint32_t memoryTypeBits; - /** \brief Pool that this allocation should be created in. - - Leave `VK_NULL_HANDLE` to allocate from default pool. If not null, members: - `usage`, `requiredFlags`, `preferredFlags`, `memoryTypeBits` are ignored. - */ - VmaPool pool; - /** \brief Custom general-purpose pointer that will be stored in #VmaAllocation, can be read as VmaAllocationInfo::pUserData and changed using vmaSetAllocationUserData(). - - If #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT is used, it must be either - null or pointer to a null-terminated string. The string will be then copied to - internal buffer, so it doesn't need to be valid after allocation call. - */ - void* pUserData; -} VmaAllocationCreateInfo; - -/** -\brief Helps to find memoryTypeIndex, given memoryTypeBits and VmaAllocationCreateInfo. - -This algorithm tries to find a memory type that: - -- Is allowed by memoryTypeBits. -- Contains all the flags from pAllocationCreateInfo->requiredFlags. -- Matches intended usage. -- Has as many flags from pAllocationCreateInfo->preferredFlags as possible. - -\return Returns VK_ERROR_FEATURE_NOT_PRESENT if not found. Receiving such result -from this function or any other allocating function probably means that your -device doesn't support any memory type with requested features for the specific -type of resource you want to use it for. Please check parameters of your -resource, like image layout (OPTIMAL versus LINEAR) or mip level count. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndex( - VmaAllocator allocator, - uint32_t memoryTypeBits, - const VmaAllocationCreateInfo* pAllocationCreateInfo, - uint32_t* pMemoryTypeIndex); - -/** -\brief Helps to find memoryTypeIndex, given VkBufferCreateInfo and VmaAllocationCreateInfo. - -It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex. -It internally creates a temporary, dummy buffer that never has memory bound. -It is just a convenience function, equivalent to calling: - -- `vkCreateBuffer` -- `vkGetBufferMemoryRequirements` -- `vmaFindMemoryTypeIndex` -- `vkDestroyBuffer` -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForBufferInfo( - VmaAllocator allocator, - const VkBufferCreateInfo* pBufferCreateInfo, - const VmaAllocationCreateInfo* pAllocationCreateInfo, - uint32_t* pMemoryTypeIndex); - -/** -\brief Helps to find memoryTypeIndex, given VkImageCreateInfo and VmaAllocationCreateInfo. - -It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex. -It internally creates a temporary, dummy image that never has memory bound. -It is just a convenience function, equivalent to calling: - -- `vkCreateImage` -- `vkGetImageMemoryRequirements` -- `vmaFindMemoryTypeIndex` -- `vkDestroyImage` -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForImageInfo( - VmaAllocator allocator, - const VkImageCreateInfo* pImageCreateInfo, - const VmaAllocationCreateInfo* pAllocationCreateInfo, - uint32_t* pMemoryTypeIndex); - -/// Flags to be passed as VmaPoolCreateInfo::flags. -typedef enum VmaPoolCreateFlagBits { - /** \brief Use this flag if you always allocate only buffers and linear images or only optimal images out of this pool and so Buffer-Image Granularity can be ignored. - - This is an optional optimization flag. - - If you always allocate using vmaCreateBuffer(), vmaCreateImage(), - vmaAllocateMemoryForBuffer(), then you don't need to use it because allocator - knows exact type of your allocations so it can handle Buffer-Image Granularity - in the optimal way. - - If you also allocate using vmaAllocateMemoryForImage() or vmaAllocateMemory(), - exact type of such allocations is not known, so allocator must be conservative - in handling Buffer-Image Granularity, which can lead to suboptimal allocation - (wasted memory). In that case, if you can make sure you always allocate only - buffers and linear images or only optimal images out of this pool, use this flag - to make allocator disregard Buffer-Image Granularity and so make allocations - faster and more optimal. - */ - VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT = 0x00000002, - - /** \brief Enables alternative, linear allocation algorithm in this pool. - - Specify this flag to enable linear allocation algorithm, which always creates - new allocations after last one and doesn't reuse space from allocations freed in - between. It trades memory consumption for simplified algorithm and data - structure, which has better performance and uses less memory for metadata. - - By using this flag, you can achieve behavior of free-at-once, stack, - ring buffer, and double stack. For details, see documentation chapter - \ref linear_algorithm. - - When using this flag, you must specify VmaPoolCreateInfo::maxBlockCount == 1 (or 0 for default). - - For more details, see [Linear allocation algorithm](@ref linear_algorithm). - */ - VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT = 0x00000004, - - /** \brief Enables alternative, buddy allocation algorithm in this pool. - - It operates on a tree of blocks, each having size that is a power of two and - a half of its parent's size. Comparing to default algorithm, this one provides - faster allocation and deallocation and decreased external fragmentation, - at the expense of more memory wasted (internal fragmentation). - - For more details, see [Buddy allocation algorithm](@ref buddy_algorithm). - */ - VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT = 0x00000008, - - /** Bit mask to extract only `ALGORITHM` bits from entire set of flags. - */ - VMA_POOL_CREATE_ALGORITHM_MASK = - VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT | - VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT, - - VMA_POOL_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF -} VmaPoolCreateFlagBits; -typedef VkFlags VmaPoolCreateFlags; - -/** \brief Describes parameter of created #VmaPool. -*/ -typedef struct VmaPoolCreateInfo { - /** \brief Vulkan memory type index to allocate this pool from. - */ - uint32_t memoryTypeIndex; - /** \brief Use combination of #VmaPoolCreateFlagBits. - */ - VmaPoolCreateFlags flags; - /** \brief Size of a single `VkDeviceMemory` block to be allocated as part of this pool, in bytes. Optional. - - Specify nonzero to set explicit, constant size of memory blocks used by this - pool. - - Leave 0 to use default and let the library manage block sizes automatically. - Sizes of particular blocks may vary. - */ - VkDeviceSize blockSize; - /** \brief Minimum number of blocks to be always allocated in this pool, even if they stay empty. - - Set to 0 to have no preallocated blocks and allow the pool be completely empty. - */ - size_t minBlockCount; - /** \brief Maximum number of blocks that can be allocated in this pool. Optional. - - Set to 0 to use default, which is `SIZE_MAX`, which means no limit. - - Set to same value as VmaPoolCreateInfo::minBlockCount to have fixed amount of memory allocated - throughout whole lifetime of this pool. - */ - size_t maxBlockCount; - /** \brief Maximum number of additional frames that are in use at the same time as current frame. - - This value is used only when you make allocations with - #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocation cannot become - lost if allocation.lastUseFrameIndex >= allocator.currentFrameIndex - frameInUseCount. - - For example, if you double-buffer your command buffers, so resources used for - rendering in previous frame may still be in use by the GPU at the moment you - allocate resources needed for the current frame, set this value to 1. - - If you want to allow any allocations other than used in the current frame to - become lost, set this value to 0. - */ - uint32_t frameInUseCount; -} VmaPoolCreateInfo; - -/** \brief Describes parameter of existing #VmaPool. -*/ -typedef struct VmaPoolStats { - /** \brief Total amount of `VkDeviceMemory` allocated from Vulkan for this pool, in bytes. - */ - VkDeviceSize size; - /** \brief Total number of bytes in the pool not used by any #VmaAllocation. - */ - VkDeviceSize unusedSize; - /** \brief Number of #VmaAllocation objects created from this pool that were not destroyed or lost. - */ - size_t allocationCount; - /** \brief Number of continuous memory ranges in the pool not used by any #VmaAllocation. - */ - size_t unusedRangeCount; - /** \brief Size of the largest continuous free memory region available for new allocation. - - Making a new allocation of that size is not guaranteed to succeed because of - possible additional margin required to respect alignment and buffer/image - granularity. - */ - VkDeviceSize unusedRangeSizeMax; - /** \brief Number of `VkDeviceMemory` blocks allocated for this pool. - */ - size_t blockCount; -} VmaPoolStats; - -/** \brief Allocates Vulkan device memory and creates #VmaPool object. - -@param allocator Allocator object. -@param pCreateInfo Parameters of pool to create. -@param[out] pPool Handle to created pool. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreatePool( - VmaAllocator allocator, - const VmaPoolCreateInfo* pCreateInfo, - VmaPool* pPool); - -/** \brief Destroys #VmaPool object and frees Vulkan device memory. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaDestroyPool( - VmaAllocator allocator, - VmaPool pool); - -/** \brief Retrieves statistics of existing #VmaPool object. - -@param allocator Allocator object. -@param pool Pool object. -@param[out] pPoolStats Statistics of specified pool. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolStats( - VmaAllocator allocator, - VmaPool pool, - VmaPoolStats* pPoolStats); - -/** \brief Marks all allocations in given pool as lost if they are not used in current frame or VmaPoolCreateInfo::frameInUseCount back from now. - -@param allocator Allocator object. -@param pool Pool. -@param[out] pLostAllocationCount Number of allocations marked as lost. Optional - pass null if you don't need this information. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaMakePoolAllocationsLost( - VmaAllocator allocator, - VmaPool pool, - size_t* pLostAllocationCount); - -/** \brief Checks magic number in margins around all allocations in given memory pool in search for corruptions. - -Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero, -`VMA_DEBUG_MARGIN` is defined to nonzero and the pool is created in memory type that is -`HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection). - -Possible return values: - -- `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for specified pool. -- `VK_SUCCESS` - corruption detection has been performed and succeeded. -- `VK_ERROR_VALIDATION_FAILED_EXT` - corruption detection has been performed and found memory corruptions around one of the allocations. - `VMA_ASSERT` is also fired in that case. -- Other value: Error returned by Vulkan, e.g. memory mapping failure. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckPoolCorruption(VmaAllocator allocator, VmaPool pool); - -/** \brief Retrieves name of a custom pool. - -After the call `ppName` is either null or points to an internally-owned null-terminated string -containing name of the pool that was previously set. The pointer becomes invalid when the pool is -destroyed or its name is changed using vmaSetPoolName(). -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolName( - VmaAllocator allocator, - VmaPool pool, - const char** ppName); - -/** \brief Sets name of a custom pool. - -`pName` can be either null or pointer to a null-terminated string with new name for the pool. -Function makes internal copy of the string, so it can be changed or freed immediately after this call. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaSetPoolName( - VmaAllocator allocator, - VmaPool pool, - const char* pName); - -/** \struct VmaAllocation -\brief Represents single memory allocation. - -It may be either dedicated block of `VkDeviceMemory` or a specific region of a bigger block of this type -plus unique offset. - -There are multiple ways to create such object. -You need to fill structure VmaAllocationCreateInfo. -For more information see [Choosing memory type](@ref choosing_memory_type). - -Although the library provides convenience functions that create Vulkan buffer or image, -allocate memory for it and bind them together, -binding of the allocation to a buffer or an image is out of scope of the allocation itself. -Allocation object can exist without buffer/image bound, -binding can be done manually by the user, and destruction of it can be done -independently of destruction of the allocation. - -The object also remembers its size and some other information. -To retrieve this information, use function vmaGetAllocationInfo() and inspect -returned structure VmaAllocationInfo. - -Some kinds allocations can be in lost state. -For more information, see [Lost allocations](@ref lost_allocations). -*/ -VK_DEFINE_HANDLE(VmaAllocation) - -/** \brief Parameters of #VmaAllocation objects, that can be retrieved using function vmaGetAllocationInfo(). -*/ -typedef struct VmaAllocationInfo { - /** \brief Memory type index that this allocation was allocated from. - - It never changes. - */ - uint32_t memoryType; - /** \brief Handle to Vulkan memory object. - - Same memory object can be shared by multiple allocations. - - It can change after call to vmaDefragment() if this allocation is passed to the function, or if allocation is lost. - - If the allocation is lost, it is equal to `VK_NULL_HANDLE`. - */ - VkDeviceMemory deviceMemory; - /** \brief Offset into deviceMemory object to the beginning of this allocation, in bytes. (deviceMemory, offset) pair is unique to this allocation. - - It can change after call to vmaDefragment() if this allocation is passed to the function, or if allocation is lost. - */ - VkDeviceSize offset; - /** \brief Size of this allocation, in bytes. - - It never changes, unless allocation is lost. - */ - VkDeviceSize size; - /** \brief Pointer to the beginning of this allocation as mapped data. - - If the allocation hasn't been mapped using vmaMapMemory() and hasn't been - created with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag, this value null. - - It can change after call to vmaMapMemory(), vmaUnmapMemory(). - It can also change after call to vmaDefragment() if this allocation is passed to the function. - */ - void* pMappedData; - /** \brief Custom general-purpose pointer that was passed as VmaAllocationCreateInfo::pUserData or set using vmaSetAllocationUserData(). - - It can change after call to vmaSetAllocationUserData() for this allocation. - */ - void* pUserData; -} VmaAllocationInfo; - -/** \brief General purpose memory allocation. - -@param[out] pAllocation Handle to allocated memory. -@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo(). - -You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages(). - -It is recommended to use vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage(), -vmaCreateBuffer(), vmaCreateImage() instead whenever possible. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemory( - VmaAllocator allocator, - const VkMemoryRequirements* pVkMemoryRequirements, - const VmaAllocationCreateInfo* pCreateInfo, - VmaAllocation* pAllocation, - VmaAllocationInfo* pAllocationInfo); - -/** \brief General purpose memory allocation for multiple allocation objects at once. - -@param allocator Allocator object. -@param pVkMemoryRequirements Memory requirements for each allocation. -@param pCreateInfo Creation parameters for each alloction. -@param allocationCount Number of allocations to make. -@param[out] pAllocations Pointer to array that will be filled with handles to created allocations. -@param[out] pAllocationInfo Optional. Pointer to array that will be filled with parameters of created allocations. - -You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages(). - -Word "pages" is just a suggestion to use this function to allocate pieces of memory needed for sparse binding. -It is just a general purpose allocation function able to make multiple allocations at once. -It may be internally optimized to be more efficient than calling vmaAllocateMemory() `allocationCount` times. - -All allocations are made using same parameters. All of them are created out of the same memory pool and type. -If any allocation fails, all allocations already made within this function call are also freed, so that when -returned result is not `VK_SUCCESS`, `pAllocation` array is always entirely filled with `VK_NULL_HANDLE`. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryPages( - VmaAllocator allocator, - const VkMemoryRequirements* pVkMemoryRequirements, - const VmaAllocationCreateInfo* pCreateInfo, - size_t allocationCount, - VmaAllocation* pAllocations, - VmaAllocationInfo* pAllocationInfo); - -/** -@param[out] pAllocation Handle to allocated memory. -@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo(). - -You should free the memory using vmaFreeMemory(). -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForBuffer( - VmaAllocator allocator, - VkBuffer buffer, - const VmaAllocationCreateInfo* pCreateInfo, - VmaAllocation* pAllocation, - VmaAllocationInfo* pAllocationInfo); - -/// Function similar to vmaAllocateMemoryForBuffer(). -VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForImage( - VmaAllocator allocator, - VkImage image, - const VmaAllocationCreateInfo* pCreateInfo, - VmaAllocation* pAllocation, - VmaAllocationInfo* pAllocationInfo); - -/** \brief Frees memory previously allocated using vmaAllocateMemory(), vmaAllocateMemoryForBuffer(), or vmaAllocateMemoryForImage(). - -Passing `VK_NULL_HANDLE` as `allocation` is valid. Such function call is just skipped. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemory( - VmaAllocator allocator, - VmaAllocation allocation); - -/** \brief Frees memory and destroys multiple allocations. - -Word "pages" is just a suggestion to use this function to free pieces of memory used for sparse binding. -It is just a general purpose function to free memory and destroy allocations made using e.g. vmaAllocateMemory(), -vmaAllocateMemoryPages() and other functions. -It may be internally optimized to be more efficient than calling vmaFreeMemory() `allocationCount` times. - -Allocations in `pAllocations` array can come from any memory pools and types. -Passing `VK_NULL_HANDLE` as elements of `pAllocations` array is valid. Such entries are just skipped. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemoryPages( - VmaAllocator allocator, - size_t allocationCount, - VmaAllocation* pAllocations); - -/** \brief Deprecated. - -In version 2.2.0 it used to try to change allocation's size without moving or reallocating it. -In current version it returns `VK_SUCCESS` only if `newSize` equals current allocation's size. -Otherwise returns `VK_ERROR_OUT_OF_POOL_MEMORY`, indicating that allocation's size could not be changed. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaResizeAllocation( - VmaAllocator allocator, - VmaAllocation allocation, - VkDeviceSize newSize); - -/** \brief Returns current information about specified allocation and atomically marks it as used in current frame. - -Current paramters of given allocation are returned in `pAllocationInfo`. - -This function also atomically "touches" allocation - marks it as used in current frame, -just like vmaTouchAllocation(). -If the allocation is in lost state, `pAllocationInfo->deviceMemory == VK_NULL_HANDLE`. - -Although this function uses atomics and doesn't lock any mutex, so it should be quite efficient, -you can avoid calling it too often. - -- You can retrieve same VmaAllocationInfo structure while creating your resource, from function - vmaCreateBuffer(), vmaCreateImage(). You can remember it if you are sure parameters don't change - (e.g. due to defragmentation or allocation becoming lost). -- If you just want to check if allocation is not lost, vmaTouchAllocation() will work faster. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo( - VmaAllocator allocator, - VmaAllocation allocation, - VmaAllocationInfo* pAllocationInfo); - -/** \brief Returns `VK_TRUE` if allocation is not lost and atomically marks it as used in current frame. - -If the allocation has been created with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag, -this function returns `VK_TRUE` if it's not in lost state, so it can still be used. -It then also atomically "touches" the allocation - marks it as used in current frame, -so that you can be sure it won't become lost in current frame or next `frameInUseCount` frames. - -If the allocation is in lost state, the function returns `VK_FALSE`. -Memory of such allocation, as well as buffer or image bound to it, should not be used. -Lost allocation and the buffer/image still need to be destroyed. - -If the allocation has been created without #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag, -this function always returns `VK_TRUE`. -*/ -VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaTouchAllocation( - VmaAllocator allocator, - VmaAllocation allocation); - -/** \brief Sets pUserData in given allocation to new value. - -If the allocation was created with VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT, -pUserData must be either null, or pointer to a null-terminated string. The function -makes local copy of the string and sets it as allocation's `pUserData`. String -passed as pUserData doesn't need to be valid for whole lifetime of the allocation - -you can free it after this call. String previously pointed by allocation's -pUserData is freed from memory. - -If the flag was not used, the value of pointer `pUserData` is just copied to -allocation's `pUserData`. It is opaque, so you can use it however you want - e.g. -as a pointer, ordinal number or some handle to you own data. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationUserData( - VmaAllocator allocator, - VmaAllocation allocation, - void* pUserData); - -/** \brief Creates new allocation that is in lost state from the beginning. - -It can be useful if you need a dummy, non-null allocation. - -You still need to destroy created object using vmaFreeMemory(). - -Returned allocation is not tied to any specific memory pool or memory type and -not bound to any image or buffer. It has size = 0. It cannot be turned into -a real, non-empty allocation. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaCreateLostAllocation( - VmaAllocator allocator, - VmaAllocation* pAllocation); - -/** \brief Maps memory represented by given allocation and returns pointer to it. - -Maps memory represented by given allocation to make it accessible to CPU code. -When succeeded, `*ppData` contains pointer to first byte of this memory. -If the allocation is part of bigger `VkDeviceMemory` block, the pointer is -correctly offseted to the beginning of region assigned to this particular -allocation. - -Mapping is internally reference-counted and synchronized, so despite raw Vulkan -function `vkMapMemory()` cannot be used to map same block of `VkDeviceMemory` -multiple times simultaneously, it is safe to call this function on allocations -assigned to the same memory block. Actual Vulkan memory will be mapped on first -mapping and unmapped on last unmapping. - -If the function succeeded, you must call vmaUnmapMemory() to unmap the -allocation when mapping is no longer needed or before freeing the allocation, at -the latest. - -It also safe to call this function multiple times on the same allocation. You -must call vmaUnmapMemory() same number of times as you called vmaMapMemory(). - -It is also safe to call this function on allocation created with -#VMA_ALLOCATION_CREATE_MAPPED_BIT flag. Its memory stays mapped all the time. -You must still call vmaUnmapMemory() same number of times as you called -vmaMapMemory(). You must not call vmaUnmapMemory() additional time to free the -"0-th" mapping made automatically due to #VMA_ALLOCATION_CREATE_MAPPED_BIT flag. - -This function fails when used on allocation made in memory type that is not -`HOST_VISIBLE`. - -This function always fails when called for allocation that was created with -#VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocations cannot be -mapped. - -This function doesn't automatically flush or invalidate caches. -If the allocation is made from a memory types that is not `HOST_COHERENT`, -you also need to use vmaInvalidateAllocation() / vmaFlushAllocation(), as required by Vulkan specification. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaMapMemory( - VmaAllocator allocator, - VmaAllocation allocation, - void** ppData); - -/** \brief Unmaps memory represented by given allocation, mapped previously using vmaMapMemory(). - -For details, see description of vmaMapMemory(). - -This function doesn't automatically flush or invalidate caches. -If the allocation is made from a memory types that is not `HOST_COHERENT`, -you also need to use vmaInvalidateAllocation() / vmaFlushAllocation(), as required by Vulkan specification. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaUnmapMemory( - VmaAllocator allocator, - VmaAllocation allocation); - -/** \brief Flushes memory of given allocation. - -Calls `vkFlushMappedMemoryRanges()` for memory associated with given range of given allocation. -It needs to be called after writing to a mapped memory for memory types that are not `HOST_COHERENT`. -Unmap operation doesn't do that automatically. - -- `offset` must be relative to the beginning of allocation. -- `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation. -- `offset` and `size` don't have to be aligned. - They are internally rounded down/up to multiply of `nonCoherentAtomSize`. -- If `size` is 0, this call is ignored. -- If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`, - this call is ignored. - -Warning! `offset` and `size` are relative to the contents of given `allocation`. -If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively. -Do not pass allocation's offset as `offset`!!! -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaFlushAllocation(VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size); - -/** \brief Invalidates memory of given allocation. - -Calls `vkInvalidateMappedMemoryRanges()` for memory associated with given range of given allocation. -It needs to be called before reading from a mapped memory for memory types that are not `HOST_COHERENT`. -Map operation doesn't do that automatically. - -- `offset` must be relative to the beginning of allocation. -- `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation. -- `offset` and `size` don't have to be aligned. - They are internally rounded down/up to multiply of `nonCoherentAtomSize`. -- If `size` is 0, this call is ignored. -- If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`, - this call is ignored. - -Warning! `offset` and `size` are relative to the contents of given `allocation`. -If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively. -Do not pass allocation's offset as `offset`!!! -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaInvalidateAllocation(VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size); - -/** \brief Checks magic number in margins around all allocations in given memory types (in both default and custom pools) in search for corruptions. - -@param memoryTypeBits Bit mask, where each bit set means that a memory type with that index should be checked. - -Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero, -`VMA_DEBUG_MARGIN` is defined to nonzero and only for memory types that are -`HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection). - -Possible return values: - -- `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for any of specified memory types. -- `VK_SUCCESS` - corruption detection has been performed and succeeded. -- `VK_ERROR_VALIDATION_FAILED_EXT` - corruption detection has been performed and found memory corruptions around one of the allocations. - `VMA_ASSERT` is also fired in that case. -- Other value: Error returned by Vulkan, e.g. memory mapping failure. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckCorruption(VmaAllocator allocator, uint32_t memoryTypeBits); - -/** \struct VmaDefragmentationContext -\brief Represents Opaque object that represents started defragmentation process. - -Fill structure #VmaDefragmentationInfo2 and call function vmaDefragmentationBegin() to create it. -Call function vmaDefragmentationEnd() to destroy it. -*/ -VK_DEFINE_HANDLE(VmaDefragmentationContext) - -/// Flags to be used in vmaDefragmentationBegin(). None at the moment. Reserved for future use. -typedef enum VmaDefragmentationFlagBits { - VMA_DEFRAGMENTATION_FLAG_INCREMENTAL = 0x1, - VMA_DEFRAGMENTATION_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF -} VmaDefragmentationFlagBits; -typedef VkFlags VmaDefragmentationFlags; - -/** \brief Parameters for defragmentation. - -To be used with function vmaDefragmentationBegin(). -*/ -typedef struct VmaDefragmentationInfo2 { - /** \brief Reserved for future use. Should be 0. - */ - VmaDefragmentationFlags flags; - /** \brief Number of allocations in `pAllocations` array. - */ - uint32_t allocationCount; - /** \brief Pointer to array of allocations that can be defragmented. - - The array should have `allocationCount` elements. - The array should not contain nulls. - Elements in the array should be unique - same allocation cannot occur twice. - It is safe to pass allocations that are in the lost state - they are ignored. - All allocations not present in this array are considered non-moveable during this defragmentation. - */ - VmaAllocation* pAllocations; - /** \brief Optional, output. Pointer to array that will be filled with information whether the allocation at certain index has been changed during defragmentation. - - The array should have `allocationCount` elements. - You can pass null if you are not interested in this information. - */ - VkBool32* pAllocationsChanged; - /** \brief Numer of pools in `pPools` array. - */ - uint32_t poolCount; - /** \brief Either null or pointer to array of pools to be defragmented. - - All the allocations in the specified pools can be moved during defragmentation - and there is no way to check if they were really moved as in `pAllocationsChanged`, - so you must query all the allocations in all these pools for new `VkDeviceMemory` - and offset using vmaGetAllocationInfo() if you might need to recreate buffers - and images bound to them. - - The array should have `poolCount` elements. - The array should not contain nulls. - Elements in the array should be unique - same pool cannot occur twice. - - Using this array is equivalent to specifying all allocations from the pools in `pAllocations`. - It might be more efficient. - */ - VmaPool* pPools; - /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places using transfers on CPU side, like `memcpy()`, `memmove()`. - - `VK_WHOLE_SIZE` means no limit. - */ - VkDeviceSize maxCpuBytesToMove; - /** \brief Maximum number of allocations that can be moved to a different place using transfers on CPU side, like `memcpy()`, `memmove()`. - - `UINT32_MAX` means no limit. - */ - uint32_t maxCpuAllocationsToMove; - /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places using transfers on GPU side, posted to `commandBuffer`. - - `VK_WHOLE_SIZE` means no limit. - */ - VkDeviceSize maxGpuBytesToMove; - /** \brief Maximum number of allocations that can be moved to a different place using transfers on GPU side, posted to `commandBuffer`. - - `UINT32_MAX` means no limit. - */ - uint32_t maxGpuAllocationsToMove; - /** \brief Optional. Command buffer where GPU copy commands will be posted. - - If not null, it must be a valid command buffer handle that supports Transfer queue type. - It must be in the recording state and outside of a render pass instance. - You need to submit it and make sure it finished execution before calling vmaDefragmentationEnd(). - - Passing null means that only CPU defragmentation will be performed. - */ - VkCommandBuffer commandBuffer; -} VmaDefragmentationInfo2; - -typedef struct VmaDefragmentationPassMoveInfo { - VmaAllocation allocation; - VkDeviceMemory memory; - VkDeviceSize offset; -} VmaDefragmentationPassMoveInfo; - -/** \brief Parameters for incremental defragmentation steps. - -To be used with function vmaBeginDefragmentationPass(). -*/ -typedef struct VmaDefragmentationPassInfo { - uint32_t moveCount; - VmaDefragmentationPassMoveInfo* pMoves; -} VmaDefragmentationPassInfo; - -/** \brief Deprecated. Optional configuration parameters to be passed to function vmaDefragment(). - -\deprecated This is a part of the old interface. It is recommended to use structure #VmaDefragmentationInfo2 and function vmaDefragmentationBegin() instead. -*/ -typedef struct VmaDefragmentationInfo { - /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places. - - Default is `VK_WHOLE_SIZE`, which means no limit. - */ - VkDeviceSize maxBytesToMove; - /** \brief Maximum number of allocations that can be moved to different place. - - Default is `UINT32_MAX`, which means no limit. - */ - uint32_t maxAllocationsToMove; -} VmaDefragmentationInfo; - -/** \brief Statistics returned by function vmaDefragment(). */ -typedef struct VmaDefragmentationStats { - /// Total number of bytes that have been copied while moving allocations to different places. - VkDeviceSize bytesMoved; - /// Total number of bytes that have been released to the system by freeing empty `VkDeviceMemory` objects. - VkDeviceSize bytesFreed; - /// Number of allocations that have been moved to different places. - uint32_t allocationsMoved; - /// Number of empty `VkDeviceMemory` objects that have been released to the system. - uint32_t deviceMemoryBlocksFreed; -} VmaDefragmentationStats; - -/** \brief Begins defragmentation process. - -@param allocator Allocator object. -@param pInfo Structure filled with parameters of defragmentation. -@param[out] pStats Optional. Statistics of defragmentation. You can pass null if you are not interested in this information. -@param[out] pContext Context object that must be passed to vmaDefragmentationEnd() to finish defragmentation. -@return `VK_SUCCESS` and `*pContext == null` if defragmentation finished within this function call. `VK_NOT_READY` and `*pContext != null` if defragmentation has been started and you need to call vmaDefragmentationEnd() to finish it. Negative value in case of error. - -Use this function instead of old, deprecated vmaDefragment(). - -Warning! Between the call to vmaDefragmentationBegin() and vmaDefragmentationEnd(): - -- You should not use any of allocations passed as `pInfo->pAllocations` or - any allocations that belong to pools passed as `pInfo->pPools`, - including calling vmaGetAllocationInfo(), vmaTouchAllocation(), or access - their data. -- Some mutexes protecting internal data structures may be locked, so trying to - make or free any allocations, bind buffers or images, map memory, or launch - another simultaneous defragmentation in between may cause stall (when done on - another thread) or deadlock (when done on the same thread), unless you are - 100% sure that defragmented allocations are in different pools. -- Information returned via `pStats` and `pInfo->pAllocationsChanged` are undefined. - They become valid after call to vmaDefragmentationEnd(). -- If `pInfo->commandBuffer` is not null, you must submit that command buffer - and make sure it finished execution before calling vmaDefragmentationEnd(). - -For more information and important limitations regarding defragmentation, see documentation chapter: -[Defragmentation](@ref defragmentation). -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationBegin( - VmaAllocator allocator, - const VmaDefragmentationInfo2* pInfo, - VmaDefragmentationStats* pStats, - VmaDefragmentationContext *pContext); - -/** \brief Ends defragmentation process. - -Use this function to finish defragmentation started by vmaDefragmentationBegin(). -It is safe to pass `context == null`. The function then does nothing. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationEnd( - VmaAllocator allocator, - VmaDefragmentationContext context); - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentationPass( - VmaAllocator allocator, - VmaDefragmentationContext context, - VmaDefragmentationPassInfo* pInfo -); -VMA_CALL_PRE VkResult VMA_CALL_POST vmaEndDefragmentationPass( - VmaAllocator allocator, - VmaDefragmentationContext context -); - -/** \brief Deprecated. Compacts memory by moving allocations. - -@param pAllocations Array of allocations that can be moved during this compation. -@param allocationCount Number of elements in pAllocations and pAllocationsChanged arrays. -@param[out] pAllocationsChanged Array of boolean values that will indicate whether matching allocation in pAllocations array has been moved. This parameter is optional. Pass null if you don't need this information. -@param pDefragmentationInfo Configuration parameters. Optional - pass null to use default values. -@param[out] pDefragmentationStats Statistics returned by the function. Optional - pass null if you don't need this information. -@return `VK_SUCCESS` if completed, negative error code in case of error. - -\deprecated This is a part of the old interface. It is recommended to use structure #VmaDefragmentationInfo2 and function vmaDefragmentationBegin() instead. - -This function works by moving allocations to different places (different -`VkDeviceMemory` objects and/or different offsets) in order to optimize memory -usage. Only allocations that are in `pAllocations` array can be moved. All other -allocations are considered nonmovable in this call. Basic rules: - -- Only allocations made in memory types that have - `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` and `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT` - flags can be compacted. You may pass other allocations but it makes no sense - - these will never be moved. -- Custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT or - #VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT flag are not defragmented. Allocations - passed to this function that come from such pools are ignored. -- Allocations created with #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT or - created as dedicated allocations for any other reason are also ignored. -- Both allocations made with or without #VMA_ALLOCATION_CREATE_MAPPED_BIT - flag can be compacted. If not persistently mapped, memory will be mapped - temporarily inside this function if needed. -- You must not pass same #VmaAllocation object multiple times in `pAllocations` array. - -The function also frees empty `VkDeviceMemory` blocks. - -Warning: This function may be time-consuming, so you shouldn't call it too often -(like after every resource creation/destruction). -You can call it on special occasions (like when reloading a game level or -when you just destroyed a lot of objects). Calling it every frame may be OK, but -you should measure that on your platform. - -For more information, see [Defragmentation](@ref defragmentation) chapter. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragment( - VmaAllocator allocator, - VmaAllocation* pAllocations, - size_t allocationCount, - VkBool32* pAllocationsChanged, - const VmaDefragmentationInfo *pDefragmentationInfo, - VmaDefragmentationStats* pDefragmentationStats); - -/** \brief Binds buffer to allocation. - -Binds specified buffer to region of memory represented by specified allocation. -Gets `VkDeviceMemory` handle and offset from the allocation. -If you want to create a buffer, allocate memory for it and bind them together separately, -you should use this function for binding instead of standard `vkBindBufferMemory()`, -because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple -allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously -(which is illegal in Vulkan). - -It is recommended to use function vmaCreateBuffer() instead of this one. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory( - VmaAllocator allocator, - VmaAllocation allocation, - VkBuffer buffer); - -/** \brief Binds buffer to allocation with additional parameters. - -@param allocationLocalOffset Additional offset to be added while binding, relative to the beginnig of the `allocation`. Normally it should be 0. -@param pNext A chain of structures to be attached to `VkBindBufferMemoryInfoKHR` structure used internally. Normally it should be null. - -This function is similar to vmaBindBufferMemory(), but it provides additional parameters. - -If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag -or with VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_1`. Otherwise the call fails. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory2( - VmaAllocator allocator, - VmaAllocation allocation, - VkDeviceSize allocationLocalOffset, - VkBuffer buffer, - const void* pNext); - -/** \brief Binds image to allocation. - -Binds specified image to region of memory represented by specified allocation. -Gets `VkDeviceMemory` handle and offset from the allocation. -If you want to create an image, allocate memory for it and bind them together separately, -you should use this function for binding instead of standard `vkBindImageMemory()`, -because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple -allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously -(which is illegal in Vulkan). - -It is recommended to use function vmaCreateImage() instead of this one. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory( - VmaAllocator allocator, - VmaAllocation allocation, - VkImage image); - -/** \brief Binds image to allocation with additional parameters. - -@param allocationLocalOffset Additional offset to be added while binding, relative to the beginnig of the `allocation`. Normally it should be 0. -@param pNext A chain of structures to be attached to `VkBindImageMemoryInfoKHR` structure used internally. Normally it should be null. - -This function is similar to vmaBindImageMemory(), but it provides additional parameters. - -If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag -or with VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_1`. Otherwise the call fails. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory2( - VmaAllocator allocator, - VmaAllocation allocation, - VkDeviceSize allocationLocalOffset, - VkImage image, - const void* pNext); - -/** -@param[out] pBuffer Buffer that was created. -@param[out] pAllocation Allocation that was created. -@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo(). - -This function automatically: - --# Creates buffer. --# Allocates appropriate memory for it. --# Binds the buffer with the memory. - -If any of these operations fail, buffer and allocation are not created, -returned value is negative error code, *pBuffer and *pAllocation are null. - -If the function succeeded, you must destroy both buffer and allocation when you -no longer need them using either convenience function vmaDestroyBuffer() or -separately, using `vkDestroyBuffer()` and vmaFreeMemory(). - -If VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag was used, -VK_KHR_dedicated_allocation extension is used internally to query driver whether -it requires or prefers the new buffer to have dedicated allocation. If yes, -and if dedicated allocation is possible (VmaAllocationCreateInfo::pool is null -and VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT is not used), it creates dedicated -allocation for this buffer, just like when using -VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBuffer( - VmaAllocator allocator, - const VkBufferCreateInfo* pBufferCreateInfo, - const VmaAllocationCreateInfo* pAllocationCreateInfo, - VkBuffer* pBuffer, - VmaAllocation* pAllocation, - VmaAllocationInfo* pAllocationInfo); - -/** \brief Destroys Vulkan buffer and frees allocated memory. - -This is just a convenience function equivalent to: - -\code -vkDestroyBuffer(device, buffer, allocationCallbacks); -vmaFreeMemory(allocator, allocation); -\endcode - -It it safe to pass null as buffer and/or allocation. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaDestroyBuffer( - VmaAllocator allocator, - VkBuffer buffer, - VmaAllocation allocation); - -/// Function similar to vmaCreateBuffer(). -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateImage( - VmaAllocator allocator, - const VkImageCreateInfo* pImageCreateInfo, - const VmaAllocationCreateInfo* pAllocationCreateInfo, - VkImage* pImage, - VmaAllocation* pAllocation, - VmaAllocationInfo* pAllocationInfo); - -/** \brief Destroys Vulkan image and frees allocated memory. - -This is just a convenience function equivalent to: - -\code -vkDestroyImage(device, image, allocationCallbacks); -vmaFreeMemory(allocator, allocation); -\endcode - -It it safe to pass null as image and/or allocation. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaDestroyImage( - VmaAllocator allocator, - VkImage image, - VmaAllocation allocation); - -#ifdef __cplusplus -} -#endif - -#endif // AMD_VULKAN_MEMORY_ALLOCATOR_H - -// For Visual Studio IntelliSense. -#if defined(__cplusplus) && defined(__INTELLISENSE__) -#define VMA_IMPLEMENTATION -#endif - -#ifdef VMA_IMPLEMENTATION -#undef VMA_IMPLEMENTATION - -#include -#include -#include - -/******************************************************************************* -CONFIGURATION SECTION - -Define some of these macros before each #include of this header or change them -here if you need other then default behavior depending on your environment. -*/ - -/* -Define this macro to 1 to make the library fetch pointers to Vulkan functions -internally, like: - - vulkanFunctions.vkAllocateMemory = &vkAllocateMemory; - -Define to 0 if you are going to provide you own pointers to Vulkan functions via -VmaAllocatorCreateInfo::pVulkanFunctions. -*/ -#if !defined(VMA_STATIC_VULKAN_FUNCTIONS) && !defined(VK_NO_PROTOTYPES) -#define VMA_STATIC_VULKAN_FUNCTIONS 1 -#endif - -// Define this macro to 1 to make the library use STL containers instead of its own implementation. -//#define VMA_USE_STL_CONTAINERS 1 - -/* Set this macro to 1 to make the library including and using STL containers: -std::pair, std::vector, std::list, std::unordered_map. - -Set it to 0 or undefined to make the library using its own implementation of -the containers. -*/ -#if VMA_USE_STL_CONTAINERS - #define VMA_USE_STL_VECTOR 1 - #define VMA_USE_STL_UNORDERED_MAP 1 - #define VMA_USE_STL_LIST 1 -#endif - -#ifndef VMA_USE_STL_SHARED_MUTEX - // Compiler conforms to C++17. - #if __cplusplus >= 201703L - #define VMA_USE_STL_SHARED_MUTEX 1 - // Visual studio defines __cplusplus properly only when passed additional parameter: /Zc:__cplusplus - // Otherwise it's always 199711L, despite shared_mutex works since Visual Studio 2015 Update 2. - // See: https://blogs.msdn.microsoft.com/vcblog/2018/04/09/msvc-now-correctly-reports-__cplusplus/ - #elif defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 190023918 && __cplusplus == 199711L && _MSVC_LANG >= 201703L - #define VMA_USE_STL_SHARED_MUTEX 1 - #else - #define VMA_USE_STL_SHARED_MUTEX 0 - #endif -#endif - -/* -THESE INCLUDES ARE NOT ENABLED BY DEFAULT. -Library has its own container implementation. -*/ -#if VMA_USE_STL_VECTOR - #include -#endif - -#if VMA_USE_STL_UNORDERED_MAP - #include -#endif - -#if VMA_USE_STL_LIST - #include -#endif - -/* -Following headers are used in this CONFIGURATION section only, so feel free to -remove them if not needed. -*/ -#include // for assert -#include // for min, max -#include - -#ifndef VMA_NULL - // Value used as null pointer. Define it to e.g.: nullptr, NULL, 0, (void*)0. - #define VMA_NULL nullptr -#endif - -#if defined(__ANDROID_API__) && (__ANDROID_API__ < 16) -#include -void *aligned_alloc(size_t alignment, size_t size) -{ - // alignment must be >= sizeof(void*) - if(alignment < sizeof(void*)) - { - alignment = sizeof(void*); - } - - return memalign(alignment, size); -} -#elif defined(__APPLE__) || defined(__ANDROID__) || (defined(__linux__) && defined(__GLIBCXX__) && !defined(_GLIBCXX_HAVE_ALIGNED_ALLOC)) -#include -void *aligned_alloc(size_t alignment, size_t size) -{ - // alignment must be >= sizeof(void*) - if(alignment < sizeof(void*)) - { - alignment = sizeof(void*); - } - - void *pointer; - if(posix_memalign(&pointer, alignment, size) == 0) - return pointer; - return VMA_NULL; -} -#endif - -// If your compiler is not compatible with C++11 and definition of -// aligned_alloc() function is missing, uncommeting following line may help: - -//#include - -// Normal assert to check for programmer's errors, especially in Debug configuration. -#ifndef VMA_ASSERT - #ifdef NDEBUG - #define VMA_ASSERT(expr) - #else - #define VMA_ASSERT(expr) assert(expr) - #endif -#endif - -// Assert that will be called very often, like inside data structures e.g. operator[]. -// Making it non-empty can make program slow. -#ifndef VMA_HEAVY_ASSERT - #ifdef NDEBUG - #define VMA_HEAVY_ASSERT(expr) - #else - #define VMA_HEAVY_ASSERT(expr) //VMA_ASSERT(expr) - #endif -#endif - -#ifndef VMA_ALIGN_OF - #define VMA_ALIGN_OF(type) (__alignof(type)) -#endif - -#ifndef VMA_SYSTEM_ALIGNED_MALLOC - #if defined(_WIN32) - #define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment) (_aligned_malloc((size), (alignment))) - #else - #define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment) (aligned_alloc((alignment), (size) )) - #endif -#endif - -#ifndef VMA_SYSTEM_FREE - #if defined(_WIN32) - #define VMA_SYSTEM_FREE(ptr) _aligned_free(ptr) - #else - #define VMA_SYSTEM_FREE(ptr) free(ptr) - #endif -#endif - -#ifndef VMA_MIN - #define VMA_MIN(v1, v2) (std::min((v1), (v2))) -#endif - -#ifndef VMA_MAX - #define VMA_MAX(v1, v2) (std::max((v1), (v2))) -#endif - -#ifndef VMA_SWAP - #define VMA_SWAP(v1, v2) std::swap((v1), (v2)) -#endif - -#ifndef VMA_SORT - #define VMA_SORT(beg, end, cmp) std::sort(beg, end, cmp) -#endif - -#ifndef VMA_DEBUG_LOG - #define VMA_DEBUG_LOG(format, ...) - /* - #define VMA_DEBUG_LOG(format, ...) do { \ - printf(format, __VA_ARGS__); \ - printf("\n"); \ - } while(false) - */ -#endif - -// Define this macro to 1 to enable functions: vmaBuildStatsString, vmaFreeStatsString. -#if VMA_STATS_STRING_ENABLED - static inline void VmaUint32ToStr(char* outStr, size_t strLen, uint32_t num) - { - snprintf(outStr, strLen, "%u", static_cast(num)); - } - static inline void VmaUint64ToStr(char* outStr, size_t strLen, uint64_t num) - { - snprintf(outStr, strLen, "%llu", static_cast(num)); - } - static inline void VmaPtrToStr(char* outStr, size_t strLen, const void* ptr) - { - snprintf(outStr, strLen, "%p", ptr); - } -#endif - -#ifndef VMA_MUTEX - class VmaMutex - { - public: - void Lock() { m_Mutex.lock(); } - void Unlock() { m_Mutex.unlock(); } - bool TryLock() { return m_Mutex.try_lock(); } - private: - std::mutex m_Mutex; - }; - #define VMA_MUTEX VmaMutex -#endif - -// Read-write mutex, where "read" is shared access, "write" is exclusive access. -#ifndef VMA_RW_MUTEX - #if VMA_USE_STL_SHARED_MUTEX - // Use std::shared_mutex from C++17. - #include - class VmaRWMutex - { - public: - void LockRead() { m_Mutex.lock_shared(); } - void UnlockRead() { m_Mutex.unlock_shared(); } - bool TryLockRead() { return m_Mutex.try_lock_shared(); } - void LockWrite() { m_Mutex.lock(); } - void UnlockWrite() { m_Mutex.unlock(); } - bool TryLockWrite() { return m_Mutex.try_lock(); } - private: - std::shared_mutex m_Mutex; - }; - #define VMA_RW_MUTEX VmaRWMutex - #elif defined(_WIN32) && defined(WINVER) && WINVER >= 0x0600 - // Use SRWLOCK from WinAPI. - // Minimum supported client = Windows Vista, server = Windows Server 2008. - class VmaRWMutex - { - public: - VmaRWMutex() { InitializeSRWLock(&m_Lock); } - void LockRead() { AcquireSRWLockShared(&m_Lock); } - void UnlockRead() { ReleaseSRWLockShared(&m_Lock); } - bool TryLockRead() { return TryAcquireSRWLockShared(&m_Lock) != FALSE; } - void LockWrite() { AcquireSRWLockExclusive(&m_Lock); } - void UnlockWrite() { ReleaseSRWLockExclusive(&m_Lock); } - bool TryLockWrite() { return TryAcquireSRWLockExclusive(&m_Lock) != FALSE; } - private: - SRWLOCK m_Lock; - }; - #define VMA_RW_MUTEX VmaRWMutex - #else - // Less efficient fallback: Use normal mutex. - class VmaRWMutex - { - public: - void LockRead() { m_Mutex.Lock(); } - void UnlockRead() { m_Mutex.Unlock(); } - bool TryLockRead() { return m_Mutex.TryLock(); } - void LockWrite() { m_Mutex.Lock(); } - void UnlockWrite() { m_Mutex.Unlock(); } - bool TryLockWrite() { return m_Mutex.TryLock(); } - private: - VMA_MUTEX m_Mutex; - }; - #define VMA_RW_MUTEX VmaRWMutex - #endif // #if VMA_USE_STL_SHARED_MUTEX -#endif // #ifndef VMA_RW_MUTEX - -/* -If providing your own implementation, you need to implement a subset of std::atomic. -*/ -#ifndef VMA_ATOMIC_UINT32 - #include - #define VMA_ATOMIC_UINT32 std::atomic -#endif - -#ifndef VMA_ATOMIC_UINT64 - #include - #define VMA_ATOMIC_UINT64 std::atomic -#endif - -#ifndef VMA_DEBUG_ALWAYS_DEDICATED_MEMORY - /** - Every allocation will have its own memory block. - Define to 1 for debugging purposes only. - */ - #define VMA_DEBUG_ALWAYS_DEDICATED_MEMORY (0) -#endif - -#ifndef VMA_DEBUG_ALIGNMENT - /** - Minimum alignment of all allocations, in bytes. - Set to more than 1 for debugging purposes only. Must be power of two. - */ - #define VMA_DEBUG_ALIGNMENT (1) -#endif - -#ifndef VMA_DEBUG_MARGIN - /** - Minimum margin before and after every allocation, in bytes. - Set nonzero for debugging purposes only. - */ - #define VMA_DEBUG_MARGIN (0) -#endif - -#ifndef VMA_DEBUG_INITIALIZE_ALLOCATIONS - /** - Define this macro to 1 to automatically fill new allocations and destroyed - allocations with some bit pattern. - */ - #define VMA_DEBUG_INITIALIZE_ALLOCATIONS (0) -#endif - -#ifndef VMA_DEBUG_DETECT_CORRUPTION - /** - Define this macro to 1 together with non-zero value of VMA_DEBUG_MARGIN to - enable writing magic value to the margin before and after every allocation and - validating it, so that memory corruptions (out-of-bounds writes) are detected. - */ - #define VMA_DEBUG_DETECT_CORRUPTION (0) -#endif - -#ifndef VMA_DEBUG_GLOBAL_MUTEX - /** - Set this to 1 for debugging purposes only, to enable single mutex protecting all - entry calls to the library. Can be useful for debugging multithreading issues. - */ - #define VMA_DEBUG_GLOBAL_MUTEX (0) -#endif - -#ifndef VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY - /** - Minimum value for VkPhysicalDeviceLimits::bufferImageGranularity. - Set to more than 1 for debugging purposes only. Must be power of two. - */ - #define VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY (1) -#endif - -#ifndef VMA_SMALL_HEAP_MAX_SIZE - /// Maximum size of a memory heap in Vulkan to consider it "small". - #define VMA_SMALL_HEAP_MAX_SIZE (1024ull * 1024 * 1024) -#endif - -#ifndef VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE - /// Default size of a block allocated as single VkDeviceMemory from a "large" heap. - #define VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE (256ull * 1024 * 1024) -#endif - -#ifndef VMA_CLASS_NO_COPY - #define VMA_CLASS_NO_COPY(className) \ - private: \ - className(const className&) = delete; \ - className& operator=(const className&) = delete; -#endif - -static const uint32_t VMA_FRAME_INDEX_LOST = UINT32_MAX; - -// Decimal 2139416166, float NaN, little-endian binary 66 E6 84 7F. -static const uint32_t VMA_CORRUPTION_DETECTION_MAGIC_VALUE = 0x7F84E666; - -static const uint8_t VMA_ALLOCATION_FILL_PATTERN_CREATED = 0xDC; -static const uint8_t VMA_ALLOCATION_FILL_PATTERN_DESTROYED = 0xEF; - -/******************************************************************************* -END OF CONFIGURATION -*/ - -static const uint32_t VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET = 0x10000000u; - -static VkAllocationCallbacks VmaEmptyAllocationCallbacks = { - VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL }; - -// Returns number of bits set to 1 in (v). -static inline uint32_t VmaCountBitsSet(uint32_t v) -{ - uint32_t c = v - ((v >> 1) & 0x55555555); - c = ((c >> 2) & 0x33333333) + (c & 0x33333333); - c = ((c >> 4) + c) & 0x0F0F0F0F; - c = ((c >> 8) + c) & 0x00FF00FF; - c = ((c >> 16) + c) & 0x0000FFFF; - return c; -} - -// Aligns given value up to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 16. -// Use types like uint32_t, uint64_t as T. -template -static inline T VmaAlignUp(T val, T align) -{ - return (val + align - 1) / align * align; -} -// Aligns given value down to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 8. -// Use types like uint32_t, uint64_t as T. -template -static inline T VmaAlignDown(T val, T align) -{ - return val / align * align; -} - -// Division with mathematical rounding to nearest number. -template -static inline T VmaRoundDiv(T x, T y) -{ - return (x + (y / (T)2)) / y; -} - -/* -Returns true if given number is a power of two. -T must be unsigned integer number or signed integer but always nonnegative. -For 0 returns true. -*/ -template -inline bool VmaIsPow2(T x) -{ - return (x & (x-1)) == 0; -} - -// Returns smallest power of 2 greater or equal to v. -static inline uint32_t VmaNextPow2(uint32_t v) -{ - v--; - v |= v >> 1; - v |= v >> 2; - v |= v >> 4; - v |= v >> 8; - v |= v >> 16; - v++; - return v; -} -static inline uint64_t VmaNextPow2(uint64_t v) -{ - v--; - v |= v >> 1; - v |= v >> 2; - v |= v >> 4; - v |= v >> 8; - v |= v >> 16; - v |= v >> 32; - v++; - return v; -} - -// Returns largest power of 2 less or equal to v. -static inline uint32_t VmaPrevPow2(uint32_t v) -{ - v |= v >> 1; - v |= v >> 2; - v |= v >> 4; - v |= v >> 8; - v |= v >> 16; - v = v ^ (v >> 1); - return v; -} -static inline uint64_t VmaPrevPow2(uint64_t v) -{ - v |= v >> 1; - v |= v >> 2; - v |= v >> 4; - v |= v >> 8; - v |= v >> 16; - v |= v >> 32; - v = v ^ (v >> 1); - return v; -} - -static inline bool VmaStrIsEmpty(const char* pStr) -{ - return pStr == VMA_NULL || *pStr == '\0'; -} - -#if VMA_STATS_STRING_ENABLED - -static const char* VmaAlgorithmToStr(uint32_t algorithm) -{ - switch(algorithm) - { - case VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT: - return "Linear"; - case VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT: - return "Buddy"; - case 0: - return "Default"; - default: - VMA_ASSERT(0); - return ""; - } -} - -#endif // #if VMA_STATS_STRING_ENABLED - -#ifndef VMA_SORT - -template -Iterator VmaQuickSortPartition(Iterator beg, Iterator end, Compare cmp) -{ - Iterator centerValue = end; --centerValue; - Iterator insertIndex = beg; - for(Iterator memTypeIndex = beg; memTypeIndex < centerValue; ++memTypeIndex) - { - if(cmp(*memTypeIndex, *centerValue)) - { - if(insertIndex != memTypeIndex) - { - VMA_SWAP(*memTypeIndex, *insertIndex); - } - ++insertIndex; - } - } - if(insertIndex != centerValue) - { - VMA_SWAP(*insertIndex, *centerValue); - } - return insertIndex; -} - -template -void VmaQuickSort(Iterator beg, Iterator end, Compare cmp) -{ - if(beg < end) - { - Iterator it = VmaQuickSortPartition(beg, end, cmp); - VmaQuickSort(beg, it, cmp); - VmaQuickSort(it + 1, end, cmp); - } -} - -#define VMA_SORT(beg, end, cmp) VmaQuickSort(beg, end, cmp) - -#endif // #ifndef VMA_SORT - -/* -Returns true if two memory blocks occupy overlapping pages. -ResourceA must be in less memory offset than ResourceB. - -Algorithm is based on "Vulkan 1.0.39 - A Specification (with all registered Vulkan extensions)" -chapter 11.6 "Resource Memory Association", paragraph "Buffer-Image Granularity". -*/ -static inline bool VmaBlocksOnSamePage( - VkDeviceSize resourceAOffset, - VkDeviceSize resourceASize, - VkDeviceSize resourceBOffset, - VkDeviceSize pageSize) -{ - VMA_ASSERT(resourceAOffset + resourceASize <= resourceBOffset && resourceASize > 0 && pageSize > 0); - VkDeviceSize resourceAEnd = resourceAOffset + resourceASize - 1; - VkDeviceSize resourceAEndPage = resourceAEnd & ~(pageSize - 1); - VkDeviceSize resourceBStart = resourceBOffset; - VkDeviceSize resourceBStartPage = resourceBStart & ~(pageSize - 1); - return resourceAEndPage == resourceBStartPage; -} - -enum VmaSuballocationType -{ - VMA_SUBALLOCATION_TYPE_FREE = 0, - VMA_SUBALLOCATION_TYPE_UNKNOWN = 1, - VMA_SUBALLOCATION_TYPE_BUFFER = 2, - VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN = 3, - VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR = 4, - VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL = 5, - VMA_SUBALLOCATION_TYPE_MAX_ENUM = 0x7FFFFFFF -}; - -/* -Returns true if given suballocation types could conflict and must respect -VkPhysicalDeviceLimits::bufferImageGranularity. They conflict if one is buffer -or linear image and another one is optimal image. If type is unknown, behave -conservatively. -*/ -static inline bool VmaIsBufferImageGranularityConflict( - VmaSuballocationType suballocType1, - VmaSuballocationType suballocType2) -{ - if(suballocType1 > suballocType2) - { - VMA_SWAP(suballocType1, suballocType2); - } - - switch(suballocType1) - { - case VMA_SUBALLOCATION_TYPE_FREE: - return false; - case VMA_SUBALLOCATION_TYPE_UNKNOWN: - return true; - case VMA_SUBALLOCATION_TYPE_BUFFER: - return - suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN || - suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL; - case VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN: - return - suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN || - suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR || - suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL; - case VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR: - return - suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL; - case VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL: - return false; - default: - VMA_ASSERT(0); - return true; - } -} - -static void VmaWriteMagicValue(void* pData, VkDeviceSize offset) -{ -#if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION - uint32_t* pDst = (uint32_t*)((char*)pData + offset); - const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t); - for(size_t i = 0; i < numberCount; ++i, ++pDst) - { - *pDst = VMA_CORRUPTION_DETECTION_MAGIC_VALUE; - } -#else - // no-op -#endif -} - -static bool VmaValidateMagicValue(const void* pData, VkDeviceSize offset) -{ -#if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION - const uint32_t* pSrc = (const uint32_t*)((const char*)pData + offset); - const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t); - for(size_t i = 0; i < numberCount; ++i, ++pSrc) - { - if(*pSrc != VMA_CORRUPTION_DETECTION_MAGIC_VALUE) - { - return false; - } - } -#endif - return true; -} - -/* -Fills structure with parameters of an example buffer to be used for transfers -during GPU memory defragmentation. -*/ -static void VmaFillGpuDefragmentationBufferCreateInfo(VkBufferCreateInfo& outBufCreateInfo) -{ - memset(&outBufCreateInfo, 0, sizeof(outBufCreateInfo)); - outBufCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; - outBufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; - outBufCreateInfo.size = (VkDeviceSize)VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE; // Example size. -} - -// Helper RAII class to lock a mutex in constructor and unlock it in destructor (at the end of scope). -struct VmaMutexLock -{ - VMA_CLASS_NO_COPY(VmaMutexLock) -public: - VmaMutexLock(VMA_MUTEX& mutex, bool useMutex = true) : - m_pMutex(useMutex ? &mutex : VMA_NULL) - { if(m_pMutex) { m_pMutex->Lock(); } } - ~VmaMutexLock() - { if(m_pMutex) { m_pMutex->Unlock(); } } -private: - VMA_MUTEX* m_pMutex; -}; - -// Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for reading. -struct VmaMutexLockRead -{ - VMA_CLASS_NO_COPY(VmaMutexLockRead) -public: - VmaMutexLockRead(VMA_RW_MUTEX& mutex, bool useMutex) : - m_pMutex(useMutex ? &mutex : VMA_NULL) - { if(m_pMutex) { m_pMutex->LockRead(); } } - ~VmaMutexLockRead() { if(m_pMutex) { m_pMutex->UnlockRead(); } } -private: - VMA_RW_MUTEX* m_pMutex; -}; - -// Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for writing. -struct VmaMutexLockWrite -{ - VMA_CLASS_NO_COPY(VmaMutexLockWrite) -public: - VmaMutexLockWrite(VMA_RW_MUTEX& mutex, bool useMutex) : - m_pMutex(useMutex ? &mutex : VMA_NULL) - { if(m_pMutex) { m_pMutex->LockWrite(); } } - ~VmaMutexLockWrite() { if(m_pMutex) { m_pMutex->UnlockWrite(); } } -private: - VMA_RW_MUTEX* m_pMutex; -}; - -#if VMA_DEBUG_GLOBAL_MUTEX - static VMA_MUTEX gDebugGlobalMutex; - #define VMA_DEBUG_GLOBAL_MUTEX_LOCK VmaMutexLock debugGlobalMutexLock(gDebugGlobalMutex, true); -#else - #define VMA_DEBUG_GLOBAL_MUTEX_LOCK -#endif - -// Minimum size of a free suballocation to register it in the free suballocation collection. -static const VkDeviceSize VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER = 16; - -/* -Performs binary search and returns iterator to first element that is greater or -equal to (key), according to comparison (cmp). - -Cmp should return true if first argument is less than second argument. - -Returned value is the found element, if present in the collection or place where -new element with value (key) should be inserted. -*/ -template -static IterT VmaBinaryFindFirstNotLess(IterT beg, IterT end, const KeyT &key, const CmpLess& cmp) -{ - size_t down = 0, up = (end - beg); - while(down < up) - { - const size_t mid = (down + up) / 2; - if(cmp(*(beg+mid), key)) - { - down = mid + 1; - } - else - { - up = mid; - } - } - return beg + down; -} - -template -IterT VmaBinaryFindSorted(const IterT& beg, const IterT& end, const KeyT& value, const CmpLess& cmp) -{ - IterT it = VmaBinaryFindFirstNotLess( - beg, end, value, cmp); - if(it == end || - (!cmp(*it, value) && !cmp(value, *it))) - { - return it; - } - return end; -} - -/* -Returns true if all pointers in the array are not-null and unique. -Warning! O(n^2) complexity. Use only inside VMA_HEAVY_ASSERT. -T must be pointer type, e.g. VmaAllocation, VmaPool. -*/ -template -static bool VmaValidatePointerArray(uint32_t count, const T* arr) -{ - for(uint32_t i = 0; i < count; ++i) - { - const T iPtr = arr[i]; - if(iPtr == VMA_NULL) - { - return false; - } - for(uint32_t j = i + 1; j < count; ++j) - { - if(iPtr == arr[j]) - { - return false; - } - } - } - return true; -} - -//////////////////////////////////////////////////////////////////////////////// -// Memory allocation - -static void* VmaMalloc(const VkAllocationCallbacks* pAllocationCallbacks, size_t size, size_t alignment) -{ - if((pAllocationCallbacks != VMA_NULL) && - (pAllocationCallbacks->pfnAllocation != VMA_NULL)) - { - return (*pAllocationCallbacks->pfnAllocation)( - pAllocationCallbacks->pUserData, - size, - alignment, - VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); - } - else - { - return VMA_SYSTEM_ALIGNED_MALLOC(size, alignment); - } -} - -static void VmaFree(const VkAllocationCallbacks* pAllocationCallbacks, void* ptr) -{ - if((pAllocationCallbacks != VMA_NULL) && - (pAllocationCallbacks->pfnFree != VMA_NULL)) - { - (*pAllocationCallbacks->pfnFree)(pAllocationCallbacks->pUserData, ptr); - } - else - { - VMA_SYSTEM_FREE(ptr); - } -} - -template -static T* VmaAllocate(const VkAllocationCallbacks* pAllocationCallbacks) -{ - return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T), VMA_ALIGN_OF(T)); -} - -template -static T* VmaAllocateArray(const VkAllocationCallbacks* pAllocationCallbacks, size_t count) -{ - return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T) * count, VMA_ALIGN_OF(T)); -} - -#define vma_new(allocator, type) new(VmaAllocate(allocator))(type) - -#define vma_new_array(allocator, type, count) new(VmaAllocateArray((allocator), (count)))(type) - -template -static void vma_delete(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr) -{ - ptr->~T(); - VmaFree(pAllocationCallbacks, ptr); -} - -template -static void vma_delete_array(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr, size_t count) -{ - if(ptr != VMA_NULL) - { - for(size_t i = count; i--; ) - { - ptr[i].~T(); - } - VmaFree(pAllocationCallbacks, ptr); - } -} - -static char* VmaCreateStringCopy(const VkAllocationCallbacks* allocs, const char* srcStr) -{ - if(srcStr != VMA_NULL) - { - const size_t len = strlen(srcStr); - char* const result = vma_new_array(allocs, char, len + 1); - memcpy(result, srcStr, len + 1); - return result; - } - else - { - return VMA_NULL; - } -} - -static void VmaFreeString(const VkAllocationCallbacks* allocs, char* str) -{ - if(str != VMA_NULL) - { - const size_t len = strlen(str); - vma_delete_array(allocs, str, len + 1); - } -} - -// STL-compatible allocator. -template -class VmaStlAllocator -{ -public: - const VkAllocationCallbacks* const m_pCallbacks; - typedef T value_type; - - VmaStlAllocator(const VkAllocationCallbacks* pCallbacks) : m_pCallbacks(pCallbacks) { } - template VmaStlAllocator(const VmaStlAllocator& src) : m_pCallbacks(src.m_pCallbacks) { } - - T* allocate(size_t n) { return VmaAllocateArray(m_pCallbacks, n); } - void deallocate(T* p, size_t n) { VmaFree(m_pCallbacks, p); } - - template - bool operator==(const VmaStlAllocator& rhs) const - { - return m_pCallbacks == rhs.m_pCallbacks; - } - template - bool operator!=(const VmaStlAllocator& rhs) const - { - return m_pCallbacks != rhs.m_pCallbacks; - } - - VmaStlAllocator& operator=(const VmaStlAllocator& x) = delete; -}; - -#if VMA_USE_STL_VECTOR - -#define VmaVector std::vector - -template -static void VmaVectorInsert(std::vector& vec, size_t index, const T& item) -{ - vec.insert(vec.begin() + index, item); -} - -template -static void VmaVectorRemove(std::vector& vec, size_t index) -{ - vec.erase(vec.begin() + index); -} - -#else // #if VMA_USE_STL_VECTOR - -/* Class with interface compatible with subset of std::vector. -T must be POD because constructors and destructors are not called and memcpy is -used for these objects. */ -template -class VmaVector -{ -public: - typedef T value_type; - - VmaVector(const AllocatorT& allocator) : - m_Allocator(allocator), - m_pArray(VMA_NULL), - m_Count(0), - m_Capacity(0) - { - } - - VmaVector(size_t count, const AllocatorT& allocator) : - m_Allocator(allocator), - m_pArray(count ? (T*)VmaAllocateArray(allocator.m_pCallbacks, count) : VMA_NULL), - m_Count(count), - m_Capacity(count) - { - } - - // This version of the constructor is here for compatibility with pre-C++14 std::vector. - // value is unused. - VmaVector(size_t count, const T& value, const AllocatorT& allocator) - : VmaVector(count, allocator) {} - - VmaVector(const VmaVector& src) : - m_Allocator(src.m_Allocator), - m_pArray(src.m_Count ? (T*)VmaAllocateArray(src.m_Allocator.m_pCallbacks, src.m_Count) : VMA_NULL), - m_Count(src.m_Count), - m_Capacity(src.m_Count) - { - if(m_Count != 0) - { - memcpy(m_pArray, src.m_pArray, m_Count * sizeof(T)); - } - } - - ~VmaVector() - { - VmaFree(m_Allocator.m_pCallbacks, m_pArray); - } - - VmaVector& operator=(const VmaVector& rhs) - { - if(&rhs != this) - { - resize(rhs.m_Count); - if(m_Count != 0) - { - memcpy(m_pArray, rhs.m_pArray, m_Count * sizeof(T)); - } - } - return *this; - } - - bool empty() const { return m_Count == 0; } - size_t size() const { return m_Count; } - T* data() { return m_pArray; } - const T* data() const { return m_pArray; } - - T& operator[](size_t index) - { - VMA_HEAVY_ASSERT(index < m_Count); - return m_pArray[index]; - } - const T& operator[](size_t index) const - { - VMA_HEAVY_ASSERT(index < m_Count); - return m_pArray[index]; - } - - T& front() - { - VMA_HEAVY_ASSERT(m_Count > 0); - return m_pArray[0]; - } - const T& front() const - { - VMA_HEAVY_ASSERT(m_Count > 0); - return m_pArray[0]; - } - T& back() - { - VMA_HEAVY_ASSERT(m_Count > 0); - return m_pArray[m_Count - 1]; - } - const T& back() const - { - VMA_HEAVY_ASSERT(m_Count > 0); - return m_pArray[m_Count - 1]; - } - - void reserve(size_t newCapacity, bool freeMemory = false) - { - newCapacity = VMA_MAX(newCapacity, m_Count); - - if((newCapacity < m_Capacity) && !freeMemory) - { - newCapacity = m_Capacity; - } - - if(newCapacity != m_Capacity) - { - T* const newArray = newCapacity ? VmaAllocateArray(m_Allocator, newCapacity) : VMA_NULL; - if(m_Count != 0) - { - memcpy(newArray, m_pArray, m_Count * sizeof(T)); - } - VmaFree(m_Allocator.m_pCallbacks, m_pArray); - m_Capacity = newCapacity; - m_pArray = newArray; - } - } - - void resize(size_t newCount, bool freeMemory = false) - { - size_t newCapacity = m_Capacity; - if(newCount > m_Capacity) - { - newCapacity = VMA_MAX(newCount, VMA_MAX(m_Capacity * 3 / 2, (size_t)8)); - } - else if(freeMemory) - { - newCapacity = newCount; - } - - if(newCapacity != m_Capacity) - { - T* const newArray = newCapacity ? VmaAllocateArray(m_Allocator.m_pCallbacks, newCapacity) : VMA_NULL; - const size_t elementsToCopy = VMA_MIN(m_Count, newCount); - if(elementsToCopy != 0) - { - memcpy(newArray, m_pArray, elementsToCopy * sizeof(T)); - } - VmaFree(m_Allocator.m_pCallbacks, m_pArray); - m_Capacity = newCapacity; - m_pArray = newArray; - } - - m_Count = newCount; - } - - void clear(bool freeMemory = false) - { - resize(0, freeMemory); - } - - void insert(size_t index, const T& src) - { - VMA_HEAVY_ASSERT(index <= m_Count); - const size_t oldCount = size(); - resize(oldCount + 1); - if(index < oldCount) - { - memmove(m_pArray + (index + 1), m_pArray + index, (oldCount - index) * sizeof(T)); - } - m_pArray[index] = src; - } - - void remove(size_t index) - { - VMA_HEAVY_ASSERT(index < m_Count); - const size_t oldCount = size(); - if(index < oldCount - 1) - { - memmove(m_pArray + index, m_pArray + (index + 1), (oldCount - index - 1) * sizeof(T)); - } - resize(oldCount - 1); - } - - void push_back(const T& src) - { - const size_t newIndex = size(); - resize(newIndex + 1); - m_pArray[newIndex] = src; - } - - void pop_back() - { - VMA_HEAVY_ASSERT(m_Count > 0); - resize(size() - 1); - } - - void push_front(const T& src) - { - insert(0, src); - } - - void pop_front() - { - VMA_HEAVY_ASSERT(m_Count > 0); - remove(0); - } - - typedef T* iterator; - - iterator begin() { return m_pArray; } - iterator end() { return m_pArray + m_Count; } - -private: - AllocatorT m_Allocator; - T* m_pArray; - size_t m_Count; - size_t m_Capacity; -}; - -template -static void VmaVectorInsert(VmaVector& vec, size_t index, const T& item) -{ - vec.insert(index, item); -} - -template -static void VmaVectorRemove(VmaVector& vec, size_t index) -{ - vec.remove(index); -} - -#endif // #if VMA_USE_STL_VECTOR - -template -size_t VmaVectorInsertSorted(VectorT& vector, const typename VectorT::value_type& value) -{ - const size_t indexToInsert = VmaBinaryFindFirstNotLess( - vector.data(), - vector.data() + vector.size(), - value, - CmpLess()) - vector.data(); - VmaVectorInsert(vector, indexToInsert, value); - return indexToInsert; -} - -template -bool VmaVectorRemoveSorted(VectorT& vector, const typename VectorT::value_type& value) -{ - CmpLess comparator; - typename VectorT::iterator it = VmaBinaryFindFirstNotLess( - vector.begin(), - vector.end(), - value, - comparator); - if((it != vector.end()) && !comparator(*it, value) && !comparator(value, *it)) - { - size_t indexToRemove = it - vector.begin(); - VmaVectorRemove(vector, indexToRemove); - return true; - } - return false; -} - -//////////////////////////////////////////////////////////////////////////////// -// class VmaPoolAllocator - -/* -Allocator for objects of type T using a list of arrays (pools) to speed up -allocation. Number of elements that can be allocated is not bounded because -allocator can create multiple blocks. -*/ -template -class VmaPoolAllocator -{ - VMA_CLASS_NO_COPY(VmaPoolAllocator) -public: - VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity); - ~VmaPoolAllocator(); - T* Alloc(); - void Free(T* ptr); - -private: - union Item - { - uint32_t NextFreeIndex; - alignas(T) char Value[sizeof(T)]; - }; - - struct ItemBlock - { - Item* pItems; - uint32_t Capacity; - uint32_t FirstFreeIndex; - }; - - const VkAllocationCallbacks* m_pAllocationCallbacks; - const uint32_t m_FirstBlockCapacity; - VmaVector< ItemBlock, VmaStlAllocator > m_ItemBlocks; - - ItemBlock& CreateNewBlock(); -}; - -template -VmaPoolAllocator::VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity) : - m_pAllocationCallbacks(pAllocationCallbacks), - m_FirstBlockCapacity(firstBlockCapacity), - m_ItemBlocks(VmaStlAllocator(pAllocationCallbacks)) -{ - VMA_ASSERT(m_FirstBlockCapacity > 1); -} - -template -VmaPoolAllocator::~VmaPoolAllocator() -{ - for(size_t i = m_ItemBlocks.size(); i--; ) - vma_delete_array(m_pAllocationCallbacks, m_ItemBlocks[i].pItems, m_ItemBlocks[i].Capacity); - m_ItemBlocks.clear(); -} - -template -T* VmaPoolAllocator::Alloc() -{ - for(size_t i = m_ItemBlocks.size(); i--; ) - { - ItemBlock& block = m_ItemBlocks[i]; - // This block has some free items: Use first one. - if(block.FirstFreeIndex != UINT32_MAX) - { - Item* const pItem = &block.pItems[block.FirstFreeIndex]; - block.FirstFreeIndex = pItem->NextFreeIndex; - T* result = (T*)&pItem->Value; - new(result)T(); // Explicit constructor call. - return result; - } - } - - // No block has free item: Create new one and use it. - ItemBlock& newBlock = CreateNewBlock(); - Item* const pItem = &newBlock.pItems[0]; - newBlock.FirstFreeIndex = pItem->NextFreeIndex; - T* result = (T*)&pItem->Value; - new(result)T(); // Explicit constructor call. - return result; -} - -template -void VmaPoolAllocator::Free(T* ptr) -{ - // Search all memory blocks to find ptr. - for(size_t i = m_ItemBlocks.size(); i--; ) - { - ItemBlock& block = m_ItemBlocks[i]; - - // Casting to union. - Item* pItemPtr; - memcpy(&pItemPtr, &ptr, sizeof(pItemPtr)); - - // Check if pItemPtr is in address range of this block. - if((pItemPtr >= block.pItems) && (pItemPtr < block.pItems + block.Capacity)) - { - ptr->~T(); // Explicit destructor call. - const uint32_t index = static_cast(pItemPtr - block.pItems); - pItemPtr->NextFreeIndex = block.FirstFreeIndex; - block.FirstFreeIndex = index; - return; - } - } - VMA_ASSERT(0 && "Pointer doesn't belong to this memory pool."); -} - -template -typename VmaPoolAllocator::ItemBlock& VmaPoolAllocator::CreateNewBlock() -{ - const uint32_t newBlockCapacity = m_ItemBlocks.empty() ? - m_FirstBlockCapacity : m_ItemBlocks.back().Capacity * 3 / 2; - - const ItemBlock newBlock = { - vma_new_array(m_pAllocationCallbacks, Item, newBlockCapacity), - newBlockCapacity, - 0 }; - - m_ItemBlocks.push_back(newBlock); - - // Setup singly-linked list of all free items in this block. - for(uint32_t i = 0; i < newBlockCapacity - 1; ++i) - newBlock.pItems[i].NextFreeIndex = i + 1; - newBlock.pItems[newBlockCapacity - 1].NextFreeIndex = UINT32_MAX; - return m_ItemBlocks.back(); -} - -//////////////////////////////////////////////////////////////////////////////// -// class VmaRawList, VmaList - -#if VMA_USE_STL_LIST - -#define VmaList std::list - -#else // #if VMA_USE_STL_LIST - -template -struct VmaListItem -{ - VmaListItem* pPrev; - VmaListItem* pNext; - T Value; -}; - -// Doubly linked list. -template -class VmaRawList -{ - VMA_CLASS_NO_COPY(VmaRawList) -public: - typedef VmaListItem ItemType; - - VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks); - ~VmaRawList(); - void Clear(); - - size_t GetCount() const { return m_Count; } - bool IsEmpty() const { return m_Count == 0; } - - ItemType* Front() { return m_pFront; } - const ItemType* Front() const { return m_pFront; } - ItemType* Back() { return m_pBack; } - const ItemType* Back() const { return m_pBack; } - - ItemType* PushBack(); - ItemType* PushFront(); - ItemType* PushBack(const T& value); - ItemType* PushFront(const T& value); - void PopBack(); - void PopFront(); - - // Item can be null - it means PushBack. - ItemType* InsertBefore(ItemType* pItem); - // Item can be null - it means PushFront. - ItemType* InsertAfter(ItemType* pItem); - - ItemType* InsertBefore(ItemType* pItem, const T& value); - ItemType* InsertAfter(ItemType* pItem, const T& value); - - void Remove(ItemType* pItem); - -private: - const VkAllocationCallbacks* const m_pAllocationCallbacks; - VmaPoolAllocator m_ItemAllocator; - ItemType* m_pFront; - ItemType* m_pBack; - size_t m_Count; -}; - -template -VmaRawList::VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks) : - m_pAllocationCallbacks(pAllocationCallbacks), - m_ItemAllocator(pAllocationCallbacks, 128), - m_pFront(VMA_NULL), - m_pBack(VMA_NULL), - m_Count(0) -{ -} - -template -VmaRawList::~VmaRawList() -{ - // Intentionally not calling Clear, because that would be unnecessary - // computations to return all items to m_ItemAllocator as free. -} - -template -void VmaRawList::Clear() -{ - if(IsEmpty() == false) - { - ItemType* pItem = m_pBack; - while(pItem != VMA_NULL) - { - ItemType* const pPrevItem = pItem->pPrev; - m_ItemAllocator.Free(pItem); - pItem = pPrevItem; - } - m_pFront = VMA_NULL; - m_pBack = VMA_NULL; - m_Count = 0; - } -} - -template -VmaListItem* VmaRawList::PushBack() -{ - ItemType* const pNewItem = m_ItemAllocator.Alloc(); - pNewItem->pNext = VMA_NULL; - if(IsEmpty()) - { - pNewItem->pPrev = VMA_NULL; - m_pFront = pNewItem; - m_pBack = pNewItem; - m_Count = 1; - } - else - { - pNewItem->pPrev = m_pBack; - m_pBack->pNext = pNewItem; - m_pBack = pNewItem; - ++m_Count; - } - return pNewItem; -} - -template -VmaListItem* VmaRawList::PushFront() -{ - ItemType* const pNewItem = m_ItemAllocator.Alloc(); - pNewItem->pPrev = VMA_NULL; - if(IsEmpty()) - { - pNewItem->pNext = VMA_NULL; - m_pFront = pNewItem; - m_pBack = pNewItem; - m_Count = 1; - } - else - { - pNewItem->pNext = m_pFront; - m_pFront->pPrev = pNewItem; - m_pFront = pNewItem; - ++m_Count; - } - return pNewItem; -} - -template -VmaListItem* VmaRawList::PushBack(const T& value) -{ - ItemType* const pNewItem = PushBack(); - pNewItem->Value = value; - return pNewItem; -} - -template -VmaListItem* VmaRawList::PushFront(const T& value) -{ - ItemType* const pNewItem = PushFront(); - pNewItem->Value = value; - return pNewItem; -} - -template -void VmaRawList::PopBack() -{ - VMA_HEAVY_ASSERT(m_Count > 0); - ItemType* const pBackItem = m_pBack; - ItemType* const pPrevItem = pBackItem->pPrev; - if(pPrevItem != VMA_NULL) - { - pPrevItem->pNext = VMA_NULL; - } - m_pBack = pPrevItem; - m_ItemAllocator.Free(pBackItem); - --m_Count; -} - -template -void VmaRawList::PopFront() -{ - VMA_HEAVY_ASSERT(m_Count > 0); - ItemType* const pFrontItem = m_pFront; - ItemType* const pNextItem = pFrontItem->pNext; - if(pNextItem != VMA_NULL) - { - pNextItem->pPrev = VMA_NULL; - } - m_pFront = pNextItem; - m_ItemAllocator.Free(pFrontItem); - --m_Count; -} - -template -void VmaRawList::Remove(ItemType* pItem) -{ - VMA_HEAVY_ASSERT(pItem != VMA_NULL); - VMA_HEAVY_ASSERT(m_Count > 0); - - if(pItem->pPrev != VMA_NULL) - { - pItem->pPrev->pNext = pItem->pNext; - } - else - { - VMA_HEAVY_ASSERT(m_pFront == pItem); - m_pFront = pItem->pNext; - } - - if(pItem->pNext != VMA_NULL) - { - pItem->pNext->pPrev = pItem->pPrev; - } - else - { - VMA_HEAVY_ASSERT(m_pBack == pItem); - m_pBack = pItem->pPrev; - } - - m_ItemAllocator.Free(pItem); - --m_Count; -} - -template -VmaListItem* VmaRawList::InsertBefore(ItemType* pItem) -{ - if(pItem != VMA_NULL) - { - ItemType* const prevItem = pItem->pPrev; - ItemType* const newItem = m_ItemAllocator.Alloc(); - newItem->pPrev = prevItem; - newItem->pNext = pItem; - pItem->pPrev = newItem; - if(prevItem != VMA_NULL) - { - prevItem->pNext = newItem; - } - else - { - VMA_HEAVY_ASSERT(m_pFront == pItem); - m_pFront = newItem; - } - ++m_Count; - return newItem; - } - else - return PushBack(); -} - -template -VmaListItem* VmaRawList::InsertAfter(ItemType* pItem) -{ - if(pItem != VMA_NULL) - { - ItemType* const nextItem = pItem->pNext; - ItemType* const newItem = m_ItemAllocator.Alloc(); - newItem->pNext = nextItem; - newItem->pPrev = pItem; - pItem->pNext = newItem; - if(nextItem != VMA_NULL) - { - nextItem->pPrev = newItem; - } - else - { - VMA_HEAVY_ASSERT(m_pBack == pItem); - m_pBack = newItem; - } - ++m_Count; - return newItem; - } - else - return PushFront(); -} - -template -VmaListItem* VmaRawList::InsertBefore(ItemType* pItem, const T& value) -{ - ItemType* const newItem = InsertBefore(pItem); - newItem->Value = value; - return newItem; -} - -template -VmaListItem* VmaRawList::InsertAfter(ItemType* pItem, const T& value) -{ - ItemType* const newItem = InsertAfter(pItem); - newItem->Value = value; - return newItem; -} - -template -class VmaList -{ - VMA_CLASS_NO_COPY(VmaList) -public: - class iterator - { - public: - iterator() : - m_pList(VMA_NULL), - m_pItem(VMA_NULL) - { - } - - T& operator*() const - { - VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); - return m_pItem->Value; - } - T* operator->() const - { - VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); - return &m_pItem->Value; - } - - iterator& operator++() - { - VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); - m_pItem = m_pItem->pNext; - return *this; - } - iterator& operator--() - { - if(m_pItem != VMA_NULL) - { - m_pItem = m_pItem->pPrev; - } - else - { - VMA_HEAVY_ASSERT(!m_pList->IsEmpty()); - m_pItem = m_pList->Back(); - } - return *this; - } - - iterator operator++(int) - { - iterator result = *this; - ++*this; - return result; - } - iterator operator--(int) - { - iterator result = *this; - --*this; - return result; - } - - bool operator==(const iterator& rhs) const - { - VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); - return m_pItem == rhs.m_pItem; - } - bool operator!=(const iterator& rhs) const - { - VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); - return m_pItem != rhs.m_pItem; - } - - private: - VmaRawList* m_pList; - VmaListItem* m_pItem; - - iterator(VmaRawList* pList, VmaListItem* pItem) : - m_pList(pList), - m_pItem(pItem) - { - } - - friend class VmaList; - }; - - class const_iterator - { - public: - const_iterator() : - m_pList(VMA_NULL), - m_pItem(VMA_NULL) - { - } - - const_iterator(const iterator& src) : - m_pList(src.m_pList), - m_pItem(src.m_pItem) - { - } - - const T& operator*() const - { - VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); - return m_pItem->Value; - } - const T* operator->() const - { - VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); - return &m_pItem->Value; - } - - const_iterator& operator++() - { - VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); - m_pItem = m_pItem->pNext; - return *this; - } - const_iterator& operator--() - { - if(m_pItem != VMA_NULL) - { - m_pItem = m_pItem->pPrev; - } - else - { - VMA_HEAVY_ASSERT(!m_pList->IsEmpty()); - m_pItem = m_pList->Back(); - } - return *this; - } - - const_iterator operator++(int) - { - const_iterator result = *this; - ++*this; - return result; - } - const_iterator operator--(int) - { - const_iterator result = *this; - --*this; - return result; - } - - bool operator==(const const_iterator& rhs) const - { - VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); - return m_pItem == rhs.m_pItem; - } - bool operator!=(const const_iterator& rhs) const - { - VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); - return m_pItem != rhs.m_pItem; - } - - private: - const_iterator(const VmaRawList* pList, const VmaListItem* pItem) : - m_pList(pList), - m_pItem(pItem) - { - } - - const VmaRawList* m_pList; - const VmaListItem* m_pItem; - - friend class VmaList; - }; - - VmaList(const AllocatorT& allocator) : m_RawList(allocator.m_pCallbacks) { } - - bool empty() const { return m_RawList.IsEmpty(); } - size_t size() const { return m_RawList.GetCount(); } - - iterator begin() { return iterator(&m_RawList, m_RawList.Front()); } - iterator end() { return iterator(&m_RawList, VMA_NULL); } - - const_iterator cbegin() const { return const_iterator(&m_RawList, m_RawList.Front()); } - const_iterator cend() const { return const_iterator(&m_RawList, VMA_NULL); } - - void clear() { m_RawList.Clear(); } - void push_back(const T& value) { m_RawList.PushBack(value); } - void erase(iterator it) { m_RawList.Remove(it.m_pItem); } - iterator insert(iterator it, const T& value) { return iterator(&m_RawList, m_RawList.InsertBefore(it.m_pItem, value)); } - -private: - VmaRawList m_RawList; -}; - -#endif // #if VMA_USE_STL_LIST - -//////////////////////////////////////////////////////////////////////////////// -// class VmaMap - -// Unused in this version. -#if 0 - -#if VMA_USE_STL_UNORDERED_MAP - -#define VmaPair std::pair - -#define VMA_MAP_TYPE(KeyT, ValueT) \ - std::unordered_map< KeyT, ValueT, std::hash, std::equal_to, VmaStlAllocator< std::pair > > - -#else // #if VMA_USE_STL_UNORDERED_MAP - -template -struct VmaPair -{ - T1 first; - T2 second; - - VmaPair() : first(), second() { } - VmaPair(const T1& firstSrc, const T2& secondSrc) : first(firstSrc), second(secondSrc) { } -}; - -/* Class compatible with subset of interface of std::unordered_map. -KeyT, ValueT must be POD because they will be stored in VmaVector. -*/ -template -class VmaMap -{ -public: - typedef VmaPair PairType; - typedef PairType* iterator; - - VmaMap(const VmaStlAllocator& allocator) : m_Vector(allocator) { } - - iterator begin() { return m_Vector.begin(); } - iterator end() { return m_Vector.end(); } - - void insert(const PairType& pair); - iterator find(const KeyT& key); - void erase(iterator it); - -private: - VmaVector< PairType, VmaStlAllocator > m_Vector; -}; - -#define VMA_MAP_TYPE(KeyT, ValueT) VmaMap - -template -struct VmaPairFirstLess -{ - bool operator()(const VmaPair& lhs, const VmaPair& rhs) const - { - return lhs.first < rhs.first; - } - bool operator()(const VmaPair& lhs, const FirstT& rhsFirst) const - { - return lhs.first < rhsFirst; - } -}; - -template -void VmaMap::insert(const PairType& pair) -{ - const size_t indexToInsert = VmaBinaryFindFirstNotLess( - m_Vector.data(), - m_Vector.data() + m_Vector.size(), - pair, - VmaPairFirstLess()) - m_Vector.data(); - VmaVectorInsert(m_Vector, indexToInsert, pair); -} - -template -VmaPair* VmaMap::find(const KeyT& key) -{ - PairType* it = VmaBinaryFindFirstNotLess( - m_Vector.data(), - m_Vector.data() + m_Vector.size(), - key, - VmaPairFirstLess()); - if((it != m_Vector.end()) && (it->first == key)) - { - return it; - } - else - { - return m_Vector.end(); - } -} - -template -void VmaMap::erase(iterator it) -{ - VmaVectorRemove(m_Vector, it - m_Vector.begin()); -} - -#endif // #if VMA_USE_STL_UNORDERED_MAP - -#endif // #if 0 - -//////////////////////////////////////////////////////////////////////////////// - -class VmaDeviceMemoryBlock; - -enum VMA_CACHE_OPERATION { VMA_CACHE_FLUSH, VMA_CACHE_INVALIDATE }; - -struct VmaAllocation_T -{ -private: - static const uint8_t MAP_COUNT_FLAG_PERSISTENT_MAP = 0x80; - - enum FLAGS - { - FLAG_USER_DATA_STRING = 0x01, - }; - -public: - enum ALLOCATION_TYPE - { - ALLOCATION_TYPE_NONE, - ALLOCATION_TYPE_BLOCK, - ALLOCATION_TYPE_DEDICATED, - }; - - /* - This struct is allocated using VmaPoolAllocator. - */ - - void Ctor(uint32_t currentFrameIndex, bool userDataString) - { - m_Alignment = 1; - m_Size = 0; - m_MemoryTypeIndex = 0; - m_pUserData = VMA_NULL; - m_LastUseFrameIndex = currentFrameIndex; - m_Type = (uint8_t)ALLOCATION_TYPE_NONE; - m_SuballocationType = (uint8_t)VMA_SUBALLOCATION_TYPE_UNKNOWN; - m_MapCount = 0; - m_Flags = userDataString ? (uint8_t)FLAG_USER_DATA_STRING : 0; - -#if VMA_STATS_STRING_ENABLED - m_CreationFrameIndex = currentFrameIndex; - m_BufferImageUsage = 0; -#endif - } - - void Dtor() - { - VMA_ASSERT((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) == 0 && "Allocation was not unmapped before destruction."); - - // Check if owned string was freed. - VMA_ASSERT(m_pUserData == VMA_NULL); - } - - void InitBlockAllocation( - VmaDeviceMemoryBlock* block, - VkDeviceSize offset, - VkDeviceSize alignment, - VkDeviceSize size, - uint32_t memoryTypeIndex, - VmaSuballocationType suballocationType, - bool mapped, - bool canBecomeLost) - { - VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE); - VMA_ASSERT(block != VMA_NULL); - m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK; - m_Alignment = alignment; - m_Size = size; - m_MemoryTypeIndex = memoryTypeIndex; - m_MapCount = mapped ? MAP_COUNT_FLAG_PERSISTENT_MAP : 0; - m_SuballocationType = (uint8_t)suballocationType; - m_BlockAllocation.m_Block = block; - m_BlockAllocation.m_Offset = offset; - m_BlockAllocation.m_CanBecomeLost = canBecomeLost; - } - - void InitLost() - { - VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE); - VMA_ASSERT(m_LastUseFrameIndex.load() == VMA_FRAME_INDEX_LOST); - m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK; - m_MemoryTypeIndex = 0; - m_BlockAllocation.m_Block = VMA_NULL; - m_BlockAllocation.m_Offset = 0; - m_BlockAllocation.m_CanBecomeLost = true; - } - - void ChangeBlockAllocation( - VmaAllocator hAllocator, - VmaDeviceMemoryBlock* block, - VkDeviceSize offset); - - void ChangeOffset(VkDeviceSize newOffset); - - // pMappedData not null means allocation is created with MAPPED flag. - void InitDedicatedAllocation( - uint32_t memoryTypeIndex, - VkDeviceMemory hMemory, - VmaSuballocationType suballocationType, - void* pMappedData, - VkDeviceSize size) - { - VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE); - VMA_ASSERT(hMemory != VK_NULL_HANDLE); - m_Type = (uint8_t)ALLOCATION_TYPE_DEDICATED; - m_Alignment = 0; - m_Size = size; - m_MemoryTypeIndex = memoryTypeIndex; - m_SuballocationType = (uint8_t)suballocationType; - m_MapCount = (pMappedData != VMA_NULL) ? MAP_COUNT_FLAG_PERSISTENT_MAP : 0; - m_DedicatedAllocation.m_hMemory = hMemory; - m_DedicatedAllocation.m_pMappedData = pMappedData; - } - - ALLOCATION_TYPE GetType() const { return (ALLOCATION_TYPE)m_Type; } - VkDeviceSize GetAlignment() const { return m_Alignment; } - VkDeviceSize GetSize() const { return m_Size; } - bool IsUserDataString() const { return (m_Flags & FLAG_USER_DATA_STRING) != 0; } - void* GetUserData() const { return m_pUserData; } - void SetUserData(VmaAllocator hAllocator, void* pUserData); - VmaSuballocationType GetSuballocationType() const { return (VmaSuballocationType)m_SuballocationType; } - - VmaDeviceMemoryBlock* GetBlock() const - { - VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK); - return m_BlockAllocation.m_Block; - } - VkDeviceSize GetOffset() const; - VkDeviceMemory GetMemory() const; - uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; } - bool IsPersistentMap() const { return (m_MapCount & MAP_COUNT_FLAG_PERSISTENT_MAP) != 0; } - void* GetMappedData() const; - bool CanBecomeLost() const; - - uint32_t GetLastUseFrameIndex() const - { - return m_LastUseFrameIndex.load(); - } - bool CompareExchangeLastUseFrameIndex(uint32_t& expected, uint32_t desired) - { - return m_LastUseFrameIndex.compare_exchange_weak(expected, desired); - } - /* - - If hAllocation.LastUseFrameIndex + frameInUseCount < allocator.CurrentFrameIndex, - makes it lost by setting LastUseFrameIndex = VMA_FRAME_INDEX_LOST and returns true. - - Else, returns false. - - If hAllocation is already lost, assert - you should not call it then. - If hAllocation was not created with CAN_BECOME_LOST_BIT, assert. - */ - bool MakeLost(uint32_t currentFrameIndex, uint32_t frameInUseCount); - - void DedicatedAllocCalcStatsInfo(VmaStatInfo& outInfo) - { - VMA_ASSERT(m_Type == ALLOCATION_TYPE_DEDICATED); - outInfo.blockCount = 1; - outInfo.allocationCount = 1; - outInfo.unusedRangeCount = 0; - outInfo.usedBytes = m_Size; - outInfo.unusedBytes = 0; - outInfo.allocationSizeMin = outInfo.allocationSizeMax = m_Size; - outInfo.unusedRangeSizeMin = UINT64_MAX; - outInfo.unusedRangeSizeMax = 0; - } - - void BlockAllocMap(); - void BlockAllocUnmap(); - VkResult DedicatedAllocMap(VmaAllocator hAllocator, void** ppData); - void DedicatedAllocUnmap(VmaAllocator hAllocator); - -#if VMA_STATS_STRING_ENABLED - uint32_t GetCreationFrameIndex() const { return m_CreationFrameIndex; } - uint32_t GetBufferImageUsage() const { return m_BufferImageUsage; } - - void InitBufferImageUsage(uint32_t bufferImageUsage) - { - VMA_ASSERT(m_BufferImageUsage == 0); - m_BufferImageUsage = bufferImageUsage; - } - - void PrintParameters(class VmaJsonWriter& json) const; -#endif - -private: - VkDeviceSize m_Alignment; - VkDeviceSize m_Size; - void* m_pUserData; - VMA_ATOMIC_UINT32 m_LastUseFrameIndex; - uint32_t m_MemoryTypeIndex; - uint8_t m_Type; // ALLOCATION_TYPE - uint8_t m_SuballocationType; // VmaSuballocationType - // Bit 0x80 is set when allocation was created with VMA_ALLOCATION_CREATE_MAPPED_BIT. - // Bits with mask 0x7F are reference counter for vmaMapMemory()/vmaUnmapMemory(). - uint8_t m_MapCount; - uint8_t m_Flags; // enum FLAGS - - // Allocation out of VmaDeviceMemoryBlock. - struct BlockAllocation - { - VmaDeviceMemoryBlock* m_Block; - VkDeviceSize m_Offset; - bool m_CanBecomeLost; - }; - - // Allocation for an object that has its own private VkDeviceMemory. - struct DedicatedAllocation - { - VkDeviceMemory m_hMemory; - void* m_pMappedData; // Not null means memory is mapped. - }; - - union - { - // Allocation out of VmaDeviceMemoryBlock. - BlockAllocation m_BlockAllocation; - // Allocation for an object that has its own private VkDeviceMemory. - DedicatedAllocation m_DedicatedAllocation; - }; - -#if VMA_STATS_STRING_ENABLED - uint32_t m_CreationFrameIndex; - uint32_t m_BufferImageUsage; // 0 if unknown. -#endif - - void FreeUserDataString(VmaAllocator hAllocator); -}; - -/* -Represents a region of VmaDeviceMemoryBlock that is either assigned and returned as -allocated memory block or free. -*/ -struct VmaSuballocation -{ - VkDeviceSize offset; - VkDeviceSize size; - VmaAllocation hAllocation; - VmaSuballocationType type; -}; - -// Comparator for offsets. -struct VmaSuballocationOffsetLess -{ - bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const - { - return lhs.offset < rhs.offset; - } -}; -struct VmaSuballocationOffsetGreater -{ - bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const - { - return lhs.offset > rhs.offset; - } -}; - -typedef VmaList< VmaSuballocation, VmaStlAllocator > VmaSuballocationList; - -// Cost of one additional allocation lost, as equivalent in bytes. -static const VkDeviceSize VMA_LOST_ALLOCATION_COST = 1048576; - -enum class VmaAllocationRequestType -{ - Normal, - // Used by "Linear" algorithm. - UpperAddress, - EndOf1st, - EndOf2nd, -}; - -/* -Parameters of planned allocation inside a VmaDeviceMemoryBlock. - -If canMakeOtherLost was false: -- item points to a FREE suballocation. -- itemsToMakeLostCount is 0. - -If canMakeOtherLost was true: -- item points to first of sequence of suballocations, which are either FREE, - or point to VmaAllocations that can become lost. -- itemsToMakeLostCount is the number of VmaAllocations that need to be made lost for - the requested allocation to succeed. -*/ -struct VmaAllocationRequest -{ - VkDeviceSize offset; - VkDeviceSize sumFreeSize; // Sum size of free items that overlap with proposed allocation. - VkDeviceSize sumItemSize; // Sum size of items to make lost that overlap with proposed allocation. - VmaSuballocationList::iterator item; - size_t itemsToMakeLostCount; - void* customData; - VmaAllocationRequestType type; - - VkDeviceSize CalcCost() const - { - return sumItemSize + itemsToMakeLostCount * VMA_LOST_ALLOCATION_COST; - } -}; - -/* -Data structure used for bookkeeping of allocations and unused ranges of memory -in a single VkDeviceMemory block. -*/ -class VmaBlockMetadata -{ -public: - VmaBlockMetadata(VmaAllocator hAllocator); - virtual ~VmaBlockMetadata() { } - virtual void Init(VkDeviceSize size) { m_Size = size; } - - // Validates all data structures inside this object. If not valid, returns false. - virtual bool Validate() const = 0; - VkDeviceSize GetSize() const { return m_Size; } - virtual size_t GetAllocationCount() const = 0; - virtual VkDeviceSize GetSumFreeSize() const = 0; - virtual VkDeviceSize GetUnusedRangeSizeMax() const = 0; - // Returns true if this block is empty - contains only single free suballocation. - virtual bool IsEmpty() const = 0; - - virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const = 0; - // Shouldn't modify blockCount. - virtual void AddPoolStats(VmaPoolStats& inoutStats) const = 0; - -#if VMA_STATS_STRING_ENABLED - virtual void PrintDetailedMap(class VmaJsonWriter& json) const = 0; -#endif - - // Tries to find a place for suballocation with given parameters inside this block. - // If succeeded, fills pAllocationRequest and returns true. - // If failed, returns false. - virtual bool CreateAllocationRequest( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VkDeviceSize bufferImageGranularity, - VkDeviceSize allocSize, - VkDeviceSize allocAlignment, - bool upperAddress, - VmaSuballocationType allocType, - bool canMakeOtherLost, - // Always one of VMA_ALLOCATION_CREATE_STRATEGY_* or VMA_ALLOCATION_INTERNAL_STRATEGY_* flags. - uint32_t strategy, - VmaAllocationRequest* pAllocationRequest) = 0; - - virtual bool MakeRequestedAllocationsLost( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VmaAllocationRequest* pAllocationRequest) = 0; - - virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount) = 0; - - virtual VkResult CheckCorruption(const void* pBlockData) = 0; - - // Makes actual allocation based on request. Request must already be checked and valid. - virtual void Alloc( - const VmaAllocationRequest& request, - VmaSuballocationType type, - VkDeviceSize allocSize, - VmaAllocation hAllocation) = 0; - - // Frees suballocation assigned to given memory region. - virtual void Free(const VmaAllocation allocation) = 0; - virtual void FreeAtOffset(VkDeviceSize offset) = 0; - -protected: - const VkAllocationCallbacks* GetAllocationCallbacks() const { return m_pAllocationCallbacks; } - -#if VMA_STATS_STRING_ENABLED - void PrintDetailedMap_Begin(class VmaJsonWriter& json, - VkDeviceSize unusedBytes, - size_t allocationCount, - size_t unusedRangeCount) const; - void PrintDetailedMap_Allocation(class VmaJsonWriter& json, - VkDeviceSize offset, - VmaAllocation hAllocation) const; - void PrintDetailedMap_UnusedRange(class VmaJsonWriter& json, - VkDeviceSize offset, - VkDeviceSize size) const; - void PrintDetailedMap_End(class VmaJsonWriter& json) const; -#endif - -private: - VkDeviceSize m_Size; - const VkAllocationCallbacks* m_pAllocationCallbacks; -}; - -#define VMA_VALIDATE(cond) do { if(!(cond)) { \ - VMA_ASSERT(0 && "Validation failed: " #cond); \ - return false; \ - } } while(false) - -class VmaBlockMetadata_Generic : public VmaBlockMetadata -{ - VMA_CLASS_NO_COPY(VmaBlockMetadata_Generic) -public: - VmaBlockMetadata_Generic(VmaAllocator hAllocator); - virtual ~VmaBlockMetadata_Generic(); - virtual void Init(VkDeviceSize size); - - virtual bool Validate() const; - virtual size_t GetAllocationCount() const { return m_Suballocations.size() - m_FreeCount; } - virtual VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize; } - virtual VkDeviceSize GetUnusedRangeSizeMax() const; - virtual bool IsEmpty() const; - - virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const; - virtual void AddPoolStats(VmaPoolStats& inoutStats) const; - -#if VMA_STATS_STRING_ENABLED - virtual void PrintDetailedMap(class VmaJsonWriter& json) const; -#endif - - virtual bool CreateAllocationRequest( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VkDeviceSize bufferImageGranularity, - VkDeviceSize allocSize, - VkDeviceSize allocAlignment, - bool upperAddress, - VmaSuballocationType allocType, - bool canMakeOtherLost, - uint32_t strategy, - VmaAllocationRequest* pAllocationRequest); - - virtual bool MakeRequestedAllocationsLost( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VmaAllocationRequest* pAllocationRequest); - - virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount); - - virtual VkResult CheckCorruption(const void* pBlockData); - - virtual void Alloc( - const VmaAllocationRequest& request, - VmaSuballocationType type, - VkDeviceSize allocSize, - VmaAllocation hAllocation); - - virtual void Free(const VmaAllocation allocation); - virtual void FreeAtOffset(VkDeviceSize offset); - - //////////////////////////////////////////////////////////////////////////////// - // For defragmentation - - bool IsBufferImageGranularityConflictPossible( - VkDeviceSize bufferImageGranularity, - VmaSuballocationType& inOutPrevSuballocType) const; - -private: - friend class VmaDefragmentationAlgorithm_Generic; - friend class VmaDefragmentationAlgorithm_Fast; - - uint32_t m_FreeCount; - VkDeviceSize m_SumFreeSize; - VmaSuballocationList m_Suballocations; - // Suballocations that are free and have size greater than certain threshold. - // Sorted by size, ascending. - VmaVector< VmaSuballocationList::iterator, VmaStlAllocator< VmaSuballocationList::iterator > > m_FreeSuballocationsBySize; - - bool ValidateFreeSuballocationList() const; - - // Checks if requested suballocation with given parameters can be placed in given pFreeSuballocItem. - // If yes, fills pOffset and returns true. If no, returns false. - bool CheckAllocation( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VkDeviceSize bufferImageGranularity, - VkDeviceSize allocSize, - VkDeviceSize allocAlignment, - VmaSuballocationType allocType, - VmaSuballocationList::const_iterator suballocItem, - bool canMakeOtherLost, - VkDeviceSize* pOffset, - size_t* itemsToMakeLostCount, - VkDeviceSize* pSumFreeSize, - VkDeviceSize* pSumItemSize) const; - // Given free suballocation, it merges it with following one, which must also be free. - void MergeFreeWithNext(VmaSuballocationList::iterator item); - // Releases given suballocation, making it free. - // Merges it with adjacent free suballocations if applicable. - // Returns iterator to new free suballocation at this place. - VmaSuballocationList::iterator FreeSuballocation(VmaSuballocationList::iterator suballocItem); - // Given free suballocation, it inserts it into sorted list of - // m_FreeSuballocationsBySize if it's suitable. - void RegisterFreeSuballocation(VmaSuballocationList::iterator item); - // Given free suballocation, it removes it from sorted list of - // m_FreeSuballocationsBySize if it's suitable. - void UnregisterFreeSuballocation(VmaSuballocationList::iterator item); -}; - -/* -Allocations and their references in internal data structure look like this: - -if(m_2ndVectorMode == SECOND_VECTOR_EMPTY): - - 0 +-------+ - | | - | | - | | - +-------+ - | Alloc | 1st[m_1stNullItemsBeginCount] - +-------+ - | Alloc | 1st[m_1stNullItemsBeginCount + 1] - +-------+ - | ... | - +-------+ - | Alloc | 1st[1st.size() - 1] - +-------+ - | | - | | - | | -GetSize() +-------+ - -if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER): - - 0 +-------+ - | Alloc | 2nd[0] - +-------+ - | Alloc | 2nd[1] - +-------+ - | ... | - +-------+ - | Alloc | 2nd[2nd.size() - 1] - +-------+ - | | - | | - | | - +-------+ - | Alloc | 1st[m_1stNullItemsBeginCount] - +-------+ - | Alloc | 1st[m_1stNullItemsBeginCount + 1] - +-------+ - | ... | - +-------+ - | Alloc | 1st[1st.size() - 1] - +-------+ - | | -GetSize() +-------+ - -if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK): - - 0 +-------+ - | | - | | - | | - +-------+ - | Alloc | 1st[m_1stNullItemsBeginCount] - +-------+ - | Alloc | 1st[m_1stNullItemsBeginCount + 1] - +-------+ - | ... | - +-------+ - | Alloc | 1st[1st.size() - 1] - +-------+ - | | - | | - | | - +-------+ - | Alloc | 2nd[2nd.size() - 1] - +-------+ - | ... | - +-------+ - | Alloc | 2nd[1] - +-------+ - | Alloc | 2nd[0] -GetSize() +-------+ - -*/ -class VmaBlockMetadata_Linear : public VmaBlockMetadata -{ - VMA_CLASS_NO_COPY(VmaBlockMetadata_Linear) -public: - VmaBlockMetadata_Linear(VmaAllocator hAllocator); - virtual ~VmaBlockMetadata_Linear(); - virtual void Init(VkDeviceSize size); - - virtual bool Validate() const; - virtual size_t GetAllocationCount() const; - virtual VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize; } - virtual VkDeviceSize GetUnusedRangeSizeMax() const; - virtual bool IsEmpty() const { return GetAllocationCount() == 0; } - - virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const; - virtual void AddPoolStats(VmaPoolStats& inoutStats) const; - -#if VMA_STATS_STRING_ENABLED - virtual void PrintDetailedMap(class VmaJsonWriter& json) const; -#endif - - virtual bool CreateAllocationRequest( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VkDeviceSize bufferImageGranularity, - VkDeviceSize allocSize, - VkDeviceSize allocAlignment, - bool upperAddress, - VmaSuballocationType allocType, - bool canMakeOtherLost, - uint32_t strategy, - VmaAllocationRequest* pAllocationRequest); - - virtual bool MakeRequestedAllocationsLost( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VmaAllocationRequest* pAllocationRequest); - - virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount); - - virtual VkResult CheckCorruption(const void* pBlockData); - - virtual void Alloc( - const VmaAllocationRequest& request, - VmaSuballocationType type, - VkDeviceSize allocSize, - VmaAllocation hAllocation); - - virtual void Free(const VmaAllocation allocation); - virtual void FreeAtOffset(VkDeviceSize offset); - -private: - /* - There are two suballocation vectors, used in ping-pong way. - The one with index m_1stVectorIndex is called 1st. - The one with index (m_1stVectorIndex ^ 1) is called 2nd. - 2nd can be non-empty only when 1st is not empty. - When 2nd is not empty, m_2ndVectorMode indicates its mode of operation. - */ - typedef VmaVector< VmaSuballocation, VmaStlAllocator > SuballocationVectorType; - - enum SECOND_VECTOR_MODE - { - SECOND_VECTOR_EMPTY, - /* - Suballocations in 2nd vector are created later than the ones in 1st, but they - all have smaller offset. - */ - SECOND_VECTOR_RING_BUFFER, - /* - Suballocations in 2nd vector are upper side of double stack. - They all have offsets higher than those in 1st vector. - Top of this stack means smaller offsets, but higher indices in this vector. - */ - SECOND_VECTOR_DOUBLE_STACK, - }; - - VkDeviceSize m_SumFreeSize; - SuballocationVectorType m_Suballocations0, m_Suballocations1; - uint32_t m_1stVectorIndex; - SECOND_VECTOR_MODE m_2ndVectorMode; - - SuballocationVectorType& AccessSuballocations1st() { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; } - SuballocationVectorType& AccessSuballocations2nd() { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; } - const SuballocationVectorType& AccessSuballocations1st() const { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; } - const SuballocationVectorType& AccessSuballocations2nd() const { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; } - - // Number of items in 1st vector with hAllocation = null at the beginning. - size_t m_1stNullItemsBeginCount; - // Number of other items in 1st vector with hAllocation = null somewhere in the middle. - size_t m_1stNullItemsMiddleCount; - // Number of items in 2nd vector with hAllocation = null. - size_t m_2ndNullItemsCount; - - bool ShouldCompact1st() const; - void CleanupAfterFree(); - - bool CreateAllocationRequest_LowerAddress( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VkDeviceSize bufferImageGranularity, - VkDeviceSize allocSize, - VkDeviceSize allocAlignment, - VmaSuballocationType allocType, - bool canMakeOtherLost, - uint32_t strategy, - VmaAllocationRequest* pAllocationRequest); - bool CreateAllocationRequest_UpperAddress( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VkDeviceSize bufferImageGranularity, - VkDeviceSize allocSize, - VkDeviceSize allocAlignment, - VmaSuballocationType allocType, - bool canMakeOtherLost, - uint32_t strategy, - VmaAllocationRequest* pAllocationRequest); -}; - -/* -- GetSize() is the original size of allocated memory block. -- m_UsableSize is this size aligned down to a power of two. - All allocations and calculations happen relative to m_UsableSize. -- GetUnusableSize() is the difference between them. - It is repoted as separate, unused range, not available for allocations. - -Node at level 0 has size = m_UsableSize. -Each next level contains nodes with size 2 times smaller than current level. -m_LevelCount is the maximum number of levels to use in the current object. -*/ -class VmaBlockMetadata_Buddy : public VmaBlockMetadata -{ - VMA_CLASS_NO_COPY(VmaBlockMetadata_Buddy) -public: - VmaBlockMetadata_Buddy(VmaAllocator hAllocator); - virtual ~VmaBlockMetadata_Buddy(); - virtual void Init(VkDeviceSize size); - - virtual bool Validate() const; - virtual size_t GetAllocationCount() const { return m_AllocationCount; } - virtual VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize + GetUnusableSize(); } - virtual VkDeviceSize GetUnusedRangeSizeMax() const; - virtual bool IsEmpty() const { return m_Root->type == Node::TYPE_FREE; } - - virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const; - virtual void AddPoolStats(VmaPoolStats& inoutStats) const; - -#if VMA_STATS_STRING_ENABLED - virtual void PrintDetailedMap(class VmaJsonWriter& json) const; -#endif - - virtual bool CreateAllocationRequest( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VkDeviceSize bufferImageGranularity, - VkDeviceSize allocSize, - VkDeviceSize allocAlignment, - bool upperAddress, - VmaSuballocationType allocType, - bool canMakeOtherLost, - uint32_t strategy, - VmaAllocationRequest* pAllocationRequest); - - virtual bool MakeRequestedAllocationsLost( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VmaAllocationRequest* pAllocationRequest); - - virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount); - - virtual VkResult CheckCorruption(const void* pBlockData) { return VK_ERROR_FEATURE_NOT_PRESENT; } - - virtual void Alloc( - const VmaAllocationRequest& request, - VmaSuballocationType type, - VkDeviceSize allocSize, - VmaAllocation hAllocation); - - virtual void Free(const VmaAllocation allocation) { FreeAtOffset(allocation, allocation->GetOffset()); } - virtual void FreeAtOffset(VkDeviceSize offset) { FreeAtOffset(VMA_NULL, offset); } - -private: - static const VkDeviceSize MIN_NODE_SIZE = 32; - static const size_t MAX_LEVELS = 30; - - struct ValidationContext - { - size_t calculatedAllocationCount; - size_t calculatedFreeCount; - VkDeviceSize calculatedSumFreeSize; - - ValidationContext() : - calculatedAllocationCount(0), - calculatedFreeCount(0), - calculatedSumFreeSize(0) { } - }; - - struct Node - { - VkDeviceSize offset; - enum TYPE - { - TYPE_FREE, - TYPE_ALLOCATION, - TYPE_SPLIT, - TYPE_COUNT - } type; - Node* parent; - Node* buddy; - - union - { - struct - { - Node* prev; - Node* next; - } free; - struct - { - VmaAllocation alloc; - } allocation; - struct - { - Node* leftChild; - } split; - }; - }; - - // Size of the memory block aligned down to a power of two. - VkDeviceSize m_UsableSize; - uint32_t m_LevelCount; - - Node* m_Root; - struct { - Node* front; - Node* back; - } m_FreeList[MAX_LEVELS]; - // Number of nodes in the tree with type == TYPE_ALLOCATION. - size_t m_AllocationCount; - // Number of nodes in the tree with type == TYPE_FREE. - size_t m_FreeCount; - // This includes space wasted due to internal fragmentation. Doesn't include unusable size. - VkDeviceSize m_SumFreeSize; - - VkDeviceSize GetUnusableSize() const { return GetSize() - m_UsableSize; } - void DeleteNode(Node* node); - bool ValidateNode(ValidationContext& ctx, const Node* parent, const Node* curr, uint32_t level, VkDeviceSize levelNodeSize) const; - uint32_t AllocSizeToLevel(VkDeviceSize allocSize) const; - inline VkDeviceSize LevelToNodeSize(uint32_t level) const { return m_UsableSize >> level; } - // Alloc passed just for validation. Can be null. - void FreeAtOffset(VmaAllocation alloc, VkDeviceSize offset); - void CalcAllocationStatInfoNode(VmaStatInfo& outInfo, const Node* node, VkDeviceSize levelNodeSize) const; - // Adds node to the front of FreeList at given level. - // node->type must be FREE. - // node->free.prev, next can be undefined. - void AddToFreeListFront(uint32_t level, Node* node); - // Removes node from FreeList at given level. - // node->type must be FREE. - // node->free.prev, next stay untouched. - void RemoveFromFreeList(uint32_t level, Node* node); - -#if VMA_STATS_STRING_ENABLED - void PrintDetailedMapNode(class VmaJsonWriter& json, const Node* node, VkDeviceSize levelNodeSize) const; -#endif -}; - -/* -Represents a single block of device memory (`VkDeviceMemory`) with all the -data about its regions (aka suballocations, #VmaAllocation), assigned and free. - -Thread-safety: This class must be externally synchronized. -*/ -class VmaDeviceMemoryBlock -{ - VMA_CLASS_NO_COPY(VmaDeviceMemoryBlock) -public: - VmaBlockMetadata* m_pMetadata; - - VmaDeviceMemoryBlock(VmaAllocator hAllocator); - - ~VmaDeviceMemoryBlock() - { - VMA_ASSERT(m_MapCount == 0 && "VkDeviceMemory block is being destroyed while it is still mapped."); - VMA_ASSERT(m_hMemory == VK_NULL_HANDLE); - } - - // Always call after construction. - void Init( - VmaAllocator hAllocator, - VmaPool hParentPool, - uint32_t newMemoryTypeIndex, - VkDeviceMemory newMemory, - VkDeviceSize newSize, - uint32_t id, - uint32_t algorithm); - // Always call before destruction. - void Destroy(VmaAllocator allocator); - - VmaPool GetParentPool() const { return m_hParentPool; } - VkDeviceMemory GetDeviceMemory() const { return m_hMemory; } - uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; } - uint32_t GetId() const { return m_Id; } - void* GetMappedData() const { return m_pMappedData; } - - // Validates all data structures inside this object. If not valid, returns false. - bool Validate() const; - - VkResult CheckCorruption(VmaAllocator hAllocator); - - // ppData can be null. - VkResult Map(VmaAllocator hAllocator, uint32_t count, void** ppData); - void Unmap(VmaAllocator hAllocator, uint32_t count); - - VkResult WriteMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize); - VkResult ValidateMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize); - - VkResult BindBufferMemory( - const VmaAllocator hAllocator, - const VmaAllocation hAllocation, - VkDeviceSize allocationLocalOffset, - VkBuffer hBuffer, - const void* pNext); - VkResult BindImageMemory( - const VmaAllocator hAllocator, - const VmaAllocation hAllocation, - VkDeviceSize allocationLocalOffset, - VkImage hImage, - const void* pNext); - -private: - VmaPool m_hParentPool; // VK_NULL_HANDLE if not belongs to custom pool. - uint32_t m_MemoryTypeIndex; - uint32_t m_Id; - VkDeviceMemory m_hMemory; - - /* - Protects access to m_hMemory so it's not used by multiple threads simultaneously, e.g. vkMapMemory, vkBindBufferMemory. - Also protects m_MapCount, m_pMappedData. - Allocations, deallocations, any change in m_pMetadata is protected by parent's VmaBlockVector::m_Mutex. - */ - VMA_MUTEX m_Mutex; - uint32_t m_MapCount; - void* m_pMappedData; -}; - -struct VmaPointerLess -{ - bool operator()(const void* lhs, const void* rhs) const - { - return lhs < rhs; - } -}; - -struct VmaDefragmentationMove -{ - size_t srcBlockIndex; - size_t dstBlockIndex; - VkDeviceSize srcOffset; - VkDeviceSize dstOffset; - VkDeviceSize size; - VmaAllocation hAllocation; - VmaDeviceMemoryBlock* pSrcBlock; - VmaDeviceMemoryBlock* pDstBlock; -}; - -class VmaDefragmentationAlgorithm; - -/* -Sequence of VmaDeviceMemoryBlock. Represents memory blocks allocated for a specific -Vulkan memory type. - -Synchronized internally with a mutex. -*/ -struct VmaBlockVector -{ - VMA_CLASS_NO_COPY(VmaBlockVector) -public: - VmaBlockVector( - VmaAllocator hAllocator, - VmaPool hParentPool, - uint32_t memoryTypeIndex, - VkDeviceSize preferredBlockSize, - size_t minBlockCount, - size_t maxBlockCount, - VkDeviceSize bufferImageGranularity, - uint32_t frameInUseCount, - bool explicitBlockSize, - uint32_t algorithm); - ~VmaBlockVector(); - - VkResult CreateMinBlocks(); - - VmaAllocator GetAllocator() const { return m_hAllocator; } - VmaPool GetParentPool() const { return m_hParentPool; } - bool IsCustomPool() const { return m_hParentPool != VMA_NULL; } - uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; } - VkDeviceSize GetPreferredBlockSize() const { return m_PreferredBlockSize; } - VkDeviceSize GetBufferImageGranularity() const { return m_BufferImageGranularity; } - uint32_t GetFrameInUseCount() const { return m_FrameInUseCount; } - uint32_t GetAlgorithm() const { return m_Algorithm; } - - void GetPoolStats(VmaPoolStats* pStats); - - bool IsEmpty(); - bool IsCorruptionDetectionEnabled() const; - - VkResult Allocate( - uint32_t currentFrameIndex, - VkDeviceSize size, - VkDeviceSize alignment, - const VmaAllocationCreateInfo& createInfo, - VmaSuballocationType suballocType, - size_t allocationCount, - VmaAllocation* pAllocations); - - void Free(const VmaAllocation hAllocation); - - // Adds statistics of this BlockVector to pStats. - void AddStats(VmaStats* pStats); - -#if VMA_STATS_STRING_ENABLED - void PrintDetailedMap(class VmaJsonWriter& json); -#endif - - void MakePoolAllocationsLost( - uint32_t currentFrameIndex, - size_t* pLostAllocationCount); - VkResult CheckCorruption(); - - // Saves results in pCtx->res. - void Defragment( - class VmaBlockVectorDefragmentationContext* pCtx, - VmaDefragmentationStats* pStats, VmaDefragmentationFlags flags, - VkDeviceSize& maxCpuBytesToMove, uint32_t& maxCpuAllocationsToMove, - VkDeviceSize& maxGpuBytesToMove, uint32_t& maxGpuAllocationsToMove, - VkCommandBuffer commandBuffer); - void DefragmentationEnd( - class VmaBlockVectorDefragmentationContext* pCtx, - VmaDefragmentationStats* pStats); - - uint32_t ProcessDefragmentations( - class VmaBlockVectorDefragmentationContext *pCtx, - VmaDefragmentationPassMoveInfo* pMove, uint32_t maxMoves); - - void CommitDefragmentations( - class VmaBlockVectorDefragmentationContext *pCtx, - VmaDefragmentationStats* pStats); - - //////////////////////////////////////////////////////////////////////////////// - // To be used only while the m_Mutex is locked. Used during defragmentation. - - size_t GetBlockCount() const { return m_Blocks.size(); } - VmaDeviceMemoryBlock* GetBlock(size_t index) const { return m_Blocks[index]; } - size_t CalcAllocationCount() const; - bool IsBufferImageGranularityConflictPossible() const; - -private: - friend class VmaDefragmentationAlgorithm_Generic; - - const VmaAllocator m_hAllocator; - const VmaPool m_hParentPool; - const uint32_t m_MemoryTypeIndex; - const VkDeviceSize m_PreferredBlockSize; - const size_t m_MinBlockCount; - const size_t m_MaxBlockCount; - const VkDeviceSize m_BufferImageGranularity; - const uint32_t m_FrameInUseCount; - const bool m_ExplicitBlockSize; - const uint32_t m_Algorithm; - VMA_RW_MUTEX m_Mutex; - - /* There can be at most one allocation that is completely empty (except when minBlockCount > 0) - - a hysteresis to avoid pessimistic case of alternating creation and destruction of a VkDeviceMemory. */ - bool m_HasEmptyBlock; - // Incrementally sorted by sumFreeSize, ascending. - VmaVector< VmaDeviceMemoryBlock*, VmaStlAllocator > m_Blocks; - uint32_t m_NextBlockId; - - VkDeviceSize CalcMaxBlockSize() const; - - // Finds and removes given block from vector. - void Remove(VmaDeviceMemoryBlock* pBlock); - - // Performs single step in sorting m_Blocks. They may not be fully sorted - // after this call. - void IncrementallySortBlocks(); - - VkResult AllocatePage( - uint32_t currentFrameIndex, - VkDeviceSize size, - VkDeviceSize alignment, - const VmaAllocationCreateInfo& createInfo, - VmaSuballocationType suballocType, - VmaAllocation* pAllocation); - - // To be used only without CAN_MAKE_OTHER_LOST flag. - VkResult AllocateFromBlock( - VmaDeviceMemoryBlock* pBlock, - uint32_t currentFrameIndex, - VkDeviceSize size, - VkDeviceSize alignment, - VmaAllocationCreateFlags allocFlags, - void* pUserData, - VmaSuballocationType suballocType, - uint32_t strategy, - VmaAllocation* pAllocation); - - VkResult CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex); - - // Saves result to pCtx->res. - void ApplyDefragmentationMovesCpu( - class VmaBlockVectorDefragmentationContext* pDefragCtx, - const VmaVector< VmaDefragmentationMove, VmaStlAllocator >& moves); - // Saves result to pCtx->res. - void ApplyDefragmentationMovesGpu( - class VmaBlockVectorDefragmentationContext* pDefragCtx, - VmaVector< VmaDefragmentationMove, VmaStlAllocator >& moves, - VkCommandBuffer commandBuffer); - - /* - Used during defragmentation. pDefragmentationStats is optional. It's in/out - - updated with new data. - */ - void FreeEmptyBlocks(VmaDefragmentationStats* pDefragmentationStats); - - void UpdateHasEmptyBlock(); -}; - -struct VmaPool_T -{ - VMA_CLASS_NO_COPY(VmaPool_T) -public: - VmaBlockVector m_BlockVector; - - VmaPool_T( - VmaAllocator hAllocator, - const VmaPoolCreateInfo& createInfo, - VkDeviceSize preferredBlockSize); - ~VmaPool_T(); - - uint32_t GetId() const { return m_Id; } - void SetId(uint32_t id) { VMA_ASSERT(m_Id == 0); m_Id = id; } - - const char* GetName() const { return m_Name; } - void SetName(const char* pName); - -#if VMA_STATS_STRING_ENABLED - //void PrintDetailedMap(class VmaStringBuilder& sb); -#endif - -private: - uint32_t m_Id; - char* m_Name; -}; - -/* -Performs defragmentation: - -- Updates `pBlockVector->m_pMetadata`. -- Updates allocations by calling ChangeBlockAllocation() or ChangeOffset(). -- Does not move actual data, only returns requested moves as `moves`. -*/ -class VmaDefragmentationAlgorithm -{ - VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm) -public: - VmaDefragmentationAlgorithm( - VmaAllocator hAllocator, - VmaBlockVector* pBlockVector, - uint32_t currentFrameIndex) : - m_hAllocator(hAllocator), - m_pBlockVector(pBlockVector), - m_CurrentFrameIndex(currentFrameIndex) - { - } - virtual ~VmaDefragmentationAlgorithm() - { - } - - virtual void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged) = 0; - virtual void AddAll() = 0; - - virtual VkResult Defragment( - VmaVector< VmaDefragmentationMove, VmaStlAllocator >& moves, - VkDeviceSize maxBytesToMove, - uint32_t maxAllocationsToMove, - VmaDefragmentationFlags flags) = 0; - - virtual VkDeviceSize GetBytesMoved() const = 0; - virtual uint32_t GetAllocationsMoved() const = 0; - -protected: - VmaAllocator const m_hAllocator; - VmaBlockVector* const m_pBlockVector; - const uint32_t m_CurrentFrameIndex; - - struct AllocationInfo - { - VmaAllocation m_hAllocation; - VkBool32* m_pChanged; - - AllocationInfo() : - m_hAllocation(VK_NULL_HANDLE), - m_pChanged(VMA_NULL) - { - } - AllocationInfo(VmaAllocation hAlloc, VkBool32* pChanged) : - m_hAllocation(hAlloc), - m_pChanged(pChanged) - { - } - }; -}; - -class VmaDefragmentationAlgorithm_Generic : public VmaDefragmentationAlgorithm -{ - VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm_Generic) -public: - VmaDefragmentationAlgorithm_Generic( - VmaAllocator hAllocator, - VmaBlockVector* pBlockVector, - uint32_t currentFrameIndex, - bool overlappingMoveSupported); - virtual ~VmaDefragmentationAlgorithm_Generic(); - - virtual void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged); - virtual void AddAll() { m_AllAllocations = true; } - - virtual VkResult Defragment( - VmaVector< VmaDefragmentationMove, VmaStlAllocator >& moves, - VkDeviceSize maxBytesToMove, - uint32_t maxAllocationsToMove, - VmaDefragmentationFlags flags); - - virtual VkDeviceSize GetBytesMoved() const { return m_BytesMoved; } - virtual uint32_t GetAllocationsMoved() const { return m_AllocationsMoved; } - -private: - uint32_t m_AllocationCount; - bool m_AllAllocations; - - VkDeviceSize m_BytesMoved; - uint32_t m_AllocationsMoved; - - struct AllocationInfoSizeGreater - { - bool operator()(const AllocationInfo& lhs, const AllocationInfo& rhs) const - { - return lhs.m_hAllocation->GetSize() > rhs.m_hAllocation->GetSize(); - } - }; - - struct AllocationInfoOffsetGreater - { - bool operator()(const AllocationInfo& lhs, const AllocationInfo& rhs) const - { - return lhs.m_hAllocation->GetOffset() > rhs.m_hAllocation->GetOffset(); - } - }; - - struct BlockInfo - { - size_t m_OriginalBlockIndex; - VmaDeviceMemoryBlock* m_pBlock; - bool m_HasNonMovableAllocations; - VmaVector< AllocationInfo, VmaStlAllocator > m_Allocations; - - BlockInfo(const VkAllocationCallbacks* pAllocationCallbacks) : - m_OriginalBlockIndex(SIZE_MAX), - m_pBlock(VMA_NULL), - m_HasNonMovableAllocations(true), - m_Allocations(pAllocationCallbacks) - { - } - - void CalcHasNonMovableAllocations() - { - const size_t blockAllocCount = m_pBlock->m_pMetadata->GetAllocationCount(); - const size_t defragmentAllocCount = m_Allocations.size(); - m_HasNonMovableAllocations = blockAllocCount != defragmentAllocCount; - } - - void SortAllocationsBySizeDescending() - { - VMA_SORT(m_Allocations.begin(), m_Allocations.end(), AllocationInfoSizeGreater()); - } - - void SortAllocationsByOffsetDescending() - { - VMA_SORT(m_Allocations.begin(), m_Allocations.end(), AllocationInfoOffsetGreater()); - } - }; - - struct BlockPointerLess - { - bool operator()(const BlockInfo* pLhsBlockInfo, const VmaDeviceMemoryBlock* pRhsBlock) const - { - return pLhsBlockInfo->m_pBlock < pRhsBlock; - } - bool operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const - { - return pLhsBlockInfo->m_pBlock < pRhsBlockInfo->m_pBlock; - } - }; - - // 1. Blocks with some non-movable allocations go first. - // 2. Blocks with smaller sumFreeSize go first. - struct BlockInfoCompareMoveDestination - { - bool operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const - { - if(pLhsBlockInfo->m_HasNonMovableAllocations && !pRhsBlockInfo->m_HasNonMovableAllocations) - { - return true; - } - if(!pLhsBlockInfo->m_HasNonMovableAllocations && pRhsBlockInfo->m_HasNonMovableAllocations) - { - return false; - } - if(pLhsBlockInfo->m_pBlock->m_pMetadata->GetSumFreeSize() < pRhsBlockInfo->m_pBlock->m_pMetadata->GetSumFreeSize()) - { - return true; - } - return false; - } - }; - - typedef VmaVector< BlockInfo*, VmaStlAllocator > BlockInfoVector; - BlockInfoVector m_Blocks; - - VkResult DefragmentRound( - VmaVector< VmaDefragmentationMove, VmaStlAllocator >& moves, - VkDeviceSize maxBytesToMove, - uint32_t maxAllocationsToMove, - bool freeOldAllocations); - - size_t CalcBlocksWithNonMovableCount() const; - - static bool MoveMakesSense( - size_t dstBlockIndex, VkDeviceSize dstOffset, - size_t srcBlockIndex, VkDeviceSize srcOffset); -}; - -class VmaDefragmentationAlgorithm_Fast : public VmaDefragmentationAlgorithm -{ - VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm_Fast) -public: - VmaDefragmentationAlgorithm_Fast( - VmaAllocator hAllocator, - VmaBlockVector* pBlockVector, - uint32_t currentFrameIndex, - bool overlappingMoveSupported); - virtual ~VmaDefragmentationAlgorithm_Fast(); - - virtual void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged) { ++m_AllocationCount; } - virtual void AddAll() { m_AllAllocations = true; } - - virtual VkResult Defragment( - VmaVector< VmaDefragmentationMove, VmaStlAllocator >& moves, - VkDeviceSize maxBytesToMove, - uint32_t maxAllocationsToMove, - VmaDefragmentationFlags flags); - - virtual VkDeviceSize GetBytesMoved() const { return m_BytesMoved; } - virtual uint32_t GetAllocationsMoved() const { return m_AllocationsMoved; } - -private: - struct BlockInfo - { - size_t origBlockIndex; - }; - - class FreeSpaceDatabase - { - public: - FreeSpaceDatabase() - { - FreeSpace s = {}; - s.blockInfoIndex = SIZE_MAX; - for(size_t i = 0; i < MAX_COUNT; ++i) - { - m_FreeSpaces[i] = s; - } - } - - void Register(size_t blockInfoIndex, VkDeviceSize offset, VkDeviceSize size) - { - if(size < VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) - { - return; - } - - // Find first invalid or the smallest structure. - size_t bestIndex = SIZE_MAX; - for(size_t i = 0; i < MAX_COUNT; ++i) - { - // Empty structure. - if(m_FreeSpaces[i].blockInfoIndex == SIZE_MAX) - { - bestIndex = i; - break; - } - if(m_FreeSpaces[i].size < size && - (bestIndex == SIZE_MAX || m_FreeSpaces[bestIndex].size > m_FreeSpaces[i].size)) - { - bestIndex = i; - } - } - - if(bestIndex != SIZE_MAX) - { - m_FreeSpaces[bestIndex].blockInfoIndex = blockInfoIndex; - m_FreeSpaces[bestIndex].offset = offset; - m_FreeSpaces[bestIndex].size = size; - } - } - - bool Fetch(VkDeviceSize alignment, VkDeviceSize size, - size_t& outBlockInfoIndex, VkDeviceSize& outDstOffset) - { - size_t bestIndex = SIZE_MAX; - VkDeviceSize bestFreeSpaceAfter = 0; - for(size_t i = 0; i < MAX_COUNT; ++i) - { - // Structure is valid. - if(m_FreeSpaces[i].blockInfoIndex != SIZE_MAX) - { - const VkDeviceSize dstOffset = VmaAlignUp(m_FreeSpaces[i].offset, alignment); - // Allocation fits into this structure. - if(dstOffset + size <= m_FreeSpaces[i].offset + m_FreeSpaces[i].size) - { - const VkDeviceSize freeSpaceAfter = (m_FreeSpaces[i].offset + m_FreeSpaces[i].size) - - (dstOffset + size); - if(bestIndex == SIZE_MAX || freeSpaceAfter > bestFreeSpaceAfter) - { - bestIndex = i; - bestFreeSpaceAfter = freeSpaceAfter; - } - } - } - } - - if(bestIndex != SIZE_MAX) - { - outBlockInfoIndex = m_FreeSpaces[bestIndex].blockInfoIndex; - outDstOffset = VmaAlignUp(m_FreeSpaces[bestIndex].offset, alignment); - - if(bestFreeSpaceAfter >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) - { - // Leave this structure for remaining empty space. - const VkDeviceSize alignmentPlusSize = (outDstOffset - m_FreeSpaces[bestIndex].offset) + size; - m_FreeSpaces[bestIndex].offset += alignmentPlusSize; - m_FreeSpaces[bestIndex].size -= alignmentPlusSize; - } - else - { - // This structure becomes invalid. - m_FreeSpaces[bestIndex].blockInfoIndex = SIZE_MAX; - } - - return true; - } - - return false; - } - - private: - static const size_t MAX_COUNT = 4; - - struct FreeSpace - { - size_t blockInfoIndex; // SIZE_MAX means this structure is invalid. - VkDeviceSize offset; - VkDeviceSize size; - } m_FreeSpaces[MAX_COUNT]; - }; - - const bool m_OverlappingMoveSupported; - - uint32_t m_AllocationCount; - bool m_AllAllocations; - - VkDeviceSize m_BytesMoved; - uint32_t m_AllocationsMoved; - - VmaVector< BlockInfo, VmaStlAllocator > m_BlockInfos; - - void PreprocessMetadata(); - void PostprocessMetadata(); - void InsertSuballoc(VmaBlockMetadata_Generic* pMetadata, const VmaSuballocation& suballoc); -}; - -struct VmaBlockDefragmentationContext -{ - enum BLOCK_FLAG - { - BLOCK_FLAG_USED = 0x00000001, - }; - uint32_t flags; - VkBuffer hBuffer; -}; - -class VmaBlockVectorDefragmentationContext -{ - VMA_CLASS_NO_COPY(VmaBlockVectorDefragmentationContext) -public: - VkResult res; - bool mutexLocked; - VmaVector< VmaBlockDefragmentationContext, VmaStlAllocator > blockContexts; - VmaVector< VmaDefragmentationMove, VmaStlAllocator > defragmentationMoves; - uint32_t defragmentationMovesProcessed; - uint32_t defragmentationMovesCommitted; - bool hasDefragmentationPlan; - - VmaBlockVectorDefragmentationContext( - VmaAllocator hAllocator, - VmaPool hCustomPool, // Optional. - VmaBlockVector* pBlockVector, - uint32_t currFrameIndex); - ~VmaBlockVectorDefragmentationContext(); - - VmaPool GetCustomPool() const { return m_hCustomPool; } - VmaBlockVector* GetBlockVector() const { return m_pBlockVector; } - VmaDefragmentationAlgorithm* GetAlgorithm() const { return m_pAlgorithm; } - - void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged); - void AddAll() { m_AllAllocations = true; } - - void Begin(bool overlappingMoveSupported, VmaDefragmentationFlags flags); - -private: - const VmaAllocator m_hAllocator; - // Null if not from custom pool. - const VmaPool m_hCustomPool; - // Redundant, for convenience not to fetch from m_hCustomPool->m_BlockVector or m_hAllocator->m_pBlockVectors. - VmaBlockVector* const m_pBlockVector; - const uint32_t m_CurrFrameIndex; - // Owner of this object. - VmaDefragmentationAlgorithm* m_pAlgorithm; - - struct AllocInfo - { - VmaAllocation hAlloc; - VkBool32* pChanged; - }; - // Used between constructor and Begin. - VmaVector< AllocInfo, VmaStlAllocator > m_Allocations; - bool m_AllAllocations; -}; - -struct VmaDefragmentationContext_T -{ -private: - VMA_CLASS_NO_COPY(VmaDefragmentationContext_T) -public: - VmaDefragmentationContext_T( - VmaAllocator hAllocator, - uint32_t currFrameIndex, - uint32_t flags, - VmaDefragmentationStats* pStats); - ~VmaDefragmentationContext_T(); - - void AddPools(uint32_t poolCount, VmaPool* pPools); - void AddAllocations( - uint32_t allocationCount, - VmaAllocation* pAllocations, - VkBool32* pAllocationsChanged); - - /* - Returns: - - `VK_SUCCESS` if succeeded and object can be destroyed immediately. - - `VK_NOT_READY` if succeeded but the object must remain alive until vmaDefragmentationEnd(). - - Negative value if error occured and object can be destroyed immediately. - */ - VkResult Defragment( - VkDeviceSize maxCpuBytesToMove, uint32_t maxCpuAllocationsToMove, - VkDeviceSize maxGpuBytesToMove, uint32_t maxGpuAllocationsToMove, - VkCommandBuffer commandBuffer, VmaDefragmentationStats* pStats, VmaDefragmentationFlags flags); - - VkResult DefragmentPassBegin(VmaDefragmentationPassInfo* pInfo); - VkResult DefragmentPassEnd(); - -private: - const VmaAllocator m_hAllocator; - const uint32_t m_CurrFrameIndex; - const uint32_t m_Flags; - VmaDefragmentationStats* const m_pStats; - - VkDeviceSize m_MaxCpuBytesToMove; - uint32_t m_MaxCpuAllocationsToMove; - VkDeviceSize m_MaxGpuBytesToMove; - uint32_t m_MaxGpuAllocationsToMove; - - // Owner of these objects. - VmaBlockVectorDefragmentationContext* m_DefaultPoolContexts[VK_MAX_MEMORY_TYPES]; - // Owner of these objects. - VmaVector< VmaBlockVectorDefragmentationContext*, VmaStlAllocator > m_CustomPoolContexts; -}; - -#if VMA_RECORDING_ENABLED - -class VmaRecorder -{ -public: - VmaRecorder(); - VkResult Init(const VmaRecordSettings& settings, bool useMutex); - void WriteConfiguration( - const VkPhysicalDeviceProperties& devProps, - const VkPhysicalDeviceMemoryProperties& memProps, - uint32_t vulkanApiVersion, - bool dedicatedAllocationExtensionEnabled, - bool bindMemory2ExtensionEnabled, - bool memoryBudgetExtensionEnabled); - ~VmaRecorder(); - - void RecordCreateAllocator(uint32_t frameIndex); - void RecordDestroyAllocator(uint32_t frameIndex); - void RecordCreatePool(uint32_t frameIndex, - const VmaPoolCreateInfo& createInfo, - VmaPool pool); - void RecordDestroyPool(uint32_t frameIndex, VmaPool pool); - void RecordAllocateMemory(uint32_t frameIndex, - const VkMemoryRequirements& vkMemReq, - const VmaAllocationCreateInfo& createInfo, - VmaAllocation allocation); - void RecordAllocateMemoryPages(uint32_t frameIndex, - const VkMemoryRequirements& vkMemReq, - const VmaAllocationCreateInfo& createInfo, - uint64_t allocationCount, - const VmaAllocation* pAllocations); - void RecordAllocateMemoryForBuffer(uint32_t frameIndex, - const VkMemoryRequirements& vkMemReq, - bool requiresDedicatedAllocation, - bool prefersDedicatedAllocation, - const VmaAllocationCreateInfo& createInfo, - VmaAllocation allocation); - void RecordAllocateMemoryForImage(uint32_t frameIndex, - const VkMemoryRequirements& vkMemReq, - bool requiresDedicatedAllocation, - bool prefersDedicatedAllocation, - const VmaAllocationCreateInfo& createInfo, - VmaAllocation allocation); - void RecordFreeMemory(uint32_t frameIndex, - VmaAllocation allocation); - void RecordFreeMemoryPages(uint32_t frameIndex, - uint64_t allocationCount, - const VmaAllocation* pAllocations); - void RecordSetAllocationUserData(uint32_t frameIndex, - VmaAllocation allocation, - const void* pUserData); - void RecordCreateLostAllocation(uint32_t frameIndex, - VmaAllocation allocation); - void RecordMapMemory(uint32_t frameIndex, - VmaAllocation allocation); - void RecordUnmapMemory(uint32_t frameIndex, - VmaAllocation allocation); - void RecordFlushAllocation(uint32_t frameIndex, - VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size); - void RecordInvalidateAllocation(uint32_t frameIndex, - VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size); - void RecordCreateBuffer(uint32_t frameIndex, - const VkBufferCreateInfo& bufCreateInfo, - const VmaAllocationCreateInfo& allocCreateInfo, - VmaAllocation allocation); - void RecordCreateImage(uint32_t frameIndex, - const VkImageCreateInfo& imageCreateInfo, - const VmaAllocationCreateInfo& allocCreateInfo, - VmaAllocation allocation); - void RecordDestroyBuffer(uint32_t frameIndex, - VmaAllocation allocation); - void RecordDestroyImage(uint32_t frameIndex, - VmaAllocation allocation); - void RecordTouchAllocation(uint32_t frameIndex, - VmaAllocation allocation); - void RecordGetAllocationInfo(uint32_t frameIndex, - VmaAllocation allocation); - void RecordMakePoolAllocationsLost(uint32_t frameIndex, - VmaPool pool); - void RecordDefragmentationBegin(uint32_t frameIndex, - const VmaDefragmentationInfo2& info, - VmaDefragmentationContext ctx); - void RecordDefragmentationEnd(uint32_t frameIndex, - VmaDefragmentationContext ctx); - void RecordSetPoolName(uint32_t frameIndex, - VmaPool pool, - const char* name); - -private: - struct CallParams - { - uint32_t threadId; - double time; - }; - - class UserDataString - { - public: - UserDataString(VmaAllocationCreateFlags allocFlags, const void* pUserData); - const char* GetString() const { return m_Str; } - - private: - char m_PtrStr[17]; - const char* m_Str; - }; - - bool m_UseMutex; - VmaRecordFlags m_Flags; - FILE* m_File; - VMA_MUTEX m_FileMutex; - int64_t m_Freq; - int64_t m_StartCounter; - - void GetBasicParams(CallParams& outParams); - - // T must be a pointer type, e.g. VmaAllocation, VmaPool. - template - void PrintPointerList(uint64_t count, const T* pItems) - { - if(count) - { - fprintf(m_File, "%p", pItems[0]); - for(uint64_t i = 1; i < count; ++i) - { - fprintf(m_File, " %p", pItems[i]); - } - } - } - - void PrintPointerList(uint64_t count, const VmaAllocation* pItems); - void Flush(); -}; - -#endif // #if VMA_RECORDING_ENABLED - -/* -Thread-safe wrapper over VmaPoolAllocator free list, for allocation of VmaAllocation_T objects. -*/ -class VmaAllocationObjectAllocator -{ - VMA_CLASS_NO_COPY(VmaAllocationObjectAllocator) -public: - VmaAllocationObjectAllocator(const VkAllocationCallbacks* pAllocationCallbacks); - - VmaAllocation Allocate(); - void Free(VmaAllocation hAlloc); - -private: - VMA_MUTEX m_Mutex; - VmaPoolAllocator m_Allocator; -}; - -struct VmaCurrentBudgetData -{ - VMA_ATOMIC_UINT64 m_BlockBytes[VK_MAX_MEMORY_HEAPS]; - VMA_ATOMIC_UINT64 m_AllocationBytes[VK_MAX_MEMORY_HEAPS]; - -#if VMA_MEMORY_BUDGET - VMA_ATOMIC_UINT32 m_OperationsSinceBudgetFetch; - VMA_RW_MUTEX m_BudgetMutex; - uint64_t m_VulkanUsage[VK_MAX_MEMORY_HEAPS]; - uint64_t m_VulkanBudget[VK_MAX_MEMORY_HEAPS]; - uint64_t m_BlockBytesAtBudgetFetch[VK_MAX_MEMORY_HEAPS]; -#endif // #if VMA_MEMORY_BUDGET - - VmaCurrentBudgetData() - { - for(uint32_t heapIndex = 0; heapIndex < VK_MAX_MEMORY_HEAPS; ++heapIndex) - { - m_BlockBytes[heapIndex] = 0; - m_AllocationBytes[heapIndex] = 0; -#if VMA_MEMORY_BUDGET - m_VulkanUsage[heapIndex] = 0; - m_VulkanBudget[heapIndex] = 0; - m_BlockBytesAtBudgetFetch[heapIndex] = 0; -#endif - } - -#if VMA_MEMORY_BUDGET - m_OperationsSinceBudgetFetch = 0; -#endif - } - - void AddAllocation(uint32_t heapIndex, VkDeviceSize allocationSize) - { - m_AllocationBytes[heapIndex] += allocationSize; -#if VMA_MEMORY_BUDGET - ++m_OperationsSinceBudgetFetch; -#endif - } - - void RemoveAllocation(uint32_t heapIndex, VkDeviceSize allocationSize) - { - VMA_ASSERT(m_AllocationBytes[heapIndex] >= allocationSize); // DELME - m_AllocationBytes[heapIndex] -= allocationSize; -#if VMA_MEMORY_BUDGET - ++m_OperationsSinceBudgetFetch; -#endif - } -}; - -// Main allocator object. -struct VmaAllocator_T -{ - VMA_CLASS_NO_COPY(VmaAllocator_T) -public: - bool m_UseMutex; - uint32_t m_VulkanApiVersion; - bool m_UseKhrDedicatedAllocation; // Can be set only if m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0). - bool m_UseKhrBindMemory2; // Can be set only if m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0). - bool m_UseExtMemoryBudget; - VkDevice m_hDevice; - VkInstance m_hInstance; - bool m_AllocationCallbacksSpecified; - VkAllocationCallbacks m_AllocationCallbacks; - VmaDeviceMemoryCallbacks m_DeviceMemoryCallbacks; - VmaAllocationObjectAllocator m_AllocationObjectAllocator; - - // Each bit (1 << i) is set if HeapSizeLimit is enabled for that heap, so cannot allocate more than the heap size. - uint32_t m_HeapSizeLimitMask; - - VkPhysicalDeviceProperties m_PhysicalDeviceProperties; - VkPhysicalDeviceMemoryProperties m_MemProps; - - // Default pools. - VmaBlockVector* m_pBlockVectors[VK_MAX_MEMORY_TYPES]; - - // Each vector is sorted by memory (handle value). - typedef VmaVector< VmaAllocation, VmaStlAllocator > AllocationVectorType; - AllocationVectorType* m_pDedicatedAllocations[VK_MAX_MEMORY_TYPES]; - VMA_RW_MUTEX m_DedicatedAllocationsMutex[VK_MAX_MEMORY_TYPES]; - - VmaCurrentBudgetData m_Budget; - - VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo); - VkResult Init(const VmaAllocatorCreateInfo* pCreateInfo); - ~VmaAllocator_T(); - - const VkAllocationCallbacks* GetAllocationCallbacks() const - { - return m_AllocationCallbacksSpecified ? &m_AllocationCallbacks : 0; - } - const VmaVulkanFunctions& GetVulkanFunctions() const - { - return m_VulkanFunctions; - } - - VkDeviceSize GetBufferImageGranularity() const - { - return VMA_MAX( - static_cast(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY), - m_PhysicalDeviceProperties.limits.bufferImageGranularity); - } - - uint32_t GetMemoryHeapCount() const { return m_MemProps.memoryHeapCount; } - uint32_t GetMemoryTypeCount() const { return m_MemProps.memoryTypeCount; } - - uint32_t MemoryTypeIndexToHeapIndex(uint32_t memTypeIndex) const - { - VMA_ASSERT(memTypeIndex < m_MemProps.memoryTypeCount); - return m_MemProps.memoryTypes[memTypeIndex].heapIndex; - } - // True when specific memory type is HOST_VISIBLE but not HOST_COHERENT. - bool IsMemoryTypeNonCoherent(uint32_t memTypeIndex) const - { - return (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & (VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) == - VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; - } - // Minimum alignment for all allocations in specific memory type. - VkDeviceSize GetMemoryTypeMinAlignment(uint32_t memTypeIndex) const - { - return IsMemoryTypeNonCoherent(memTypeIndex) ? - VMA_MAX((VkDeviceSize)VMA_DEBUG_ALIGNMENT, m_PhysicalDeviceProperties.limits.nonCoherentAtomSize) : - (VkDeviceSize)VMA_DEBUG_ALIGNMENT; - } - - bool IsIntegratedGpu() const - { - return m_PhysicalDeviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU; - } - -#if VMA_RECORDING_ENABLED - VmaRecorder* GetRecorder() const { return m_pRecorder; } -#endif - - void GetBufferMemoryRequirements( - VkBuffer hBuffer, - VkMemoryRequirements& memReq, - bool& requiresDedicatedAllocation, - bool& prefersDedicatedAllocation) const; - void GetImageMemoryRequirements( - VkImage hImage, - VkMemoryRequirements& memReq, - bool& requiresDedicatedAllocation, - bool& prefersDedicatedAllocation) const; - - // Main allocation function. - VkResult AllocateMemory( - const VkMemoryRequirements& vkMemReq, - bool requiresDedicatedAllocation, - bool prefersDedicatedAllocation, - VkBuffer dedicatedBuffer, - VkImage dedicatedImage, - const VmaAllocationCreateInfo& createInfo, - VmaSuballocationType suballocType, - size_t allocationCount, - VmaAllocation* pAllocations); - - // Main deallocation function. - void FreeMemory( - size_t allocationCount, - const VmaAllocation* pAllocations); - - VkResult ResizeAllocation( - const VmaAllocation alloc, - VkDeviceSize newSize); - - void CalculateStats(VmaStats* pStats); - - void GetBudget( - VmaBudget* outBudget, uint32_t firstHeap, uint32_t heapCount); - -#if VMA_STATS_STRING_ENABLED - void PrintDetailedMap(class VmaJsonWriter& json); -#endif - - VkResult DefragmentationBegin( - const VmaDefragmentationInfo2& info, - VmaDefragmentationStats* pStats, - VmaDefragmentationContext* pContext); - VkResult DefragmentationEnd( - VmaDefragmentationContext context); - - VkResult DefragmentationPassBegin( - VmaDefragmentationPassInfo* pInfo, - VmaDefragmentationContext context); - VkResult DefragmentationPassEnd( - VmaDefragmentationContext context); - - void GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo); - bool TouchAllocation(VmaAllocation hAllocation); - - VkResult CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool); - void DestroyPool(VmaPool pool); - void GetPoolStats(VmaPool pool, VmaPoolStats* pPoolStats); - - void SetCurrentFrameIndex(uint32_t frameIndex); - uint32_t GetCurrentFrameIndex() const { return m_CurrentFrameIndex.load(); } - - void MakePoolAllocationsLost( - VmaPool hPool, - size_t* pLostAllocationCount); - VkResult CheckPoolCorruption(VmaPool hPool); - VkResult CheckCorruption(uint32_t memoryTypeBits); - - void CreateLostAllocation(VmaAllocation* pAllocation); - - // Call to Vulkan function vkAllocateMemory with accompanying bookkeeping. - VkResult AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory); - // Call to Vulkan function vkFreeMemory with accompanying bookkeeping. - void FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory); - // Call to Vulkan function vkBindBufferMemory or vkBindBufferMemory2KHR. - VkResult BindVulkanBuffer( - VkDeviceMemory memory, - VkDeviceSize memoryOffset, - VkBuffer buffer, - const void* pNext); - // Call to Vulkan function vkBindImageMemory or vkBindImageMemory2KHR. - VkResult BindVulkanImage( - VkDeviceMemory memory, - VkDeviceSize memoryOffset, - VkImage image, - const void* pNext); - - VkResult Map(VmaAllocation hAllocation, void** ppData); - void Unmap(VmaAllocation hAllocation); - - VkResult BindBufferMemory( - VmaAllocation hAllocation, - VkDeviceSize allocationLocalOffset, - VkBuffer hBuffer, - const void* pNext); - VkResult BindImageMemory( - VmaAllocation hAllocation, - VkDeviceSize allocationLocalOffset, - VkImage hImage, - const void* pNext); - - void FlushOrInvalidateAllocation( - VmaAllocation hAllocation, - VkDeviceSize offset, VkDeviceSize size, - VMA_CACHE_OPERATION op); - - void FillAllocation(const VmaAllocation hAllocation, uint8_t pattern); - - /* - Returns bit mask of memory types that can support defragmentation on GPU as - they support creation of required buffer for copy operations. - */ - uint32_t GetGpuDefragmentationMemoryTypeBits(); - -private: - VkDeviceSize m_PreferredLargeHeapBlockSize; - - VkPhysicalDevice m_PhysicalDevice; - VMA_ATOMIC_UINT32 m_CurrentFrameIndex; - VMA_ATOMIC_UINT32 m_GpuDefragmentationMemoryTypeBits; // UINT32_MAX means uninitialized. - - VMA_RW_MUTEX m_PoolsMutex; - // Protected by m_PoolsMutex. Sorted by pointer value. - VmaVector > m_Pools; - uint32_t m_NextPoolId; - - VmaVulkanFunctions m_VulkanFunctions; - -#if VMA_RECORDING_ENABLED - VmaRecorder* m_pRecorder; -#endif - - void ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions); - - VkDeviceSize CalcPreferredBlockSize(uint32_t memTypeIndex); - - VkResult AllocateMemoryOfType( - VkDeviceSize size, - VkDeviceSize alignment, - bool dedicatedAllocation, - VkBuffer dedicatedBuffer, - VkImage dedicatedImage, - const VmaAllocationCreateInfo& createInfo, - uint32_t memTypeIndex, - VmaSuballocationType suballocType, - size_t allocationCount, - VmaAllocation* pAllocations); - - // Helper function only to be used inside AllocateDedicatedMemory. - VkResult AllocateDedicatedMemoryPage( - VkDeviceSize size, - VmaSuballocationType suballocType, - uint32_t memTypeIndex, - const VkMemoryAllocateInfo& allocInfo, - bool map, - bool isUserDataString, - void* pUserData, - VmaAllocation* pAllocation); - - // Allocates and registers new VkDeviceMemory specifically for dedicated allocations. - VkResult AllocateDedicatedMemory( - VkDeviceSize size, - VmaSuballocationType suballocType, - uint32_t memTypeIndex, - bool withinBudget, - bool map, - bool isUserDataString, - void* pUserData, - VkBuffer dedicatedBuffer, - VkImage dedicatedImage, - size_t allocationCount, - VmaAllocation* pAllocations); - - void FreeDedicatedMemory(const VmaAllocation allocation); - - /* - Calculates and returns bit mask of memory types that can support defragmentation - on GPU as they support creation of required buffer for copy operations. - */ - uint32_t CalculateGpuDefragmentationMemoryTypeBits() const; - -#if VMA_MEMORY_BUDGET - void UpdateVulkanBudget(); -#endif // #if VMA_MEMORY_BUDGET -}; - -//////////////////////////////////////////////////////////////////////////////// -// Memory allocation #2 after VmaAllocator_T definition - -static void* VmaMalloc(VmaAllocator hAllocator, size_t size, size_t alignment) -{ - return VmaMalloc(&hAllocator->m_AllocationCallbacks, size, alignment); -} - -static void VmaFree(VmaAllocator hAllocator, void* ptr) -{ - VmaFree(&hAllocator->m_AllocationCallbacks, ptr); -} - -template -static T* VmaAllocate(VmaAllocator hAllocator) -{ - return (T*)VmaMalloc(hAllocator, sizeof(T), VMA_ALIGN_OF(T)); -} - -template -static T* VmaAllocateArray(VmaAllocator hAllocator, size_t count) -{ - return (T*)VmaMalloc(hAllocator, sizeof(T) * count, VMA_ALIGN_OF(T)); -} - -template -static void vma_delete(VmaAllocator hAllocator, T* ptr) -{ - if(ptr != VMA_NULL) - { - ptr->~T(); - VmaFree(hAllocator, ptr); - } -} - -template -static void vma_delete_array(VmaAllocator hAllocator, T* ptr, size_t count) -{ - if(ptr != VMA_NULL) - { - for(size_t i = count; i--; ) - ptr[i].~T(); - VmaFree(hAllocator, ptr); - } -} - -//////////////////////////////////////////////////////////////////////////////// -// VmaStringBuilder - -#if VMA_STATS_STRING_ENABLED - -class VmaStringBuilder -{ -public: - VmaStringBuilder(VmaAllocator alloc) : m_Data(VmaStlAllocator(alloc->GetAllocationCallbacks())) { } - size_t GetLength() const { return m_Data.size(); } - const char* GetData() const { return m_Data.data(); } - - void Add(char ch) { m_Data.push_back(ch); } - void Add(const char* pStr); - void AddNewLine() { Add('\n'); } - void AddNumber(uint32_t num); - void AddNumber(uint64_t num); - void AddPointer(const void* ptr); - -private: - VmaVector< char, VmaStlAllocator > m_Data; -}; - -void VmaStringBuilder::Add(const char* pStr) -{ - const size_t strLen = strlen(pStr); - if(strLen > 0) - { - const size_t oldCount = m_Data.size(); - m_Data.resize(oldCount + strLen); - memcpy(m_Data.data() + oldCount, pStr, strLen); - } -} - -void VmaStringBuilder::AddNumber(uint32_t num) -{ - char buf[11]; - buf[10] = '\0'; - char *p = &buf[10]; - do - { - *--p = '0' + (num % 10); - num /= 10; - } - while(num); - Add(p); -} - -void VmaStringBuilder::AddNumber(uint64_t num) -{ - char buf[21]; - buf[20] = '\0'; - char *p = &buf[20]; - do - { - *--p = '0' + (num % 10); - num /= 10; - } - while(num); - Add(p); -} - -void VmaStringBuilder::AddPointer(const void* ptr) -{ - char buf[21]; - VmaPtrToStr(buf, sizeof(buf), ptr); - Add(buf); -} - -#endif // #if VMA_STATS_STRING_ENABLED - -//////////////////////////////////////////////////////////////////////////////// -// VmaJsonWriter - -#if VMA_STATS_STRING_ENABLED - -class VmaJsonWriter -{ - VMA_CLASS_NO_COPY(VmaJsonWriter) -public: - VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb); - ~VmaJsonWriter(); - - void BeginObject(bool singleLine = false); - void EndObject(); - - void BeginArray(bool singleLine = false); - void EndArray(); - - void WriteString(const char* pStr); - void BeginString(const char* pStr = VMA_NULL); - void ContinueString(const char* pStr); - void ContinueString(uint32_t n); - void ContinueString(uint64_t n); - void ContinueString_Pointer(const void* ptr); - void EndString(const char* pStr = VMA_NULL); - - void WriteNumber(uint32_t n); - void WriteNumber(uint64_t n); - void WriteBool(bool b); - void WriteNull(); - -private: - static const char* const INDENT; - - enum COLLECTION_TYPE - { - COLLECTION_TYPE_OBJECT, - COLLECTION_TYPE_ARRAY, - }; - struct StackItem - { - COLLECTION_TYPE type; - uint32_t valueCount; - bool singleLineMode; - }; - - VmaStringBuilder& m_SB; - VmaVector< StackItem, VmaStlAllocator > m_Stack; - bool m_InsideString; - - void BeginValue(bool isString); - void WriteIndent(bool oneLess = false); -}; - -const char* const VmaJsonWriter::INDENT = " "; - -VmaJsonWriter::VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb) : - m_SB(sb), - m_Stack(VmaStlAllocator(pAllocationCallbacks)), - m_InsideString(false) -{ -} - -VmaJsonWriter::~VmaJsonWriter() -{ - VMA_ASSERT(!m_InsideString); - VMA_ASSERT(m_Stack.empty()); -} - -void VmaJsonWriter::BeginObject(bool singleLine) -{ - VMA_ASSERT(!m_InsideString); - - BeginValue(false); - m_SB.Add('{'); - - StackItem item; - item.type = COLLECTION_TYPE_OBJECT; - item.valueCount = 0; - item.singleLineMode = singleLine; - m_Stack.push_back(item); -} - -void VmaJsonWriter::EndObject() -{ - VMA_ASSERT(!m_InsideString); - - WriteIndent(true); - m_SB.Add('}'); - - VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_OBJECT); - m_Stack.pop_back(); -} - -void VmaJsonWriter::BeginArray(bool singleLine) -{ - VMA_ASSERT(!m_InsideString); - - BeginValue(false); - m_SB.Add('['); - - StackItem item; - item.type = COLLECTION_TYPE_ARRAY; - item.valueCount = 0; - item.singleLineMode = singleLine; - m_Stack.push_back(item); -} - -void VmaJsonWriter::EndArray() -{ - VMA_ASSERT(!m_InsideString); - - WriteIndent(true); - m_SB.Add(']'); - - VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_ARRAY); - m_Stack.pop_back(); -} - -void VmaJsonWriter::WriteString(const char* pStr) -{ - BeginString(pStr); - EndString(); -} - -void VmaJsonWriter::BeginString(const char* pStr) -{ - VMA_ASSERT(!m_InsideString); - - BeginValue(true); - m_SB.Add('"'); - m_InsideString = true; - if(pStr != VMA_NULL && pStr[0] != '\0') - { - ContinueString(pStr); - } -} - -void VmaJsonWriter::ContinueString(const char* pStr) -{ - VMA_ASSERT(m_InsideString); - - const size_t strLen = strlen(pStr); - for(size_t i = 0; i < strLen; ++i) - { - char ch = pStr[i]; - if(ch == '\\') - { - m_SB.Add("\\\\"); - } - else if(ch == '"') - { - m_SB.Add("\\\""); - } - else if(ch >= 32) - { - m_SB.Add(ch); - } - else switch(ch) - { - case '\b': - m_SB.Add("\\b"); - break; - case '\f': - m_SB.Add("\\f"); - break; - case '\n': - m_SB.Add("\\n"); - break; - case '\r': - m_SB.Add("\\r"); - break; - case '\t': - m_SB.Add("\\t"); - break; - default: - VMA_ASSERT(0 && "Character not currently supported."); - break; - } - } -} - -void VmaJsonWriter::ContinueString(uint32_t n) -{ - VMA_ASSERT(m_InsideString); - m_SB.AddNumber(n); -} - -void VmaJsonWriter::ContinueString(uint64_t n) -{ - VMA_ASSERT(m_InsideString); - m_SB.AddNumber(n); -} - -void VmaJsonWriter::ContinueString_Pointer(const void* ptr) -{ - VMA_ASSERT(m_InsideString); - m_SB.AddPointer(ptr); -} - -void VmaJsonWriter::EndString(const char* pStr) -{ - VMA_ASSERT(m_InsideString); - if(pStr != VMA_NULL && pStr[0] != '\0') - { - ContinueString(pStr); - } - m_SB.Add('"'); - m_InsideString = false; -} - -void VmaJsonWriter::WriteNumber(uint32_t n) -{ - VMA_ASSERT(!m_InsideString); - BeginValue(false); - m_SB.AddNumber(n); -} - -void VmaJsonWriter::WriteNumber(uint64_t n) -{ - VMA_ASSERT(!m_InsideString); - BeginValue(false); - m_SB.AddNumber(n); -} - -void VmaJsonWriter::WriteBool(bool b) -{ - VMA_ASSERT(!m_InsideString); - BeginValue(false); - m_SB.Add(b ? "true" : "false"); -} - -void VmaJsonWriter::WriteNull() -{ - VMA_ASSERT(!m_InsideString); - BeginValue(false); - m_SB.Add("null"); -} - -void VmaJsonWriter::BeginValue(bool isString) -{ - if(!m_Stack.empty()) - { - StackItem& currItem = m_Stack.back(); - if(currItem.type == COLLECTION_TYPE_OBJECT && - currItem.valueCount % 2 == 0) - { - VMA_ASSERT(isString); - } - - if(currItem.type == COLLECTION_TYPE_OBJECT && - currItem.valueCount % 2 != 0) - { - m_SB.Add(": "); - } - else if(currItem.valueCount > 0) - { - m_SB.Add(", "); - WriteIndent(); - } - else - { - WriteIndent(); - } - ++currItem.valueCount; - } -} - -void VmaJsonWriter::WriteIndent(bool oneLess) -{ - if(!m_Stack.empty() && !m_Stack.back().singleLineMode) - { - m_SB.AddNewLine(); - - size_t count = m_Stack.size(); - if(count > 0 && oneLess) - { - --count; - } - for(size_t i = 0; i < count; ++i) - { - m_SB.Add(INDENT); - } - } -} - -#endif // #if VMA_STATS_STRING_ENABLED - -//////////////////////////////////////////////////////////////////////////////// - -void VmaAllocation_T::SetUserData(VmaAllocator hAllocator, void* pUserData) -{ - if(IsUserDataString()) - { - VMA_ASSERT(pUserData == VMA_NULL || pUserData != m_pUserData); - - FreeUserDataString(hAllocator); - - if(pUserData != VMA_NULL) - { - m_pUserData = VmaCreateStringCopy(hAllocator->GetAllocationCallbacks(), (const char*)pUserData); - } - } - else - { - m_pUserData = pUserData; - } -} - -void VmaAllocation_T::ChangeBlockAllocation( - VmaAllocator hAllocator, - VmaDeviceMemoryBlock* block, - VkDeviceSize offset) -{ - VMA_ASSERT(block != VMA_NULL); - VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK); - - // Move mapping reference counter from old block to new block. - if(block != m_BlockAllocation.m_Block) - { - uint32_t mapRefCount = m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP; - if(IsPersistentMap()) - ++mapRefCount; - m_BlockAllocation.m_Block->Unmap(hAllocator, mapRefCount); - block->Map(hAllocator, mapRefCount, VMA_NULL); - } - - m_BlockAllocation.m_Block = block; - m_BlockAllocation.m_Offset = offset; -} - -void VmaAllocation_T::ChangeOffset(VkDeviceSize newOffset) -{ - VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK); - m_BlockAllocation.m_Offset = newOffset; -} - -VkDeviceSize VmaAllocation_T::GetOffset() const -{ - switch(m_Type) - { - case ALLOCATION_TYPE_BLOCK: - return m_BlockAllocation.m_Offset; - case ALLOCATION_TYPE_DEDICATED: - return 0; - default: - VMA_ASSERT(0); - return 0; - } -} - -VkDeviceMemory VmaAllocation_T::GetMemory() const -{ - switch(m_Type) - { - case ALLOCATION_TYPE_BLOCK: - return m_BlockAllocation.m_Block->GetDeviceMemory(); - case ALLOCATION_TYPE_DEDICATED: - return m_DedicatedAllocation.m_hMemory; - default: - VMA_ASSERT(0); - return VK_NULL_HANDLE; - } -} - -void* VmaAllocation_T::GetMappedData() const -{ - switch(m_Type) - { - case ALLOCATION_TYPE_BLOCK: - if(m_MapCount != 0) - { - void* pBlockData = m_BlockAllocation.m_Block->GetMappedData(); - VMA_ASSERT(pBlockData != VMA_NULL); - return (char*)pBlockData + m_BlockAllocation.m_Offset; - } - else - { - return VMA_NULL; - } - break; - case ALLOCATION_TYPE_DEDICATED: - VMA_ASSERT((m_DedicatedAllocation.m_pMappedData != VMA_NULL) == (m_MapCount != 0)); - return m_DedicatedAllocation.m_pMappedData; - default: - VMA_ASSERT(0); - return VMA_NULL; - } -} - -bool VmaAllocation_T::CanBecomeLost() const -{ - switch(m_Type) - { - case ALLOCATION_TYPE_BLOCK: - return m_BlockAllocation.m_CanBecomeLost; - case ALLOCATION_TYPE_DEDICATED: - return false; - default: - VMA_ASSERT(0); - return false; - } -} - -bool VmaAllocation_T::MakeLost(uint32_t currentFrameIndex, uint32_t frameInUseCount) -{ - VMA_ASSERT(CanBecomeLost()); - - /* - Warning: This is a carefully designed algorithm. - Do not modify unless you really know what you're doing :) - */ - uint32_t localLastUseFrameIndex = GetLastUseFrameIndex(); - for(;;) - { - if(localLastUseFrameIndex == VMA_FRAME_INDEX_LOST) - { - VMA_ASSERT(0); - return false; - } - else if(localLastUseFrameIndex + frameInUseCount >= currentFrameIndex) - { - return false; - } - else // Last use time earlier than current time. - { - if(CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, VMA_FRAME_INDEX_LOST)) - { - // Setting hAllocation.LastUseFrameIndex atomic to VMA_FRAME_INDEX_LOST is enough to mark it as LOST. - // Calling code just needs to unregister this allocation in owning VmaDeviceMemoryBlock. - return true; - } - } - } -} - -#if VMA_STATS_STRING_ENABLED - -// Correspond to values of enum VmaSuballocationType. -static const char* VMA_SUBALLOCATION_TYPE_NAMES[] = { - "FREE", - "UNKNOWN", - "BUFFER", - "IMAGE_UNKNOWN", - "IMAGE_LINEAR", - "IMAGE_OPTIMAL", -}; - -void VmaAllocation_T::PrintParameters(class VmaJsonWriter& json) const -{ - json.WriteString("Type"); - json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[m_SuballocationType]); - - json.WriteString("Size"); - json.WriteNumber(m_Size); - - if(m_pUserData != VMA_NULL) - { - json.WriteString("UserData"); - if(IsUserDataString()) - { - json.WriteString((const char*)m_pUserData); - } - else - { - json.BeginString(); - json.ContinueString_Pointer(m_pUserData); - json.EndString(); - } - } - - json.WriteString("CreationFrameIndex"); - json.WriteNumber(m_CreationFrameIndex); - - json.WriteString("LastUseFrameIndex"); - json.WriteNumber(GetLastUseFrameIndex()); - - if(m_BufferImageUsage != 0) - { - json.WriteString("Usage"); - json.WriteNumber(m_BufferImageUsage); - } -} - -#endif - -void VmaAllocation_T::FreeUserDataString(VmaAllocator hAllocator) -{ - VMA_ASSERT(IsUserDataString()); - VmaFreeString(hAllocator->GetAllocationCallbacks(), (char*)m_pUserData); - m_pUserData = VMA_NULL; -} - -void VmaAllocation_T::BlockAllocMap() -{ - VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK); - - if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) < 0x7F) - { - ++m_MapCount; - } - else - { - VMA_ASSERT(0 && "Allocation mapped too many times simultaneously."); - } -} - -void VmaAllocation_T::BlockAllocUnmap() -{ - VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK); - - if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) != 0) - { - --m_MapCount; - } - else - { - VMA_ASSERT(0 && "Unmapping allocation not previously mapped."); - } -} - -VkResult VmaAllocation_T::DedicatedAllocMap(VmaAllocator hAllocator, void** ppData) -{ - VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED); - - if(m_MapCount != 0) - { - if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) < 0x7F) - { - VMA_ASSERT(m_DedicatedAllocation.m_pMappedData != VMA_NULL); - *ppData = m_DedicatedAllocation.m_pMappedData; - ++m_MapCount; - return VK_SUCCESS; - } - else - { - VMA_ASSERT(0 && "Dedicated allocation mapped too many times simultaneously."); - return VK_ERROR_MEMORY_MAP_FAILED; - } - } - else - { - VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)( - hAllocator->m_hDevice, - m_DedicatedAllocation.m_hMemory, - 0, // offset - VK_WHOLE_SIZE, - 0, // flags - ppData); - if(result == VK_SUCCESS) - { - m_DedicatedAllocation.m_pMappedData = *ppData; - m_MapCount = 1; - } - return result; - } -} - -void VmaAllocation_T::DedicatedAllocUnmap(VmaAllocator hAllocator) -{ - VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED); - - if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) != 0) - { - --m_MapCount; - if(m_MapCount == 0) - { - m_DedicatedAllocation.m_pMappedData = VMA_NULL; - (*hAllocator->GetVulkanFunctions().vkUnmapMemory)( - hAllocator->m_hDevice, - m_DedicatedAllocation.m_hMemory); - } - } - else - { - VMA_ASSERT(0 && "Unmapping dedicated allocation not previously mapped."); - } -} - -#if VMA_STATS_STRING_ENABLED - -static void VmaPrintStatInfo(VmaJsonWriter& json, const VmaStatInfo& stat) -{ - json.BeginObject(); - - json.WriteString("Blocks"); - json.WriteNumber(stat.blockCount); - - json.WriteString("Allocations"); - json.WriteNumber(stat.allocationCount); - - json.WriteString("UnusedRanges"); - json.WriteNumber(stat.unusedRangeCount); - - json.WriteString("UsedBytes"); - json.WriteNumber(stat.usedBytes); - - json.WriteString("UnusedBytes"); - json.WriteNumber(stat.unusedBytes); - - if(stat.allocationCount > 1) - { - json.WriteString("AllocationSize"); - json.BeginObject(true); - json.WriteString("Min"); - json.WriteNumber(stat.allocationSizeMin); - json.WriteString("Avg"); - json.WriteNumber(stat.allocationSizeAvg); - json.WriteString("Max"); - json.WriteNumber(stat.allocationSizeMax); - json.EndObject(); - } - - if(stat.unusedRangeCount > 1) - { - json.WriteString("UnusedRangeSize"); - json.BeginObject(true); - json.WriteString("Min"); - json.WriteNumber(stat.unusedRangeSizeMin); - json.WriteString("Avg"); - json.WriteNumber(stat.unusedRangeSizeAvg); - json.WriteString("Max"); - json.WriteNumber(stat.unusedRangeSizeMax); - json.EndObject(); - } - - json.EndObject(); -} - -#endif // #if VMA_STATS_STRING_ENABLED - -struct VmaSuballocationItemSizeLess -{ - bool operator()( - const VmaSuballocationList::iterator lhs, - const VmaSuballocationList::iterator rhs) const - { - return lhs->size < rhs->size; - } - bool operator()( - const VmaSuballocationList::iterator lhs, - VkDeviceSize rhsSize) const - { - return lhs->size < rhsSize; - } -}; - - -//////////////////////////////////////////////////////////////////////////////// -// class VmaBlockMetadata - -VmaBlockMetadata::VmaBlockMetadata(VmaAllocator hAllocator) : - m_Size(0), - m_pAllocationCallbacks(hAllocator->GetAllocationCallbacks()) -{ -} - -#if VMA_STATS_STRING_ENABLED - -void VmaBlockMetadata::PrintDetailedMap_Begin(class VmaJsonWriter& json, - VkDeviceSize unusedBytes, - size_t allocationCount, - size_t unusedRangeCount) const -{ - json.BeginObject(); - - json.WriteString("TotalBytes"); - json.WriteNumber(GetSize()); - - json.WriteString("UnusedBytes"); - json.WriteNumber(unusedBytes); - - json.WriteString("Allocations"); - json.WriteNumber((uint64_t)allocationCount); - - json.WriteString("UnusedRanges"); - json.WriteNumber((uint64_t)unusedRangeCount); - - json.WriteString("Suballocations"); - json.BeginArray(); -} - -void VmaBlockMetadata::PrintDetailedMap_Allocation(class VmaJsonWriter& json, - VkDeviceSize offset, - VmaAllocation hAllocation) const -{ - json.BeginObject(true); - - json.WriteString("Offset"); - json.WriteNumber(offset); - - hAllocation->PrintParameters(json); - - json.EndObject(); -} - -void VmaBlockMetadata::PrintDetailedMap_UnusedRange(class VmaJsonWriter& json, - VkDeviceSize offset, - VkDeviceSize size) const -{ - json.BeginObject(true); - - json.WriteString("Offset"); - json.WriteNumber(offset); - - json.WriteString("Type"); - json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[VMA_SUBALLOCATION_TYPE_FREE]); - - json.WriteString("Size"); - json.WriteNumber(size); - - json.EndObject(); -} - -void VmaBlockMetadata::PrintDetailedMap_End(class VmaJsonWriter& json) const -{ - json.EndArray(); - json.EndObject(); -} - -#endif // #if VMA_STATS_STRING_ENABLED - -//////////////////////////////////////////////////////////////////////////////// -// class VmaBlockMetadata_Generic - -VmaBlockMetadata_Generic::VmaBlockMetadata_Generic(VmaAllocator hAllocator) : - VmaBlockMetadata(hAllocator), - m_FreeCount(0), - m_SumFreeSize(0), - m_Suballocations(VmaStlAllocator(hAllocator->GetAllocationCallbacks())), - m_FreeSuballocationsBySize(VmaStlAllocator(hAllocator->GetAllocationCallbacks())) -{ -} - -VmaBlockMetadata_Generic::~VmaBlockMetadata_Generic() -{ -} - -void VmaBlockMetadata_Generic::Init(VkDeviceSize size) -{ - VmaBlockMetadata::Init(size); - - m_FreeCount = 1; - m_SumFreeSize = size; - - VmaSuballocation suballoc = {}; - suballoc.offset = 0; - suballoc.size = size; - suballoc.type = VMA_SUBALLOCATION_TYPE_FREE; - suballoc.hAllocation = VK_NULL_HANDLE; - - VMA_ASSERT(size > VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER); - m_Suballocations.push_back(suballoc); - VmaSuballocationList::iterator suballocItem = m_Suballocations.end(); - --suballocItem; - m_FreeSuballocationsBySize.push_back(suballocItem); -} - -bool VmaBlockMetadata_Generic::Validate() const -{ - VMA_VALIDATE(!m_Suballocations.empty()); - - // Expected offset of new suballocation as calculated from previous ones. - VkDeviceSize calculatedOffset = 0; - // Expected number of free suballocations as calculated from traversing their list. - uint32_t calculatedFreeCount = 0; - // Expected sum size of free suballocations as calculated from traversing their list. - VkDeviceSize calculatedSumFreeSize = 0; - // Expected number of free suballocations that should be registered in - // m_FreeSuballocationsBySize calculated from traversing their list. - size_t freeSuballocationsToRegister = 0; - // True if previous visited suballocation was free. - bool prevFree = false; - - for(VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin(); - suballocItem != m_Suballocations.cend(); - ++suballocItem) - { - const VmaSuballocation& subAlloc = *suballocItem; - - // Actual offset of this suballocation doesn't match expected one. - VMA_VALIDATE(subAlloc.offset == calculatedOffset); - - const bool currFree = (subAlloc.type == VMA_SUBALLOCATION_TYPE_FREE); - // Two adjacent free suballocations are invalid. They should be merged. - VMA_VALIDATE(!prevFree || !currFree); - - VMA_VALIDATE(currFree == (subAlloc.hAllocation == VK_NULL_HANDLE)); - - if(currFree) - { - calculatedSumFreeSize += subAlloc.size; - ++calculatedFreeCount; - if(subAlloc.size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) - { - ++freeSuballocationsToRegister; - } - - // Margin required between allocations - every free space must be at least that large. - VMA_VALIDATE(subAlloc.size >= VMA_DEBUG_MARGIN); - } - else - { - VMA_VALIDATE(subAlloc.hAllocation->GetOffset() == subAlloc.offset); - VMA_VALIDATE(subAlloc.hAllocation->GetSize() == subAlloc.size); - - // Margin required between allocations - previous allocation must be free. - VMA_VALIDATE(VMA_DEBUG_MARGIN == 0 || prevFree); - } - - calculatedOffset += subAlloc.size; - prevFree = currFree; - } - - // Number of free suballocations registered in m_FreeSuballocationsBySize doesn't - // match expected one. - VMA_VALIDATE(m_FreeSuballocationsBySize.size() == freeSuballocationsToRegister); - - VkDeviceSize lastSize = 0; - for(size_t i = 0; i < m_FreeSuballocationsBySize.size(); ++i) - { - VmaSuballocationList::iterator suballocItem = m_FreeSuballocationsBySize[i]; - - // Only free suballocations can be registered in m_FreeSuballocationsBySize. - VMA_VALIDATE(suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE); - // They must be sorted by size ascending. - VMA_VALIDATE(suballocItem->size >= lastSize); - - lastSize = suballocItem->size; - } - - // Check if totals match calculacted values. - VMA_VALIDATE(ValidateFreeSuballocationList()); - VMA_VALIDATE(calculatedOffset == GetSize()); - VMA_VALIDATE(calculatedSumFreeSize == m_SumFreeSize); - VMA_VALIDATE(calculatedFreeCount == m_FreeCount); - - return true; -} - -VkDeviceSize VmaBlockMetadata_Generic::GetUnusedRangeSizeMax() const -{ - if(!m_FreeSuballocationsBySize.empty()) - { - return m_FreeSuballocationsBySize.back()->size; - } - else - { - return 0; - } -} - -bool VmaBlockMetadata_Generic::IsEmpty() const -{ - return (m_Suballocations.size() == 1) && (m_FreeCount == 1); -} - -void VmaBlockMetadata_Generic::CalcAllocationStatInfo(VmaStatInfo& outInfo) const -{ - outInfo.blockCount = 1; - - const uint32_t rangeCount = (uint32_t)m_Suballocations.size(); - outInfo.allocationCount = rangeCount - m_FreeCount; - outInfo.unusedRangeCount = m_FreeCount; - - outInfo.unusedBytes = m_SumFreeSize; - outInfo.usedBytes = GetSize() - outInfo.unusedBytes; - - outInfo.allocationSizeMin = UINT64_MAX; - outInfo.allocationSizeMax = 0; - outInfo.unusedRangeSizeMin = UINT64_MAX; - outInfo.unusedRangeSizeMax = 0; - - for(VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin(); - suballocItem != m_Suballocations.cend(); - ++suballocItem) - { - const VmaSuballocation& suballoc = *suballocItem; - if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) - { - outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size); - outInfo.allocationSizeMax = VMA_MAX(outInfo.allocationSizeMax, suballoc.size); - } - else - { - outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, suballoc.size); - outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, suballoc.size); - } - } -} - -void VmaBlockMetadata_Generic::AddPoolStats(VmaPoolStats& inoutStats) const -{ - const uint32_t rangeCount = (uint32_t)m_Suballocations.size(); - - inoutStats.size += GetSize(); - inoutStats.unusedSize += m_SumFreeSize; - inoutStats.allocationCount += rangeCount - m_FreeCount; - inoutStats.unusedRangeCount += m_FreeCount; - inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, GetUnusedRangeSizeMax()); -} - -#if VMA_STATS_STRING_ENABLED - -void VmaBlockMetadata_Generic::PrintDetailedMap(class VmaJsonWriter& json) const -{ - PrintDetailedMap_Begin(json, - m_SumFreeSize, // unusedBytes - m_Suballocations.size() - (size_t)m_FreeCount, // allocationCount - m_FreeCount); // unusedRangeCount - - size_t i = 0; - for(VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin(); - suballocItem != m_Suballocations.cend(); - ++suballocItem, ++i) - { - if(suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE) - { - PrintDetailedMap_UnusedRange(json, suballocItem->offset, suballocItem->size); - } - else - { - PrintDetailedMap_Allocation(json, suballocItem->offset, suballocItem->hAllocation); - } - } - - PrintDetailedMap_End(json); -} - -#endif // #if VMA_STATS_STRING_ENABLED - -bool VmaBlockMetadata_Generic::CreateAllocationRequest( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VkDeviceSize bufferImageGranularity, - VkDeviceSize allocSize, - VkDeviceSize allocAlignment, - bool upperAddress, - VmaSuballocationType allocType, - bool canMakeOtherLost, - uint32_t strategy, - VmaAllocationRequest* pAllocationRequest) -{ - VMA_ASSERT(allocSize > 0); - VMA_ASSERT(!upperAddress); - VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE); - VMA_ASSERT(pAllocationRequest != VMA_NULL); - VMA_HEAVY_ASSERT(Validate()); - - pAllocationRequest->type = VmaAllocationRequestType::Normal; - - // There is not enough total free space in this block to fullfill the request: Early return. - if(canMakeOtherLost == false && - m_SumFreeSize < allocSize + 2 * VMA_DEBUG_MARGIN) - { - return false; - } - - // New algorithm, efficiently searching freeSuballocationsBySize. - const size_t freeSuballocCount = m_FreeSuballocationsBySize.size(); - if(freeSuballocCount > 0) - { - if(strategy == VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT) - { - // Find first free suballocation with size not less than allocSize + 2 * VMA_DEBUG_MARGIN. - VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess( - m_FreeSuballocationsBySize.data(), - m_FreeSuballocationsBySize.data() + freeSuballocCount, - allocSize + 2 * VMA_DEBUG_MARGIN, - VmaSuballocationItemSizeLess()); - size_t index = it - m_FreeSuballocationsBySize.data(); - for(; index < freeSuballocCount; ++index) - { - if(CheckAllocation( - currentFrameIndex, - frameInUseCount, - bufferImageGranularity, - allocSize, - allocAlignment, - allocType, - m_FreeSuballocationsBySize[index], - false, // canMakeOtherLost - &pAllocationRequest->offset, - &pAllocationRequest->itemsToMakeLostCount, - &pAllocationRequest->sumFreeSize, - &pAllocationRequest->sumItemSize)) - { - pAllocationRequest->item = m_FreeSuballocationsBySize[index]; - return true; - } - } - } - else if(strategy == VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET) - { - for(VmaSuballocationList::iterator it = m_Suballocations.begin(); - it != m_Suballocations.end(); - ++it) - { - if(it->type == VMA_SUBALLOCATION_TYPE_FREE && CheckAllocation( - currentFrameIndex, - frameInUseCount, - bufferImageGranularity, - allocSize, - allocAlignment, - allocType, - it, - false, // canMakeOtherLost - &pAllocationRequest->offset, - &pAllocationRequest->itemsToMakeLostCount, - &pAllocationRequest->sumFreeSize, - &pAllocationRequest->sumItemSize)) - { - pAllocationRequest->item = it; - return true; - } - } - } - else // WORST_FIT, FIRST_FIT - { - // Search staring from biggest suballocations. - for(size_t index = freeSuballocCount; index--; ) - { - if(CheckAllocation( - currentFrameIndex, - frameInUseCount, - bufferImageGranularity, - allocSize, - allocAlignment, - allocType, - m_FreeSuballocationsBySize[index], - false, // canMakeOtherLost - &pAllocationRequest->offset, - &pAllocationRequest->itemsToMakeLostCount, - &pAllocationRequest->sumFreeSize, - &pAllocationRequest->sumItemSize)) - { - pAllocationRequest->item = m_FreeSuballocationsBySize[index]; - return true; - } - } - } - } - - if(canMakeOtherLost) - { - // Brute-force algorithm. TODO: Come up with something better. - - bool found = false; - VmaAllocationRequest tmpAllocRequest = {}; - tmpAllocRequest.type = VmaAllocationRequestType::Normal; - for(VmaSuballocationList::iterator suballocIt = m_Suballocations.begin(); - suballocIt != m_Suballocations.end(); - ++suballocIt) - { - if(suballocIt->type == VMA_SUBALLOCATION_TYPE_FREE || - suballocIt->hAllocation->CanBecomeLost()) - { - if(CheckAllocation( - currentFrameIndex, - frameInUseCount, - bufferImageGranularity, - allocSize, - allocAlignment, - allocType, - suballocIt, - canMakeOtherLost, - &tmpAllocRequest.offset, - &tmpAllocRequest.itemsToMakeLostCount, - &tmpAllocRequest.sumFreeSize, - &tmpAllocRequest.sumItemSize)) - { - if(strategy == VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT) - { - *pAllocationRequest = tmpAllocRequest; - pAllocationRequest->item = suballocIt; - break; - } - if(!found || tmpAllocRequest.CalcCost() < pAllocationRequest->CalcCost()) - { - *pAllocationRequest = tmpAllocRequest; - pAllocationRequest->item = suballocIt; - found = true; - } - } - } - } - - return found; - } - - return false; -} - -bool VmaBlockMetadata_Generic::MakeRequestedAllocationsLost( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VmaAllocationRequest* pAllocationRequest) -{ - VMA_ASSERT(pAllocationRequest && pAllocationRequest->type == VmaAllocationRequestType::Normal); - - while(pAllocationRequest->itemsToMakeLostCount > 0) - { - if(pAllocationRequest->item->type == VMA_SUBALLOCATION_TYPE_FREE) - { - ++pAllocationRequest->item; - } - VMA_ASSERT(pAllocationRequest->item != m_Suballocations.end()); - VMA_ASSERT(pAllocationRequest->item->hAllocation != VK_NULL_HANDLE); - VMA_ASSERT(pAllocationRequest->item->hAllocation->CanBecomeLost()); - if(pAllocationRequest->item->hAllocation->MakeLost(currentFrameIndex, frameInUseCount)) - { - pAllocationRequest->item = FreeSuballocation(pAllocationRequest->item); - --pAllocationRequest->itemsToMakeLostCount; - } - else - { - return false; - } - } - - VMA_HEAVY_ASSERT(Validate()); - VMA_ASSERT(pAllocationRequest->item != m_Suballocations.end()); - VMA_ASSERT(pAllocationRequest->item->type == VMA_SUBALLOCATION_TYPE_FREE); - - return true; -} - -uint32_t VmaBlockMetadata_Generic::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount) -{ - uint32_t lostAllocationCount = 0; - for(VmaSuballocationList::iterator it = m_Suballocations.begin(); - it != m_Suballocations.end(); - ++it) - { - if(it->type != VMA_SUBALLOCATION_TYPE_FREE && - it->hAllocation->CanBecomeLost() && - it->hAllocation->MakeLost(currentFrameIndex, frameInUseCount)) - { - it = FreeSuballocation(it); - ++lostAllocationCount; - } - } - return lostAllocationCount; -} - -VkResult VmaBlockMetadata_Generic::CheckCorruption(const void* pBlockData) -{ - for(VmaSuballocationList::iterator it = m_Suballocations.begin(); - it != m_Suballocations.end(); - ++it) - { - if(it->type != VMA_SUBALLOCATION_TYPE_FREE) - { - if(!VmaValidateMagicValue(pBlockData, it->offset - VMA_DEBUG_MARGIN)) - { - VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE VALIDATED ALLOCATION!"); - return VK_ERROR_VALIDATION_FAILED_EXT; - } - if(!VmaValidateMagicValue(pBlockData, it->offset + it->size)) - { - VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!"); - return VK_ERROR_VALIDATION_FAILED_EXT; - } - } - } - - return VK_SUCCESS; -} - -void VmaBlockMetadata_Generic::Alloc( - const VmaAllocationRequest& request, - VmaSuballocationType type, - VkDeviceSize allocSize, - VmaAllocation hAllocation) -{ - VMA_ASSERT(request.type == VmaAllocationRequestType::Normal); - VMA_ASSERT(request.item != m_Suballocations.end()); - VmaSuballocation& suballoc = *request.item; - // Given suballocation is a free block. - VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); - // Given offset is inside this suballocation. - VMA_ASSERT(request.offset >= suballoc.offset); - const VkDeviceSize paddingBegin = request.offset - suballoc.offset; - VMA_ASSERT(suballoc.size >= paddingBegin + allocSize); - const VkDeviceSize paddingEnd = suballoc.size - paddingBegin - allocSize; - - // Unregister this free suballocation from m_FreeSuballocationsBySize and update - // it to become used. - UnregisterFreeSuballocation(request.item); - - suballoc.offset = request.offset; - suballoc.size = allocSize; - suballoc.type = type; - suballoc.hAllocation = hAllocation; - - // If there are any free bytes remaining at the end, insert new free suballocation after current one. - if(paddingEnd) - { - VmaSuballocation paddingSuballoc = {}; - paddingSuballoc.offset = request.offset + allocSize; - paddingSuballoc.size = paddingEnd; - paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE; - VmaSuballocationList::iterator next = request.item; - ++next; - const VmaSuballocationList::iterator paddingEndItem = - m_Suballocations.insert(next, paddingSuballoc); - RegisterFreeSuballocation(paddingEndItem); - } - - // If there are any free bytes remaining at the beginning, insert new free suballocation before current one. - if(paddingBegin) - { - VmaSuballocation paddingSuballoc = {}; - paddingSuballoc.offset = request.offset - paddingBegin; - paddingSuballoc.size = paddingBegin; - paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE; - const VmaSuballocationList::iterator paddingBeginItem = - m_Suballocations.insert(request.item, paddingSuballoc); - RegisterFreeSuballocation(paddingBeginItem); - } - - // Update totals. - m_FreeCount = m_FreeCount - 1; - if(paddingBegin > 0) - { - ++m_FreeCount; - } - if(paddingEnd > 0) - { - ++m_FreeCount; - } - m_SumFreeSize -= allocSize; -} - -void VmaBlockMetadata_Generic::Free(const VmaAllocation allocation) -{ - for(VmaSuballocationList::iterator suballocItem = m_Suballocations.begin(); - suballocItem != m_Suballocations.end(); - ++suballocItem) - { - VmaSuballocation& suballoc = *suballocItem; - if(suballoc.hAllocation == allocation) - { - FreeSuballocation(suballocItem); - VMA_HEAVY_ASSERT(Validate()); - return; - } - } - VMA_ASSERT(0 && "Not found!"); -} - -void VmaBlockMetadata_Generic::FreeAtOffset(VkDeviceSize offset) -{ - for(VmaSuballocationList::iterator suballocItem = m_Suballocations.begin(); - suballocItem != m_Suballocations.end(); - ++suballocItem) - { - VmaSuballocation& suballoc = *suballocItem; - if(suballoc.offset == offset) - { - FreeSuballocation(suballocItem); - return; - } - } - VMA_ASSERT(0 && "Not found!"); -} - -bool VmaBlockMetadata_Generic::ValidateFreeSuballocationList() const -{ - VkDeviceSize lastSize = 0; - for(size_t i = 0, count = m_FreeSuballocationsBySize.size(); i < count; ++i) - { - const VmaSuballocationList::iterator it = m_FreeSuballocationsBySize[i]; - - VMA_VALIDATE(it->type == VMA_SUBALLOCATION_TYPE_FREE); - VMA_VALIDATE(it->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER); - VMA_VALIDATE(it->size >= lastSize); - lastSize = it->size; - } - return true; -} - -bool VmaBlockMetadata_Generic::CheckAllocation( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VkDeviceSize bufferImageGranularity, - VkDeviceSize allocSize, - VkDeviceSize allocAlignment, - VmaSuballocationType allocType, - VmaSuballocationList::const_iterator suballocItem, - bool canMakeOtherLost, - VkDeviceSize* pOffset, - size_t* itemsToMakeLostCount, - VkDeviceSize* pSumFreeSize, - VkDeviceSize* pSumItemSize) const -{ - VMA_ASSERT(allocSize > 0); - VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE); - VMA_ASSERT(suballocItem != m_Suballocations.cend()); - VMA_ASSERT(pOffset != VMA_NULL); - - *itemsToMakeLostCount = 0; - *pSumFreeSize = 0; - *pSumItemSize = 0; - - if(canMakeOtherLost) - { - if(suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE) - { - *pSumFreeSize = suballocItem->size; - } - else - { - if(suballocItem->hAllocation->CanBecomeLost() && - suballocItem->hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex) - { - ++*itemsToMakeLostCount; - *pSumItemSize = suballocItem->size; - } - else - { - return false; - } - } - - // Remaining size is too small for this request: Early return. - if(GetSize() - suballocItem->offset < allocSize) - { - return false; - } - - // Start from offset equal to beginning of this suballocation. - *pOffset = suballocItem->offset; - - // Apply VMA_DEBUG_MARGIN at the beginning. - if(VMA_DEBUG_MARGIN > 0) - { - *pOffset += VMA_DEBUG_MARGIN; - } - - // Apply alignment. - *pOffset = VmaAlignUp(*pOffset, allocAlignment); - - // Check previous suballocations for BufferImageGranularity conflicts. - // Make bigger alignment if necessary. - if(bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment) - { - bool bufferImageGranularityConflict = false; - VmaSuballocationList::const_iterator prevSuballocItem = suballocItem; - while(prevSuballocItem != m_Suballocations.cbegin()) - { - --prevSuballocItem; - const VmaSuballocation& prevSuballoc = *prevSuballocItem; - if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, *pOffset, bufferImageGranularity)) - { - if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) - { - bufferImageGranularityConflict = true; - break; - } - } - else - // Already on previous page. - break; - } - if(bufferImageGranularityConflict) - { - *pOffset = VmaAlignUp(*pOffset, bufferImageGranularity); - } - } - - // Now that we have final *pOffset, check if we are past suballocItem. - // If yes, return false - this function should be called for another suballocItem as starting point. - if(*pOffset >= suballocItem->offset + suballocItem->size) - { - return false; - } - - // Calculate padding at the beginning based on current offset. - const VkDeviceSize paddingBegin = *pOffset - suballocItem->offset; - - // Calculate required margin at the end. - const VkDeviceSize requiredEndMargin = VMA_DEBUG_MARGIN; - - const VkDeviceSize totalSize = paddingBegin + allocSize + requiredEndMargin; - // Another early return check. - if(suballocItem->offset + totalSize > GetSize()) - { - return false; - } - - // Advance lastSuballocItem until desired size is reached. - // Update itemsToMakeLostCount. - VmaSuballocationList::const_iterator lastSuballocItem = suballocItem; - if(totalSize > suballocItem->size) - { - VkDeviceSize remainingSize = totalSize - suballocItem->size; - while(remainingSize > 0) - { - ++lastSuballocItem; - if(lastSuballocItem == m_Suballocations.cend()) - { - return false; - } - if(lastSuballocItem->type == VMA_SUBALLOCATION_TYPE_FREE) - { - *pSumFreeSize += lastSuballocItem->size; - } - else - { - VMA_ASSERT(lastSuballocItem->hAllocation != VK_NULL_HANDLE); - if(lastSuballocItem->hAllocation->CanBecomeLost() && - lastSuballocItem->hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex) - { - ++*itemsToMakeLostCount; - *pSumItemSize += lastSuballocItem->size; - } - else - { - return false; - } - } - remainingSize = (lastSuballocItem->size < remainingSize) ? - remainingSize - lastSuballocItem->size : 0; - } - } - - // Check next suballocations for BufferImageGranularity conflicts. - // If conflict exists, we must mark more allocations lost or fail. - if(bufferImageGranularity > 1 && (allocSize % bufferImageGranularity || *pOffset % bufferImageGranularity)) - { - VmaSuballocationList::const_iterator nextSuballocItem = lastSuballocItem; - ++nextSuballocItem; - while(nextSuballocItem != m_Suballocations.cend()) - { - const VmaSuballocation& nextSuballoc = *nextSuballocItem; - if(VmaBlocksOnSamePage(*pOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) - { - if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) - { - VMA_ASSERT(nextSuballoc.hAllocation != VK_NULL_HANDLE); - if(nextSuballoc.hAllocation->CanBecomeLost() && - nextSuballoc.hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex) - { - ++*itemsToMakeLostCount; - } - else - { - return false; - } - } - } - else - { - // Already on next page. - break; - } - ++nextSuballocItem; - } - } - } - else - { - const VmaSuballocation& suballoc = *suballocItem; - VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); - - *pSumFreeSize = suballoc.size; - - // Size of this suballocation is too small for this request: Early return. - if(suballoc.size < allocSize) - { - return false; - } - - // Start from offset equal to beginning of this suballocation. - *pOffset = suballoc.offset; - - // Apply VMA_DEBUG_MARGIN at the beginning. - if(VMA_DEBUG_MARGIN > 0) - { - *pOffset += VMA_DEBUG_MARGIN; - } - - // Apply alignment. - *pOffset = VmaAlignUp(*pOffset, allocAlignment); - - // Check previous suballocations for BufferImageGranularity conflicts. - // Make bigger alignment if necessary. - if(bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment) - { - bool bufferImageGranularityConflict = false; - VmaSuballocationList::const_iterator prevSuballocItem = suballocItem; - while(prevSuballocItem != m_Suballocations.cbegin()) - { - --prevSuballocItem; - const VmaSuballocation& prevSuballoc = *prevSuballocItem; - if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, *pOffset, bufferImageGranularity)) - { - if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) - { - bufferImageGranularityConflict = true; - break; - } - } - else - // Already on previous page. - break; - } - if(bufferImageGranularityConflict) - { - *pOffset = VmaAlignUp(*pOffset, bufferImageGranularity); - } - } - - // Calculate padding at the beginning based on current offset. - const VkDeviceSize paddingBegin = *pOffset - suballoc.offset; - - // Calculate required margin at the end. - const VkDeviceSize requiredEndMargin = VMA_DEBUG_MARGIN; - - // Fail if requested size plus margin before and after is bigger than size of this suballocation. - if(paddingBegin + allocSize + requiredEndMargin > suballoc.size) - { - return false; - } - - // Check next suballocations for BufferImageGranularity conflicts. - // If conflict exists, allocation cannot be made here. - if(bufferImageGranularity > 1 && (allocSize % bufferImageGranularity || *pOffset % bufferImageGranularity)) - { - VmaSuballocationList::const_iterator nextSuballocItem = suballocItem; - ++nextSuballocItem; - while(nextSuballocItem != m_Suballocations.cend()) - { - const VmaSuballocation& nextSuballoc = *nextSuballocItem; - if(VmaBlocksOnSamePage(*pOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) - { - if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) - { - return false; - } - } - else - { - // Already on next page. - break; - } - ++nextSuballocItem; - } - } - } - - // All tests passed: Success. pOffset is already filled. - return true; -} - -void VmaBlockMetadata_Generic::MergeFreeWithNext(VmaSuballocationList::iterator item) -{ - VMA_ASSERT(item != m_Suballocations.end()); - VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE); - - VmaSuballocationList::iterator nextItem = item; - ++nextItem; - VMA_ASSERT(nextItem != m_Suballocations.end()); - VMA_ASSERT(nextItem->type == VMA_SUBALLOCATION_TYPE_FREE); - - item->size += nextItem->size; - --m_FreeCount; - m_Suballocations.erase(nextItem); -} - -VmaSuballocationList::iterator VmaBlockMetadata_Generic::FreeSuballocation(VmaSuballocationList::iterator suballocItem) -{ - // Change this suballocation to be marked as free. - VmaSuballocation& suballoc = *suballocItem; - suballoc.type = VMA_SUBALLOCATION_TYPE_FREE; - suballoc.hAllocation = VK_NULL_HANDLE; - - // Update totals. - ++m_FreeCount; - m_SumFreeSize += suballoc.size; - - // Merge with previous and/or next suballocation if it's also free. - bool mergeWithNext = false; - bool mergeWithPrev = false; - - VmaSuballocationList::iterator nextItem = suballocItem; - ++nextItem; - if((nextItem != m_Suballocations.end()) && (nextItem->type == VMA_SUBALLOCATION_TYPE_FREE)) - { - mergeWithNext = true; - } - - VmaSuballocationList::iterator prevItem = suballocItem; - if(suballocItem != m_Suballocations.begin()) - { - --prevItem; - if(prevItem->type == VMA_SUBALLOCATION_TYPE_FREE) - { - mergeWithPrev = true; - } - } - - if(mergeWithNext) - { - UnregisterFreeSuballocation(nextItem); - MergeFreeWithNext(suballocItem); - } - - if(mergeWithPrev) - { - UnregisterFreeSuballocation(prevItem); - MergeFreeWithNext(prevItem); - RegisterFreeSuballocation(prevItem); - return prevItem; - } - else - { - RegisterFreeSuballocation(suballocItem); - return suballocItem; - } -} - -void VmaBlockMetadata_Generic::RegisterFreeSuballocation(VmaSuballocationList::iterator item) -{ - VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE); - VMA_ASSERT(item->size > 0); - - // You may want to enable this validation at the beginning or at the end of - // this function, depending on what do you want to check. - VMA_HEAVY_ASSERT(ValidateFreeSuballocationList()); - - if(item->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) - { - if(m_FreeSuballocationsBySize.empty()) - { - m_FreeSuballocationsBySize.push_back(item); - } - else - { - VmaVectorInsertSorted(m_FreeSuballocationsBySize, item); - } - } - - //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList()); -} - - -void VmaBlockMetadata_Generic::UnregisterFreeSuballocation(VmaSuballocationList::iterator item) -{ - VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE); - VMA_ASSERT(item->size > 0); - - // You may want to enable this validation at the beginning or at the end of - // this function, depending on what do you want to check. - VMA_HEAVY_ASSERT(ValidateFreeSuballocationList()); - - if(item->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) - { - VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess( - m_FreeSuballocationsBySize.data(), - m_FreeSuballocationsBySize.data() + m_FreeSuballocationsBySize.size(), - item, - VmaSuballocationItemSizeLess()); - for(size_t index = it - m_FreeSuballocationsBySize.data(); - index < m_FreeSuballocationsBySize.size(); - ++index) - { - if(m_FreeSuballocationsBySize[index] == item) - { - VmaVectorRemove(m_FreeSuballocationsBySize, index); - return; - } - VMA_ASSERT((m_FreeSuballocationsBySize[index]->size == item->size) && "Not found."); - } - VMA_ASSERT(0 && "Not found."); - } - - //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList()); -} - -bool VmaBlockMetadata_Generic::IsBufferImageGranularityConflictPossible( - VkDeviceSize bufferImageGranularity, - VmaSuballocationType& inOutPrevSuballocType) const -{ - if(bufferImageGranularity == 1 || IsEmpty()) - { - return false; - } - - VkDeviceSize minAlignment = VK_WHOLE_SIZE; - bool typeConflictFound = false; - for(VmaSuballocationList::const_iterator it = m_Suballocations.cbegin(); - it != m_Suballocations.cend(); - ++it) - { - const VmaSuballocationType suballocType = it->type; - if(suballocType != VMA_SUBALLOCATION_TYPE_FREE) - { - minAlignment = VMA_MIN(minAlignment, it->hAllocation->GetAlignment()); - if(VmaIsBufferImageGranularityConflict(inOutPrevSuballocType, suballocType)) - { - typeConflictFound = true; - } - inOutPrevSuballocType = suballocType; - } - } - - return typeConflictFound || minAlignment >= bufferImageGranularity; -} - -//////////////////////////////////////////////////////////////////////////////// -// class VmaBlockMetadata_Linear - -VmaBlockMetadata_Linear::VmaBlockMetadata_Linear(VmaAllocator hAllocator) : - VmaBlockMetadata(hAllocator), - m_SumFreeSize(0), - m_Suballocations0(VmaStlAllocator(hAllocator->GetAllocationCallbacks())), - m_Suballocations1(VmaStlAllocator(hAllocator->GetAllocationCallbacks())), - m_1stVectorIndex(0), - m_2ndVectorMode(SECOND_VECTOR_EMPTY), - m_1stNullItemsBeginCount(0), - m_1stNullItemsMiddleCount(0), - m_2ndNullItemsCount(0) -{ -} - -VmaBlockMetadata_Linear::~VmaBlockMetadata_Linear() -{ -} - -void VmaBlockMetadata_Linear::Init(VkDeviceSize size) -{ - VmaBlockMetadata::Init(size); - m_SumFreeSize = size; -} - -bool VmaBlockMetadata_Linear::Validate() const -{ - const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); - const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - - VMA_VALIDATE(suballocations2nd.empty() == (m_2ndVectorMode == SECOND_VECTOR_EMPTY)); - VMA_VALIDATE(!suballocations1st.empty() || - suballocations2nd.empty() || - m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER); - - if(!suballocations1st.empty()) - { - // Null item at the beginning should be accounted into m_1stNullItemsBeginCount. - VMA_VALIDATE(suballocations1st[m_1stNullItemsBeginCount].hAllocation != VK_NULL_HANDLE); - // Null item at the end should be just pop_back(). - VMA_VALIDATE(suballocations1st.back().hAllocation != VK_NULL_HANDLE); - } - if(!suballocations2nd.empty()) - { - // Null item at the end should be just pop_back(). - VMA_VALIDATE(suballocations2nd.back().hAllocation != VK_NULL_HANDLE); - } - - VMA_VALIDATE(m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount <= suballocations1st.size()); - VMA_VALIDATE(m_2ndNullItemsCount <= suballocations2nd.size()); - - VkDeviceSize sumUsedSize = 0; - const size_t suballoc1stCount = suballocations1st.size(); - VkDeviceSize offset = VMA_DEBUG_MARGIN; - - if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) - { - const size_t suballoc2ndCount = suballocations2nd.size(); - size_t nullItem2ndCount = 0; - for(size_t i = 0; i < suballoc2ndCount; ++i) - { - const VmaSuballocation& suballoc = suballocations2nd[i]; - const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); - - VMA_VALIDATE(currFree == (suballoc.hAllocation == VK_NULL_HANDLE)); - VMA_VALIDATE(suballoc.offset >= offset); - - if(!currFree) - { - VMA_VALIDATE(suballoc.hAllocation->GetOffset() == suballoc.offset); - VMA_VALIDATE(suballoc.hAllocation->GetSize() == suballoc.size); - sumUsedSize += suballoc.size; - } - else - { - ++nullItem2ndCount; - } - - offset = suballoc.offset + suballoc.size + VMA_DEBUG_MARGIN; - } - - VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount); - } - - for(size_t i = 0; i < m_1stNullItemsBeginCount; ++i) - { - const VmaSuballocation& suballoc = suballocations1st[i]; - VMA_VALIDATE(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE && - suballoc.hAllocation == VK_NULL_HANDLE); - } - - size_t nullItem1stCount = m_1stNullItemsBeginCount; - - for(size_t i = m_1stNullItemsBeginCount; i < suballoc1stCount; ++i) - { - const VmaSuballocation& suballoc = suballocations1st[i]; - const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); - - VMA_VALIDATE(currFree == (suballoc.hAllocation == VK_NULL_HANDLE)); - VMA_VALIDATE(suballoc.offset >= offset); - VMA_VALIDATE(i >= m_1stNullItemsBeginCount || currFree); - - if(!currFree) - { - VMA_VALIDATE(suballoc.hAllocation->GetOffset() == suballoc.offset); - VMA_VALIDATE(suballoc.hAllocation->GetSize() == suballoc.size); - sumUsedSize += suballoc.size; - } - else - { - ++nullItem1stCount; - } - - offset = suballoc.offset + suballoc.size + VMA_DEBUG_MARGIN; - } - VMA_VALIDATE(nullItem1stCount == m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount); - - if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) - { - const size_t suballoc2ndCount = suballocations2nd.size(); - size_t nullItem2ndCount = 0; - for(size_t i = suballoc2ndCount; i--; ) - { - const VmaSuballocation& suballoc = suballocations2nd[i]; - const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); - - VMA_VALIDATE(currFree == (suballoc.hAllocation == VK_NULL_HANDLE)); - VMA_VALIDATE(suballoc.offset >= offset); - - if(!currFree) - { - VMA_VALIDATE(suballoc.hAllocation->GetOffset() == suballoc.offset); - VMA_VALIDATE(suballoc.hAllocation->GetSize() == suballoc.size); - sumUsedSize += suballoc.size; - } - else - { - ++nullItem2ndCount; - } - - offset = suballoc.offset + suballoc.size + VMA_DEBUG_MARGIN; - } - - VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount); - } - - VMA_VALIDATE(offset <= GetSize()); - VMA_VALIDATE(m_SumFreeSize == GetSize() - sumUsedSize); - - return true; -} - -size_t VmaBlockMetadata_Linear::GetAllocationCount() const -{ - return AccessSuballocations1st().size() - (m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount) + - AccessSuballocations2nd().size() - m_2ndNullItemsCount; -} - -VkDeviceSize VmaBlockMetadata_Linear::GetUnusedRangeSizeMax() const -{ - const VkDeviceSize size = GetSize(); - - /* - We don't consider gaps inside allocation vectors with freed allocations because - they are not suitable for reuse in linear allocator. We consider only space that - is available for new allocations. - */ - if(IsEmpty()) - { - return size; - } - - const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); - - switch(m_2ndVectorMode) - { - case SECOND_VECTOR_EMPTY: - /* - Available space is after end of 1st, as well as before beginning of 1st (which - whould make it a ring buffer). - */ - { - const size_t suballocations1stCount = suballocations1st.size(); - VMA_ASSERT(suballocations1stCount > m_1stNullItemsBeginCount); - const VmaSuballocation& firstSuballoc = suballocations1st[m_1stNullItemsBeginCount]; - const VmaSuballocation& lastSuballoc = suballocations1st[suballocations1stCount - 1]; - return VMA_MAX( - firstSuballoc.offset, - size - (lastSuballoc.offset + lastSuballoc.size)); - } - break; - - case SECOND_VECTOR_RING_BUFFER: - /* - Available space is only between end of 2nd and beginning of 1st. - */ - { - const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - const VmaSuballocation& lastSuballoc2nd = suballocations2nd.back(); - const VmaSuballocation& firstSuballoc1st = suballocations1st[m_1stNullItemsBeginCount]; - return firstSuballoc1st.offset - (lastSuballoc2nd.offset + lastSuballoc2nd.size); - } - break; - - case SECOND_VECTOR_DOUBLE_STACK: - /* - Available space is only between end of 1st and top of 2nd. - */ - { - const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - const VmaSuballocation& topSuballoc2nd = suballocations2nd.back(); - const VmaSuballocation& lastSuballoc1st = suballocations1st.back(); - return topSuballoc2nd.offset - (lastSuballoc1st.offset + lastSuballoc1st.size); - } - break; - - default: - VMA_ASSERT(0); - return 0; - } -} - -void VmaBlockMetadata_Linear::CalcAllocationStatInfo(VmaStatInfo& outInfo) const -{ - const VkDeviceSize size = GetSize(); - const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); - const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - const size_t suballoc1stCount = suballocations1st.size(); - const size_t suballoc2ndCount = suballocations2nd.size(); - - outInfo.blockCount = 1; - outInfo.allocationCount = (uint32_t)GetAllocationCount(); - outInfo.unusedRangeCount = 0; - outInfo.usedBytes = 0; - outInfo.allocationSizeMin = UINT64_MAX; - outInfo.allocationSizeMax = 0; - outInfo.unusedRangeSizeMin = UINT64_MAX; - outInfo.unusedRangeSizeMax = 0; - - VkDeviceSize lastOffset = 0; - - if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) - { - const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; - size_t nextAlloc2ndIndex = 0; - while(lastOffset < freeSpace2ndTo1stEnd) - { - // Find next non-null allocation or move nextAllocIndex to the end. - while(nextAlloc2ndIndex < suballoc2ndCount && - suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) - { - ++nextAlloc2ndIndex; - } - - // Found non-null allocation. - if(nextAlloc2ndIndex < suballoc2ndCount) - { - const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; - - // 1. Process free space before this allocation. - if(lastOffset < suballoc.offset) - { - // There is free space from lastOffset to suballoc.offset. - const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; - ++outInfo.unusedRangeCount; - outInfo.unusedBytes += unusedRangeSize; - outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize); - outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize); - } - - // 2. Process this allocation. - // There is allocation with suballoc.offset, suballoc.size. - outInfo.usedBytes += suballoc.size; - outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size); - outInfo.allocationSizeMax = VMA_MIN(outInfo.allocationSizeMax, suballoc.size); - - // 3. Prepare for next iteration. - lastOffset = suballoc.offset + suballoc.size; - ++nextAlloc2ndIndex; - } - // We are at the end. - else - { - // There is free space from lastOffset to freeSpace2ndTo1stEnd. - if(lastOffset < freeSpace2ndTo1stEnd) - { - const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset; - ++outInfo.unusedRangeCount; - outInfo.unusedBytes += unusedRangeSize; - outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize); - outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize); - } - - // End of loop. - lastOffset = freeSpace2ndTo1stEnd; - } - } - } - - size_t nextAlloc1stIndex = m_1stNullItemsBeginCount; - const VkDeviceSize freeSpace1stTo2ndEnd = - m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size; - while(lastOffset < freeSpace1stTo2ndEnd) - { - // Find next non-null allocation or move nextAllocIndex to the end. - while(nextAlloc1stIndex < suballoc1stCount && - suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE) - { - ++nextAlloc1stIndex; - } - - // Found non-null allocation. - if(nextAlloc1stIndex < suballoc1stCount) - { - const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; - - // 1. Process free space before this allocation. - if(lastOffset < suballoc.offset) - { - // There is free space from lastOffset to suballoc.offset. - const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; - ++outInfo.unusedRangeCount; - outInfo.unusedBytes += unusedRangeSize; - outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize); - outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize); - } - - // 2. Process this allocation. - // There is allocation with suballoc.offset, suballoc.size. - outInfo.usedBytes += suballoc.size; - outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size); - outInfo.allocationSizeMax = VMA_MIN(outInfo.allocationSizeMax, suballoc.size); - - // 3. Prepare for next iteration. - lastOffset = suballoc.offset + suballoc.size; - ++nextAlloc1stIndex; - } - // We are at the end. - else - { - // There is free space from lastOffset to freeSpace1stTo2ndEnd. - if(lastOffset < freeSpace1stTo2ndEnd) - { - const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset; - ++outInfo.unusedRangeCount; - outInfo.unusedBytes += unusedRangeSize; - outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize); - outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize); - } - - // End of loop. - lastOffset = freeSpace1stTo2ndEnd; - } - } - - if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) - { - size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; - while(lastOffset < size) - { - // Find next non-null allocation or move nextAllocIndex to the end. - while(nextAlloc2ndIndex != SIZE_MAX && - suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) - { - --nextAlloc2ndIndex; - } - - // Found non-null allocation. - if(nextAlloc2ndIndex != SIZE_MAX) - { - const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; - - // 1. Process free space before this allocation. - if(lastOffset < suballoc.offset) - { - // There is free space from lastOffset to suballoc.offset. - const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; - ++outInfo.unusedRangeCount; - outInfo.unusedBytes += unusedRangeSize; - outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize); - outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize); - } - - // 2. Process this allocation. - // There is allocation with suballoc.offset, suballoc.size. - outInfo.usedBytes += suballoc.size; - outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size); - outInfo.allocationSizeMax = VMA_MIN(outInfo.allocationSizeMax, suballoc.size); - - // 3. Prepare for next iteration. - lastOffset = suballoc.offset + suballoc.size; - --nextAlloc2ndIndex; - } - // We are at the end. - else - { - // There is free space from lastOffset to size. - if(lastOffset < size) - { - const VkDeviceSize unusedRangeSize = size - lastOffset; - ++outInfo.unusedRangeCount; - outInfo.unusedBytes += unusedRangeSize; - outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize); - outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize); - } - - // End of loop. - lastOffset = size; - } - } - } - - outInfo.unusedBytes = size - outInfo.usedBytes; -} - -void VmaBlockMetadata_Linear::AddPoolStats(VmaPoolStats& inoutStats) const -{ - const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); - const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - const VkDeviceSize size = GetSize(); - const size_t suballoc1stCount = suballocations1st.size(); - const size_t suballoc2ndCount = suballocations2nd.size(); - - inoutStats.size += size; - - VkDeviceSize lastOffset = 0; - - if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) - { - const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; - size_t nextAlloc2ndIndex = m_1stNullItemsBeginCount; - while(lastOffset < freeSpace2ndTo1stEnd) - { - // Find next non-null allocation or move nextAlloc2ndIndex to the end. - while(nextAlloc2ndIndex < suballoc2ndCount && - suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) - { - ++nextAlloc2ndIndex; - } - - // Found non-null allocation. - if(nextAlloc2ndIndex < suballoc2ndCount) - { - const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; - - // 1. Process free space before this allocation. - if(lastOffset < suballoc.offset) - { - // There is free space from lastOffset to suballoc.offset. - const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; - inoutStats.unusedSize += unusedRangeSize; - ++inoutStats.unusedRangeCount; - inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize); - } - - // 2. Process this allocation. - // There is allocation with suballoc.offset, suballoc.size. - ++inoutStats.allocationCount; - - // 3. Prepare for next iteration. - lastOffset = suballoc.offset + suballoc.size; - ++nextAlloc2ndIndex; - } - // We are at the end. - else - { - if(lastOffset < freeSpace2ndTo1stEnd) - { - // There is free space from lastOffset to freeSpace2ndTo1stEnd. - const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset; - inoutStats.unusedSize += unusedRangeSize; - ++inoutStats.unusedRangeCount; - inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize); - } - - // End of loop. - lastOffset = freeSpace2ndTo1stEnd; - } - } - } - - size_t nextAlloc1stIndex = m_1stNullItemsBeginCount; - const VkDeviceSize freeSpace1stTo2ndEnd = - m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size; - while(lastOffset < freeSpace1stTo2ndEnd) - { - // Find next non-null allocation or move nextAllocIndex to the end. - while(nextAlloc1stIndex < suballoc1stCount && - suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE) - { - ++nextAlloc1stIndex; - } - - // Found non-null allocation. - if(nextAlloc1stIndex < suballoc1stCount) - { - const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; - - // 1. Process free space before this allocation. - if(lastOffset < suballoc.offset) - { - // There is free space from lastOffset to suballoc.offset. - const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; - inoutStats.unusedSize += unusedRangeSize; - ++inoutStats.unusedRangeCount; - inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize); - } - - // 2. Process this allocation. - // There is allocation with suballoc.offset, suballoc.size. - ++inoutStats.allocationCount; - - // 3. Prepare for next iteration. - lastOffset = suballoc.offset + suballoc.size; - ++nextAlloc1stIndex; - } - // We are at the end. - else - { - if(lastOffset < freeSpace1stTo2ndEnd) - { - // There is free space from lastOffset to freeSpace1stTo2ndEnd. - const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset; - inoutStats.unusedSize += unusedRangeSize; - ++inoutStats.unusedRangeCount; - inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize); - } - - // End of loop. - lastOffset = freeSpace1stTo2ndEnd; - } - } - - if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) - { - size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; - while(lastOffset < size) - { - // Find next non-null allocation or move nextAlloc2ndIndex to the end. - while(nextAlloc2ndIndex != SIZE_MAX && - suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) - { - --nextAlloc2ndIndex; - } - - // Found non-null allocation. - if(nextAlloc2ndIndex != SIZE_MAX) - { - const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; - - // 1. Process free space before this allocation. - if(lastOffset < suballoc.offset) - { - // There is free space from lastOffset to suballoc.offset. - const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; - inoutStats.unusedSize += unusedRangeSize; - ++inoutStats.unusedRangeCount; - inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize); - } - - // 2. Process this allocation. - // There is allocation with suballoc.offset, suballoc.size. - ++inoutStats.allocationCount; - - // 3. Prepare for next iteration. - lastOffset = suballoc.offset + suballoc.size; - --nextAlloc2ndIndex; - } - // We are at the end. - else - { - if(lastOffset < size) - { - // There is free space from lastOffset to size. - const VkDeviceSize unusedRangeSize = size - lastOffset; - inoutStats.unusedSize += unusedRangeSize; - ++inoutStats.unusedRangeCount; - inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize); - } - - // End of loop. - lastOffset = size; - } - } - } -} - -#if VMA_STATS_STRING_ENABLED -void VmaBlockMetadata_Linear::PrintDetailedMap(class VmaJsonWriter& json) const -{ - const VkDeviceSize size = GetSize(); - const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); - const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - const size_t suballoc1stCount = suballocations1st.size(); - const size_t suballoc2ndCount = suballocations2nd.size(); - - // FIRST PASS - - size_t unusedRangeCount = 0; - VkDeviceSize usedBytes = 0; - - VkDeviceSize lastOffset = 0; - - size_t alloc2ndCount = 0; - if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) - { - const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; - size_t nextAlloc2ndIndex = 0; - while(lastOffset < freeSpace2ndTo1stEnd) - { - // Find next non-null allocation or move nextAlloc2ndIndex to the end. - while(nextAlloc2ndIndex < suballoc2ndCount && - suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) - { - ++nextAlloc2ndIndex; - } - - // Found non-null allocation. - if(nextAlloc2ndIndex < suballoc2ndCount) - { - const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; - - // 1. Process free space before this allocation. - if(lastOffset < suballoc.offset) - { - // There is free space from lastOffset to suballoc.offset. - ++unusedRangeCount; - } - - // 2. Process this allocation. - // There is allocation with suballoc.offset, suballoc.size. - ++alloc2ndCount; - usedBytes += suballoc.size; - - // 3. Prepare for next iteration. - lastOffset = suballoc.offset + suballoc.size; - ++nextAlloc2ndIndex; - } - // We are at the end. - else - { - if(lastOffset < freeSpace2ndTo1stEnd) - { - // There is free space from lastOffset to freeSpace2ndTo1stEnd. - ++unusedRangeCount; - } - - // End of loop. - lastOffset = freeSpace2ndTo1stEnd; - } - } - } - - size_t nextAlloc1stIndex = m_1stNullItemsBeginCount; - size_t alloc1stCount = 0; - const VkDeviceSize freeSpace1stTo2ndEnd = - m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size; - while(lastOffset < freeSpace1stTo2ndEnd) - { - // Find next non-null allocation or move nextAllocIndex to the end. - while(nextAlloc1stIndex < suballoc1stCount && - suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE) - { - ++nextAlloc1stIndex; - } - - // Found non-null allocation. - if(nextAlloc1stIndex < suballoc1stCount) - { - const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; - - // 1. Process free space before this allocation. - if(lastOffset < suballoc.offset) - { - // There is free space from lastOffset to suballoc.offset. - ++unusedRangeCount; - } - - // 2. Process this allocation. - // There is allocation with suballoc.offset, suballoc.size. - ++alloc1stCount; - usedBytes += suballoc.size; - - // 3. Prepare for next iteration. - lastOffset = suballoc.offset + suballoc.size; - ++nextAlloc1stIndex; - } - // We are at the end. - else - { - if(lastOffset < size) - { - // There is free space from lastOffset to freeSpace1stTo2ndEnd. - ++unusedRangeCount; - } - - // End of loop. - lastOffset = freeSpace1stTo2ndEnd; - } - } - - if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) - { - size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; - while(lastOffset < size) - { - // Find next non-null allocation or move nextAlloc2ndIndex to the end. - while(nextAlloc2ndIndex != SIZE_MAX && - suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) - { - --nextAlloc2ndIndex; - } - - // Found non-null allocation. - if(nextAlloc2ndIndex != SIZE_MAX) - { - const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; - - // 1. Process free space before this allocation. - if(lastOffset < suballoc.offset) - { - // There is free space from lastOffset to suballoc.offset. - ++unusedRangeCount; - } - - // 2. Process this allocation. - // There is allocation with suballoc.offset, suballoc.size. - ++alloc2ndCount; - usedBytes += suballoc.size; - - // 3. Prepare for next iteration. - lastOffset = suballoc.offset + suballoc.size; - --nextAlloc2ndIndex; - } - // We are at the end. - else - { - if(lastOffset < size) - { - // There is free space from lastOffset to size. - ++unusedRangeCount; - } - - // End of loop. - lastOffset = size; - } - } - } - - const VkDeviceSize unusedBytes = size - usedBytes; - PrintDetailedMap_Begin(json, unusedBytes, alloc1stCount + alloc2ndCount, unusedRangeCount); - - // SECOND PASS - lastOffset = 0; - - if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) - { - const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; - size_t nextAlloc2ndIndex = 0; - while(lastOffset < freeSpace2ndTo1stEnd) - { - // Find next non-null allocation or move nextAlloc2ndIndex to the end. - while(nextAlloc2ndIndex < suballoc2ndCount && - suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) - { - ++nextAlloc2ndIndex; - } - - // Found non-null allocation. - if(nextAlloc2ndIndex < suballoc2ndCount) - { - const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; - - // 1. Process free space before this allocation. - if(lastOffset < suballoc.offset) - { - // There is free space from lastOffset to suballoc.offset. - const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; - PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); - } - - // 2. Process this allocation. - // There is allocation with suballoc.offset, suballoc.size. - PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.hAllocation); - - // 3. Prepare for next iteration. - lastOffset = suballoc.offset + suballoc.size; - ++nextAlloc2ndIndex; - } - // We are at the end. - else - { - if(lastOffset < freeSpace2ndTo1stEnd) - { - // There is free space from lastOffset to freeSpace2ndTo1stEnd. - const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset; - PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); - } - - // End of loop. - lastOffset = freeSpace2ndTo1stEnd; - } - } - } - - nextAlloc1stIndex = m_1stNullItemsBeginCount; - while(lastOffset < freeSpace1stTo2ndEnd) - { - // Find next non-null allocation or move nextAllocIndex to the end. - while(nextAlloc1stIndex < suballoc1stCount && - suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE) - { - ++nextAlloc1stIndex; - } - - // Found non-null allocation. - if(nextAlloc1stIndex < suballoc1stCount) - { - const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; - - // 1. Process free space before this allocation. - if(lastOffset < suballoc.offset) - { - // There is free space from lastOffset to suballoc.offset. - const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; - PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); - } - - // 2. Process this allocation. - // There is allocation with suballoc.offset, suballoc.size. - PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.hAllocation); - - // 3. Prepare for next iteration. - lastOffset = suballoc.offset + suballoc.size; - ++nextAlloc1stIndex; - } - // We are at the end. - else - { - if(lastOffset < freeSpace1stTo2ndEnd) - { - // There is free space from lastOffset to freeSpace1stTo2ndEnd. - const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset; - PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); - } - - // End of loop. - lastOffset = freeSpace1stTo2ndEnd; - } - } - - if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) - { - size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; - while(lastOffset < size) - { - // Find next non-null allocation or move nextAlloc2ndIndex to the end. - while(nextAlloc2ndIndex != SIZE_MAX && - suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) - { - --nextAlloc2ndIndex; - } - - // Found non-null allocation. - if(nextAlloc2ndIndex != SIZE_MAX) - { - const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; - - // 1. Process free space before this allocation. - if(lastOffset < suballoc.offset) - { - // There is free space from lastOffset to suballoc.offset. - const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; - PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); - } - - // 2. Process this allocation. - // There is allocation with suballoc.offset, suballoc.size. - PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.hAllocation); - - // 3. Prepare for next iteration. - lastOffset = suballoc.offset + suballoc.size; - --nextAlloc2ndIndex; - } - // We are at the end. - else - { - if(lastOffset < size) - { - // There is free space from lastOffset to size. - const VkDeviceSize unusedRangeSize = size - lastOffset; - PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); - } - - // End of loop. - lastOffset = size; - } - } - } - - PrintDetailedMap_End(json); -} -#endif // #if VMA_STATS_STRING_ENABLED - -bool VmaBlockMetadata_Linear::CreateAllocationRequest( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VkDeviceSize bufferImageGranularity, - VkDeviceSize allocSize, - VkDeviceSize allocAlignment, - bool upperAddress, - VmaSuballocationType allocType, - bool canMakeOtherLost, - uint32_t strategy, - VmaAllocationRequest* pAllocationRequest) -{ - VMA_ASSERT(allocSize > 0); - VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE); - VMA_ASSERT(pAllocationRequest != VMA_NULL); - VMA_HEAVY_ASSERT(Validate()); - return upperAddress ? - CreateAllocationRequest_UpperAddress( - currentFrameIndex, frameInUseCount, bufferImageGranularity, - allocSize, allocAlignment, allocType, canMakeOtherLost, strategy, pAllocationRequest) : - CreateAllocationRequest_LowerAddress( - currentFrameIndex, frameInUseCount, bufferImageGranularity, - allocSize, allocAlignment, allocType, canMakeOtherLost, strategy, pAllocationRequest); -} - -bool VmaBlockMetadata_Linear::CreateAllocationRequest_UpperAddress( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VkDeviceSize bufferImageGranularity, - VkDeviceSize allocSize, - VkDeviceSize allocAlignment, - VmaSuballocationType allocType, - bool canMakeOtherLost, - uint32_t strategy, - VmaAllocationRequest* pAllocationRequest) -{ - const VkDeviceSize size = GetSize(); - SuballocationVectorType& suballocations1st = AccessSuballocations1st(); - SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - - if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) - { - VMA_ASSERT(0 && "Trying to use pool with linear algorithm as double stack, while it is already being used as ring buffer."); - return false; - } - - // Try to allocate before 2nd.back(), or end of block if 2nd.empty(). - if(allocSize > size) - { - return false; - } - VkDeviceSize resultBaseOffset = size - allocSize; - if(!suballocations2nd.empty()) - { - const VmaSuballocation& lastSuballoc = suballocations2nd.back(); - resultBaseOffset = lastSuballoc.offset - allocSize; - if(allocSize > lastSuballoc.offset) - { - return false; - } - } - - // Start from offset equal to end of free space. - VkDeviceSize resultOffset = resultBaseOffset; - - // Apply VMA_DEBUG_MARGIN at the end. - if(VMA_DEBUG_MARGIN > 0) - { - if(resultOffset < VMA_DEBUG_MARGIN) - { - return false; - } - resultOffset -= VMA_DEBUG_MARGIN; - } - - // Apply alignment. - resultOffset = VmaAlignDown(resultOffset, allocAlignment); - - // Check next suballocations from 2nd for BufferImageGranularity conflicts. - // Make bigger alignment if necessary. - if(bufferImageGranularity > 1 && !suballocations2nd.empty()) - { - bool bufferImageGranularityConflict = false; - for(size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; ) - { - const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex]; - if(VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) - { - if(VmaIsBufferImageGranularityConflict(nextSuballoc.type, allocType)) - { - bufferImageGranularityConflict = true; - break; - } - } - else - // Already on previous page. - break; - } - if(bufferImageGranularityConflict) - { - resultOffset = VmaAlignDown(resultOffset, bufferImageGranularity); - } - } - - // There is enough free space. - const VkDeviceSize endOf1st = !suballocations1st.empty() ? - suballocations1st.back().offset + suballocations1st.back().size : - 0; - if(endOf1st + VMA_DEBUG_MARGIN <= resultOffset) - { - // Check previous suballocations for BufferImageGranularity conflicts. - // If conflict exists, allocation cannot be made here. - if(bufferImageGranularity > 1) - { - for(size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; ) - { - const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex]; - if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity)) - { - if(VmaIsBufferImageGranularityConflict(allocType, prevSuballoc.type)) - { - return false; - } - } - else - { - // Already on next page. - break; - } - } - } - - // All tests passed: Success. - pAllocationRequest->offset = resultOffset; - pAllocationRequest->sumFreeSize = resultBaseOffset + allocSize - endOf1st; - pAllocationRequest->sumItemSize = 0; - // pAllocationRequest->item unused. - pAllocationRequest->itemsToMakeLostCount = 0; - pAllocationRequest->type = VmaAllocationRequestType::UpperAddress; - return true; - } - - return false; -} - -bool VmaBlockMetadata_Linear::CreateAllocationRequest_LowerAddress( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VkDeviceSize bufferImageGranularity, - VkDeviceSize allocSize, - VkDeviceSize allocAlignment, - VmaSuballocationType allocType, - bool canMakeOtherLost, - uint32_t strategy, - VmaAllocationRequest* pAllocationRequest) -{ - const VkDeviceSize size = GetSize(); - SuballocationVectorType& suballocations1st = AccessSuballocations1st(); - SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - - if(m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) - { - // Try to allocate at the end of 1st vector. - - VkDeviceSize resultBaseOffset = 0; - if(!suballocations1st.empty()) - { - const VmaSuballocation& lastSuballoc = suballocations1st.back(); - resultBaseOffset = lastSuballoc.offset + lastSuballoc.size; - } - - // Start from offset equal to beginning of free space. - VkDeviceSize resultOffset = resultBaseOffset; - - // Apply VMA_DEBUG_MARGIN at the beginning. - if(VMA_DEBUG_MARGIN > 0) - { - resultOffset += VMA_DEBUG_MARGIN; - } - - // Apply alignment. - resultOffset = VmaAlignUp(resultOffset, allocAlignment); - - // Check previous suballocations for BufferImageGranularity conflicts. - // Make bigger alignment if necessary. - if(bufferImageGranularity > 1 && !suballocations1st.empty()) - { - bool bufferImageGranularityConflict = false; - for(size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; ) - { - const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex]; - if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity)) - { - if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) - { - bufferImageGranularityConflict = true; - break; - } - } - else - // Already on previous page. - break; - } - if(bufferImageGranularityConflict) - { - resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity); - } - } - - const VkDeviceSize freeSpaceEnd = m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? - suballocations2nd.back().offset : size; - - // There is enough free space at the end after alignment. - if(resultOffset + allocSize + VMA_DEBUG_MARGIN <= freeSpaceEnd) - { - // Check next suballocations for BufferImageGranularity conflicts. - // If conflict exists, allocation cannot be made here. - if(bufferImageGranularity > 1 && m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) - { - for(size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; ) - { - const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex]; - if(VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) - { - if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) - { - return false; - } - } - else - { - // Already on previous page. - break; - } - } - } - - // All tests passed: Success. - pAllocationRequest->offset = resultOffset; - pAllocationRequest->sumFreeSize = freeSpaceEnd - resultBaseOffset; - pAllocationRequest->sumItemSize = 0; - // pAllocationRequest->item, customData unused. - pAllocationRequest->type = VmaAllocationRequestType::EndOf1st; - pAllocationRequest->itemsToMakeLostCount = 0; - return true; - } - } - - // Wrap-around to end of 2nd vector. Try to allocate there, watching for the - // beginning of 1st vector as the end of free space. - if(m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) - { - VMA_ASSERT(!suballocations1st.empty()); - - VkDeviceSize resultBaseOffset = 0; - if(!suballocations2nd.empty()) - { - const VmaSuballocation& lastSuballoc = suballocations2nd.back(); - resultBaseOffset = lastSuballoc.offset + lastSuballoc.size; - } - - // Start from offset equal to beginning of free space. - VkDeviceSize resultOffset = resultBaseOffset; - - // Apply VMA_DEBUG_MARGIN at the beginning. - if(VMA_DEBUG_MARGIN > 0) - { - resultOffset += VMA_DEBUG_MARGIN; - } - - // Apply alignment. - resultOffset = VmaAlignUp(resultOffset, allocAlignment); - - // Check previous suballocations for BufferImageGranularity conflicts. - // Make bigger alignment if necessary. - if(bufferImageGranularity > 1 && !suballocations2nd.empty()) - { - bool bufferImageGranularityConflict = false; - for(size_t prevSuballocIndex = suballocations2nd.size(); prevSuballocIndex--; ) - { - const VmaSuballocation& prevSuballoc = suballocations2nd[prevSuballocIndex]; - if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity)) - { - if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) - { - bufferImageGranularityConflict = true; - break; - } - } - else - // Already on previous page. - break; - } - if(bufferImageGranularityConflict) - { - resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity); - } - } - - pAllocationRequest->itemsToMakeLostCount = 0; - pAllocationRequest->sumItemSize = 0; - size_t index1st = m_1stNullItemsBeginCount; - - if(canMakeOtherLost) - { - while(index1st < suballocations1st.size() && - resultOffset + allocSize + VMA_DEBUG_MARGIN > suballocations1st[index1st].offset) - { - // Next colliding allocation at the beginning of 1st vector found. Try to make it lost. - const VmaSuballocation& suballoc = suballocations1st[index1st]; - if(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE) - { - // No problem. - } - else - { - VMA_ASSERT(suballoc.hAllocation != VK_NULL_HANDLE); - if(suballoc.hAllocation->CanBecomeLost() && - suballoc.hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex) - { - ++pAllocationRequest->itemsToMakeLostCount; - pAllocationRequest->sumItemSize += suballoc.size; - } - else - { - return false; - } - } - ++index1st; - } - - // Check next suballocations for BufferImageGranularity conflicts. - // If conflict exists, we must mark more allocations lost or fail. - if(bufferImageGranularity > 1) - { - while(index1st < suballocations1st.size()) - { - const VmaSuballocation& suballoc = suballocations1st[index1st]; - if(VmaBlocksOnSamePage(resultOffset, allocSize, suballoc.offset, bufferImageGranularity)) - { - if(suballoc.hAllocation != VK_NULL_HANDLE) - { - // Not checking actual VmaIsBufferImageGranularityConflict(allocType, suballoc.type). - if(suballoc.hAllocation->CanBecomeLost() && - suballoc.hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex) - { - ++pAllocationRequest->itemsToMakeLostCount; - pAllocationRequest->sumItemSize += suballoc.size; - } - else - { - return false; - } - } - } - else - { - // Already on next page. - break; - } - ++index1st; - } - } - - // Special case: There is not enough room at the end for this allocation, even after making all from the 1st lost. - if(index1st == suballocations1st.size() && - resultOffset + allocSize + VMA_DEBUG_MARGIN > size) - { - // TODO: This is a known bug that it's not yet implemented and the allocation is failing. - VMA_DEBUG_LOG("Unsupported special case in custom pool with linear allocation algorithm used as ring buffer with allocations that can be lost."); - } - } - - // There is enough free space at the end after alignment. - if((index1st == suballocations1st.size() && resultOffset + allocSize + VMA_DEBUG_MARGIN <= size) || - (index1st < suballocations1st.size() && resultOffset + allocSize + VMA_DEBUG_MARGIN <= suballocations1st[index1st].offset)) - { - // Check next suballocations for BufferImageGranularity conflicts. - // If conflict exists, allocation cannot be made here. - if(bufferImageGranularity > 1) - { - for(size_t nextSuballocIndex = index1st; - nextSuballocIndex < suballocations1st.size(); - nextSuballocIndex++) - { - const VmaSuballocation& nextSuballoc = suballocations1st[nextSuballocIndex]; - if(VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) - { - if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) - { - return false; - } - } - else - { - // Already on next page. - break; - } - } - } - - // All tests passed: Success. - pAllocationRequest->offset = resultOffset; - pAllocationRequest->sumFreeSize = - (index1st < suballocations1st.size() ? suballocations1st[index1st].offset : size) - - resultBaseOffset - - pAllocationRequest->sumItemSize; - pAllocationRequest->type = VmaAllocationRequestType::EndOf2nd; - // pAllocationRequest->item, customData unused. - return true; - } - } - - return false; -} - -bool VmaBlockMetadata_Linear::MakeRequestedAllocationsLost( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VmaAllocationRequest* pAllocationRequest) -{ - if(pAllocationRequest->itemsToMakeLostCount == 0) - { - return true; - } - - VMA_ASSERT(m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER); - - // We always start from 1st. - SuballocationVectorType* suballocations = &AccessSuballocations1st(); - size_t index = m_1stNullItemsBeginCount; - size_t madeLostCount = 0; - while(madeLostCount < pAllocationRequest->itemsToMakeLostCount) - { - if(index == suballocations->size()) - { - index = 0; - // If we get to the end of 1st, we wrap around to beginning of 2nd of 1st. - if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) - { - suballocations = &AccessSuballocations2nd(); - } - // else: m_2ndVectorMode == SECOND_VECTOR_EMPTY: - // suballocations continues pointing at AccessSuballocations1st(). - VMA_ASSERT(!suballocations->empty()); - } - VmaSuballocation& suballoc = (*suballocations)[index]; - if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) - { - VMA_ASSERT(suballoc.hAllocation != VK_NULL_HANDLE); - VMA_ASSERT(suballoc.hAllocation->CanBecomeLost()); - if(suballoc.hAllocation->MakeLost(currentFrameIndex, frameInUseCount)) - { - suballoc.type = VMA_SUBALLOCATION_TYPE_FREE; - suballoc.hAllocation = VK_NULL_HANDLE; - m_SumFreeSize += suballoc.size; - if(suballocations == &AccessSuballocations1st()) - { - ++m_1stNullItemsMiddleCount; - } - else - { - ++m_2ndNullItemsCount; - } - ++madeLostCount; - } - else - { - return false; - } - } - ++index; - } - - CleanupAfterFree(); - //VMA_HEAVY_ASSERT(Validate()); // Already called by ClanupAfterFree(). - - return true; -} - -uint32_t VmaBlockMetadata_Linear::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount) -{ - uint32_t lostAllocationCount = 0; - - SuballocationVectorType& suballocations1st = AccessSuballocations1st(); - for(size_t i = m_1stNullItemsBeginCount, count = suballocations1st.size(); i < count; ++i) - { - VmaSuballocation& suballoc = suballocations1st[i]; - if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE && - suballoc.hAllocation->CanBecomeLost() && - suballoc.hAllocation->MakeLost(currentFrameIndex, frameInUseCount)) - { - suballoc.type = VMA_SUBALLOCATION_TYPE_FREE; - suballoc.hAllocation = VK_NULL_HANDLE; - ++m_1stNullItemsMiddleCount; - m_SumFreeSize += suballoc.size; - ++lostAllocationCount; - } - } - - SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - for(size_t i = 0, count = suballocations2nd.size(); i < count; ++i) - { - VmaSuballocation& suballoc = suballocations2nd[i]; - if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE && - suballoc.hAllocation->CanBecomeLost() && - suballoc.hAllocation->MakeLost(currentFrameIndex, frameInUseCount)) - { - suballoc.type = VMA_SUBALLOCATION_TYPE_FREE; - suballoc.hAllocation = VK_NULL_HANDLE; - ++m_2ndNullItemsCount; - m_SumFreeSize += suballoc.size; - ++lostAllocationCount; - } - } - - if(lostAllocationCount) - { - CleanupAfterFree(); - } - - return lostAllocationCount; -} - -VkResult VmaBlockMetadata_Linear::CheckCorruption(const void* pBlockData) -{ - SuballocationVectorType& suballocations1st = AccessSuballocations1st(); - for(size_t i = m_1stNullItemsBeginCount, count = suballocations1st.size(); i < count; ++i) - { - const VmaSuballocation& suballoc = suballocations1st[i]; - if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) - { - if(!VmaValidateMagicValue(pBlockData, suballoc.offset - VMA_DEBUG_MARGIN)) - { - VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE VALIDATED ALLOCATION!"); - return VK_ERROR_VALIDATION_FAILED_EXT; - } - if(!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size)) - { - VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!"); - return VK_ERROR_VALIDATION_FAILED_EXT; - } - } - } - - SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - for(size_t i = 0, count = suballocations2nd.size(); i < count; ++i) - { - const VmaSuballocation& suballoc = suballocations2nd[i]; - if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) - { - if(!VmaValidateMagicValue(pBlockData, suballoc.offset - VMA_DEBUG_MARGIN)) - { - VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE VALIDATED ALLOCATION!"); - return VK_ERROR_VALIDATION_FAILED_EXT; - } - if(!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size)) - { - VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!"); - return VK_ERROR_VALIDATION_FAILED_EXT; - } - } - } - - return VK_SUCCESS; -} - -void VmaBlockMetadata_Linear::Alloc( - const VmaAllocationRequest& request, - VmaSuballocationType type, - VkDeviceSize allocSize, - VmaAllocation hAllocation) -{ - const VmaSuballocation newSuballoc = { request.offset, allocSize, hAllocation, type }; - - switch(request.type) - { - case VmaAllocationRequestType::UpperAddress: - { - VMA_ASSERT(m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER && - "CRITICAL ERROR: Trying to use linear allocator as double stack while it was already used as ring buffer."); - SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - suballocations2nd.push_back(newSuballoc); - m_2ndVectorMode = SECOND_VECTOR_DOUBLE_STACK; - } - break; - case VmaAllocationRequestType::EndOf1st: - { - SuballocationVectorType& suballocations1st = AccessSuballocations1st(); - - VMA_ASSERT(suballocations1st.empty() || - request.offset >= suballocations1st.back().offset + suballocations1st.back().size); - // Check if it fits before the end of the block. - VMA_ASSERT(request.offset + allocSize <= GetSize()); - - suballocations1st.push_back(newSuballoc); - } - break; - case VmaAllocationRequestType::EndOf2nd: - { - SuballocationVectorType& suballocations1st = AccessSuballocations1st(); - // New allocation at the end of 2-part ring buffer, so before first allocation from 1st vector. - VMA_ASSERT(!suballocations1st.empty() && - request.offset + allocSize <= suballocations1st[m_1stNullItemsBeginCount].offset); - SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - - switch(m_2ndVectorMode) - { - case SECOND_VECTOR_EMPTY: - // First allocation from second part ring buffer. - VMA_ASSERT(suballocations2nd.empty()); - m_2ndVectorMode = SECOND_VECTOR_RING_BUFFER; - break; - case SECOND_VECTOR_RING_BUFFER: - // 2-part ring buffer is already started. - VMA_ASSERT(!suballocations2nd.empty()); - break; - case SECOND_VECTOR_DOUBLE_STACK: - VMA_ASSERT(0 && "CRITICAL ERROR: Trying to use linear allocator as ring buffer while it was already used as double stack."); - break; - default: - VMA_ASSERT(0); - } - - suballocations2nd.push_back(newSuballoc); - } - break; - default: - VMA_ASSERT(0 && "CRITICAL INTERNAL ERROR."); - } - - m_SumFreeSize -= newSuballoc.size; -} - -void VmaBlockMetadata_Linear::Free(const VmaAllocation allocation) -{ - FreeAtOffset(allocation->GetOffset()); -} - -void VmaBlockMetadata_Linear::FreeAtOffset(VkDeviceSize offset) -{ - SuballocationVectorType& suballocations1st = AccessSuballocations1st(); - SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - - if(!suballocations1st.empty()) - { - // First allocation: Mark it as next empty at the beginning. - VmaSuballocation& firstSuballoc = suballocations1st[m_1stNullItemsBeginCount]; - if(firstSuballoc.offset == offset) - { - firstSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE; - firstSuballoc.hAllocation = VK_NULL_HANDLE; - m_SumFreeSize += firstSuballoc.size; - ++m_1stNullItemsBeginCount; - CleanupAfterFree(); - return; - } - } - - // Last allocation in 2-part ring buffer or top of upper stack (same logic). - if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER || - m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) - { - VmaSuballocation& lastSuballoc = suballocations2nd.back(); - if(lastSuballoc.offset == offset) - { - m_SumFreeSize += lastSuballoc.size; - suballocations2nd.pop_back(); - CleanupAfterFree(); - return; - } - } - // Last allocation in 1st vector. - else if(m_2ndVectorMode == SECOND_VECTOR_EMPTY) - { - VmaSuballocation& lastSuballoc = suballocations1st.back(); - if(lastSuballoc.offset == offset) - { - m_SumFreeSize += lastSuballoc.size; - suballocations1st.pop_back(); - CleanupAfterFree(); - return; - } - } - - // Item from the middle of 1st vector. - { - VmaSuballocation refSuballoc; - refSuballoc.offset = offset; - // Rest of members stays uninitialized intentionally for better performance. - SuballocationVectorType::iterator it = VmaBinaryFindSorted( - suballocations1st.begin() + m_1stNullItemsBeginCount, - suballocations1st.end(), - refSuballoc, - VmaSuballocationOffsetLess()); - if(it != suballocations1st.end()) - { - it->type = VMA_SUBALLOCATION_TYPE_FREE; - it->hAllocation = VK_NULL_HANDLE; - ++m_1stNullItemsMiddleCount; - m_SumFreeSize += it->size; - CleanupAfterFree(); - return; - } - } - - if(m_2ndVectorMode != SECOND_VECTOR_EMPTY) - { - // Item from the middle of 2nd vector. - VmaSuballocation refSuballoc; - refSuballoc.offset = offset; - // Rest of members stays uninitialized intentionally for better performance. - SuballocationVectorType::iterator it = m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ? - VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetLess()) : - VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetGreater()); - if(it != suballocations2nd.end()) - { - it->type = VMA_SUBALLOCATION_TYPE_FREE; - it->hAllocation = VK_NULL_HANDLE; - ++m_2ndNullItemsCount; - m_SumFreeSize += it->size; - CleanupAfterFree(); - return; - } - } - - VMA_ASSERT(0 && "Allocation to free not found in linear allocator!"); -} - -bool VmaBlockMetadata_Linear::ShouldCompact1st() const -{ - const size_t nullItemCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount; - const size_t suballocCount = AccessSuballocations1st().size(); - return suballocCount > 32 && nullItemCount * 2 >= (suballocCount - nullItemCount) * 3; -} - -void VmaBlockMetadata_Linear::CleanupAfterFree() -{ - SuballocationVectorType& suballocations1st = AccessSuballocations1st(); - SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - - if(IsEmpty()) - { - suballocations1st.clear(); - suballocations2nd.clear(); - m_1stNullItemsBeginCount = 0; - m_1stNullItemsMiddleCount = 0; - m_2ndNullItemsCount = 0; - m_2ndVectorMode = SECOND_VECTOR_EMPTY; - } - else - { - const size_t suballoc1stCount = suballocations1st.size(); - const size_t nullItem1stCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount; - VMA_ASSERT(nullItem1stCount <= suballoc1stCount); - - // Find more null items at the beginning of 1st vector. - while(m_1stNullItemsBeginCount < suballoc1stCount && - suballocations1st[m_1stNullItemsBeginCount].hAllocation == VK_NULL_HANDLE) - { - ++m_1stNullItemsBeginCount; - --m_1stNullItemsMiddleCount; - } - - // Find more null items at the end of 1st vector. - while(m_1stNullItemsMiddleCount > 0 && - suballocations1st.back().hAllocation == VK_NULL_HANDLE) - { - --m_1stNullItemsMiddleCount; - suballocations1st.pop_back(); - } - - // Find more null items at the end of 2nd vector. - while(m_2ndNullItemsCount > 0 && - suballocations2nd.back().hAllocation == VK_NULL_HANDLE) - { - --m_2ndNullItemsCount; - suballocations2nd.pop_back(); - } - - // Find more null items at the beginning of 2nd vector. - while(m_2ndNullItemsCount > 0 && - suballocations2nd[0].hAllocation == VK_NULL_HANDLE) - { - --m_2ndNullItemsCount; - VmaVectorRemove(suballocations2nd, 0); - } - - if(ShouldCompact1st()) - { - const size_t nonNullItemCount = suballoc1stCount - nullItem1stCount; - size_t srcIndex = m_1stNullItemsBeginCount; - for(size_t dstIndex = 0; dstIndex < nonNullItemCount; ++dstIndex) - { - while(suballocations1st[srcIndex].hAllocation == VK_NULL_HANDLE) - { - ++srcIndex; - } - if(dstIndex != srcIndex) - { - suballocations1st[dstIndex] = suballocations1st[srcIndex]; - } - ++srcIndex; - } - suballocations1st.resize(nonNullItemCount); - m_1stNullItemsBeginCount = 0; - m_1stNullItemsMiddleCount = 0; - } - - // 2nd vector became empty. - if(suballocations2nd.empty()) - { - m_2ndVectorMode = SECOND_VECTOR_EMPTY; - } - - // 1st vector became empty. - if(suballocations1st.size() - m_1stNullItemsBeginCount == 0) - { - suballocations1st.clear(); - m_1stNullItemsBeginCount = 0; - - if(!suballocations2nd.empty() && m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) - { - // Swap 1st with 2nd. Now 2nd is empty. - m_2ndVectorMode = SECOND_VECTOR_EMPTY; - m_1stNullItemsMiddleCount = m_2ndNullItemsCount; - while(m_1stNullItemsBeginCount < suballocations2nd.size() && - suballocations2nd[m_1stNullItemsBeginCount].hAllocation == VK_NULL_HANDLE) - { - ++m_1stNullItemsBeginCount; - --m_1stNullItemsMiddleCount; - } - m_2ndNullItemsCount = 0; - m_1stVectorIndex ^= 1; - } - } - } - - VMA_HEAVY_ASSERT(Validate()); -} - - -//////////////////////////////////////////////////////////////////////////////// -// class VmaBlockMetadata_Buddy - -VmaBlockMetadata_Buddy::VmaBlockMetadata_Buddy(VmaAllocator hAllocator) : - VmaBlockMetadata(hAllocator), - m_Root(VMA_NULL), - m_AllocationCount(0), - m_FreeCount(1), - m_SumFreeSize(0) -{ - memset(m_FreeList, 0, sizeof(m_FreeList)); -} - -VmaBlockMetadata_Buddy::~VmaBlockMetadata_Buddy() -{ - DeleteNode(m_Root); -} - -void VmaBlockMetadata_Buddy::Init(VkDeviceSize size) -{ - VmaBlockMetadata::Init(size); - - m_UsableSize = VmaPrevPow2(size); - m_SumFreeSize = m_UsableSize; - - // Calculate m_LevelCount. - m_LevelCount = 1; - while(m_LevelCount < MAX_LEVELS && - LevelToNodeSize(m_LevelCount) >= MIN_NODE_SIZE) - { - ++m_LevelCount; - } - - Node* rootNode = vma_new(GetAllocationCallbacks(), Node)(); - rootNode->offset = 0; - rootNode->type = Node::TYPE_FREE; - rootNode->parent = VMA_NULL; - rootNode->buddy = VMA_NULL; - - m_Root = rootNode; - AddToFreeListFront(0, rootNode); -} - -bool VmaBlockMetadata_Buddy::Validate() const -{ - // Validate tree. - ValidationContext ctx; - if(!ValidateNode(ctx, VMA_NULL, m_Root, 0, LevelToNodeSize(0))) - { - VMA_VALIDATE(false && "ValidateNode failed."); - } - VMA_VALIDATE(m_AllocationCount == ctx.calculatedAllocationCount); - VMA_VALIDATE(m_SumFreeSize == ctx.calculatedSumFreeSize); - - // Validate free node lists. - for(uint32_t level = 0; level < m_LevelCount; ++level) - { - VMA_VALIDATE(m_FreeList[level].front == VMA_NULL || - m_FreeList[level].front->free.prev == VMA_NULL); - - for(Node* node = m_FreeList[level].front; - node != VMA_NULL; - node = node->free.next) - { - VMA_VALIDATE(node->type == Node::TYPE_FREE); - - if(node->free.next == VMA_NULL) - { - VMA_VALIDATE(m_FreeList[level].back == node); - } - else - { - VMA_VALIDATE(node->free.next->free.prev == node); - } - } - } - - // Validate that free lists ar higher levels are empty. - for(uint32_t level = m_LevelCount; level < MAX_LEVELS; ++level) - { - VMA_VALIDATE(m_FreeList[level].front == VMA_NULL && m_FreeList[level].back == VMA_NULL); - } - - return true; -} - -VkDeviceSize VmaBlockMetadata_Buddy::GetUnusedRangeSizeMax() const -{ - for(uint32_t level = 0; level < m_LevelCount; ++level) - { - if(m_FreeList[level].front != VMA_NULL) - { - return LevelToNodeSize(level); - } - } - return 0; -} - -void VmaBlockMetadata_Buddy::CalcAllocationStatInfo(VmaStatInfo& outInfo) const -{ - const VkDeviceSize unusableSize = GetUnusableSize(); - - outInfo.blockCount = 1; - - outInfo.allocationCount = outInfo.unusedRangeCount = 0; - outInfo.usedBytes = outInfo.unusedBytes = 0; - - outInfo.allocationSizeMax = outInfo.unusedRangeSizeMax = 0; - outInfo.allocationSizeMin = outInfo.unusedRangeSizeMin = UINT64_MAX; - outInfo.allocationSizeAvg = outInfo.unusedRangeSizeAvg = 0; // Unused. - - CalcAllocationStatInfoNode(outInfo, m_Root, LevelToNodeSize(0)); - - if(unusableSize > 0) - { - ++outInfo.unusedRangeCount; - outInfo.unusedBytes += unusableSize; - outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, unusableSize); - outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusableSize); - } -} - -void VmaBlockMetadata_Buddy::AddPoolStats(VmaPoolStats& inoutStats) const -{ - const VkDeviceSize unusableSize = GetUnusableSize(); - - inoutStats.size += GetSize(); - inoutStats.unusedSize += m_SumFreeSize + unusableSize; - inoutStats.allocationCount += m_AllocationCount; - inoutStats.unusedRangeCount += m_FreeCount; - inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, GetUnusedRangeSizeMax()); - - if(unusableSize > 0) - { - ++inoutStats.unusedRangeCount; - // Not updating inoutStats.unusedRangeSizeMax with unusableSize because this space is not available for allocations. - } -} - -#if VMA_STATS_STRING_ENABLED - -void VmaBlockMetadata_Buddy::PrintDetailedMap(class VmaJsonWriter& json) const -{ - // TODO optimize - VmaStatInfo stat; - CalcAllocationStatInfo(stat); - - PrintDetailedMap_Begin( - json, - stat.unusedBytes, - stat.allocationCount, - stat.unusedRangeCount); - - PrintDetailedMapNode(json, m_Root, LevelToNodeSize(0)); - - const VkDeviceSize unusableSize = GetUnusableSize(); - if(unusableSize > 0) - { - PrintDetailedMap_UnusedRange(json, - m_UsableSize, // offset - unusableSize); // size - } - - PrintDetailedMap_End(json); -} - -#endif // #if VMA_STATS_STRING_ENABLED - -bool VmaBlockMetadata_Buddy::CreateAllocationRequest( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VkDeviceSize bufferImageGranularity, - VkDeviceSize allocSize, - VkDeviceSize allocAlignment, - bool upperAddress, - VmaSuballocationType allocType, - bool canMakeOtherLost, - uint32_t strategy, - VmaAllocationRequest* pAllocationRequest) -{ - VMA_ASSERT(!upperAddress && "VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT can be used only with linear algorithm."); - - // Simple way to respect bufferImageGranularity. May be optimized some day. - // Whenever it might be an OPTIMAL image... - if(allocType == VMA_SUBALLOCATION_TYPE_UNKNOWN || - allocType == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN || - allocType == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL) - { - allocAlignment = VMA_MAX(allocAlignment, bufferImageGranularity); - allocSize = VMA_MAX(allocSize, bufferImageGranularity); - } - - if(allocSize > m_UsableSize) - { - return false; - } - - const uint32_t targetLevel = AllocSizeToLevel(allocSize); - for(uint32_t level = targetLevel + 1; level--; ) - { - for(Node* freeNode = m_FreeList[level].front; - freeNode != VMA_NULL; - freeNode = freeNode->free.next) - { - if(freeNode->offset % allocAlignment == 0) - { - pAllocationRequest->type = VmaAllocationRequestType::Normal; - pAllocationRequest->offset = freeNode->offset; - pAllocationRequest->sumFreeSize = LevelToNodeSize(level); - pAllocationRequest->sumItemSize = 0; - pAllocationRequest->itemsToMakeLostCount = 0; - pAllocationRequest->customData = (void*)(uintptr_t)level; - return true; - } - } - } - - return false; -} - -bool VmaBlockMetadata_Buddy::MakeRequestedAllocationsLost( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VmaAllocationRequest* pAllocationRequest) -{ - /* - Lost allocations are not supported in buddy allocator at the moment. - Support might be added in the future. - */ - return pAllocationRequest->itemsToMakeLostCount == 0; -} - -uint32_t VmaBlockMetadata_Buddy::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount) -{ - /* - Lost allocations are not supported in buddy allocator at the moment. - Support might be added in the future. - */ - return 0; -} - -void VmaBlockMetadata_Buddy::Alloc( - const VmaAllocationRequest& request, - VmaSuballocationType type, - VkDeviceSize allocSize, - VmaAllocation hAllocation) -{ - VMA_ASSERT(request.type == VmaAllocationRequestType::Normal); - - const uint32_t targetLevel = AllocSizeToLevel(allocSize); - uint32_t currLevel = (uint32_t)(uintptr_t)request.customData; - - Node* currNode = m_FreeList[currLevel].front; - VMA_ASSERT(currNode != VMA_NULL && currNode->type == Node::TYPE_FREE); - while(currNode->offset != request.offset) - { - currNode = currNode->free.next; - VMA_ASSERT(currNode != VMA_NULL && currNode->type == Node::TYPE_FREE); - } - - // Go down, splitting free nodes. - while(currLevel < targetLevel) - { - // currNode is already first free node at currLevel. - // Remove it from list of free nodes at this currLevel. - RemoveFromFreeList(currLevel, currNode); - - const uint32_t childrenLevel = currLevel + 1; - - // Create two free sub-nodes. - Node* leftChild = vma_new(GetAllocationCallbacks(), Node)(); - Node* rightChild = vma_new(GetAllocationCallbacks(), Node)(); - - leftChild->offset = currNode->offset; - leftChild->type = Node::TYPE_FREE; - leftChild->parent = currNode; - leftChild->buddy = rightChild; - - rightChild->offset = currNode->offset + LevelToNodeSize(childrenLevel); - rightChild->type = Node::TYPE_FREE; - rightChild->parent = currNode; - rightChild->buddy = leftChild; - - // Convert current currNode to split type. - currNode->type = Node::TYPE_SPLIT; - currNode->split.leftChild = leftChild; - - // Add child nodes to free list. Order is important! - AddToFreeListFront(childrenLevel, rightChild); - AddToFreeListFront(childrenLevel, leftChild); - - ++m_FreeCount; - //m_SumFreeSize -= LevelToNodeSize(currLevel) % 2; // Useful only when level node sizes can be non power of 2. - ++currLevel; - currNode = m_FreeList[currLevel].front; - - /* - We can be sure that currNode, as left child of node previously split, - also fullfills the alignment requirement. - */ - } - - // Remove from free list. - VMA_ASSERT(currLevel == targetLevel && - currNode != VMA_NULL && - currNode->type == Node::TYPE_FREE); - RemoveFromFreeList(currLevel, currNode); - - // Convert to allocation node. - currNode->type = Node::TYPE_ALLOCATION; - currNode->allocation.alloc = hAllocation; - - ++m_AllocationCount; - --m_FreeCount; - m_SumFreeSize -= allocSize; -} - -void VmaBlockMetadata_Buddy::DeleteNode(Node* node) -{ - if(node->type == Node::TYPE_SPLIT) - { - DeleteNode(node->split.leftChild->buddy); - DeleteNode(node->split.leftChild); - } - - vma_delete(GetAllocationCallbacks(), node); -} - -bool VmaBlockMetadata_Buddy::ValidateNode(ValidationContext& ctx, const Node* parent, const Node* curr, uint32_t level, VkDeviceSize levelNodeSize) const -{ - VMA_VALIDATE(level < m_LevelCount); - VMA_VALIDATE(curr->parent == parent); - VMA_VALIDATE((curr->buddy == VMA_NULL) == (parent == VMA_NULL)); - VMA_VALIDATE(curr->buddy == VMA_NULL || curr->buddy->buddy == curr); - switch(curr->type) - { - case Node::TYPE_FREE: - // curr->free.prev, next are validated separately. - ctx.calculatedSumFreeSize += levelNodeSize; - ++ctx.calculatedFreeCount; - break; - case Node::TYPE_ALLOCATION: - ++ctx.calculatedAllocationCount; - ctx.calculatedSumFreeSize += levelNodeSize - curr->allocation.alloc->GetSize(); - VMA_VALIDATE(curr->allocation.alloc != VK_NULL_HANDLE); - break; - case Node::TYPE_SPLIT: - { - const uint32_t childrenLevel = level + 1; - const VkDeviceSize childrenLevelNodeSize = levelNodeSize / 2; - const Node* const leftChild = curr->split.leftChild; - VMA_VALIDATE(leftChild != VMA_NULL); - VMA_VALIDATE(leftChild->offset == curr->offset); - if(!ValidateNode(ctx, curr, leftChild, childrenLevel, childrenLevelNodeSize)) - { - VMA_VALIDATE(false && "ValidateNode for left child failed."); - } - const Node* const rightChild = leftChild->buddy; - VMA_VALIDATE(rightChild->offset == curr->offset + childrenLevelNodeSize); - if(!ValidateNode(ctx, curr, rightChild, childrenLevel, childrenLevelNodeSize)) - { - VMA_VALIDATE(false && "ValidateNode for right child failed."); - } - } - break; - default: - return false; - } - - return true; -} - -uint32_t VmaBlockMetadata_Buddy::AllocSizeToLevel(VkDeviceSize allocSize) const -{ - // I know this could be optimized somehow e.g. by using std::log2p1 from C++20. - uint32_t level = 0; - VkDeviceSize currLevelNodeSize = m_UsableSize; - VkDeviceSize nextLevelNodeSize = currLevelNodeSize >> 1; - while(allocSize <= nextLevelNodeSize && level + 1 < m_LevelCount) - { - ++level; - currLevelNodeSize = nextLevelNodeSize; - nextLevelNodeSize = currLevelNodeSize >> 1; - } - return level; -} - -void VmaBlockMetadata_Buddy::FreeAtOffset(VmaAllocation alloc, VkDeviceSize offset) -{ - // Find node and level. - Node* node = m_Root; - VkDeviceSize nodeOffset = 0; - uint32_t level = 0; - VkDeviceSize levelNodeSize = LevelToNodeSize(0); - while(node->type == Node::TYPE_SPLIT) - { - const VkDeviceSize nextLevelSize = levelNodeSize >> 1; - if(offset < nodeOffset + nextLevelSize) - { - node = node->split.leftChild; - } - else - { - node = node->split.leftChild->buddy; - nodeOffset += nextLevelSize; - } - ++level; - levelNodeSize = nextLevelSize; - } - - VMA_ASSERT(node != VMA_NULL && node->type == Node::TYPE_ALLOCATION); - VMA_ASSERT(alloc == VK_NULL_HANDLE || node->allocation.alloc == alloc); - - ++m_FreeCount; - --m_AllocationCount; - m_SumFreeSize += alloc->GetSize(); - - node->type = Node::TYPE_FREE; - - // Join free nodes if possible. - while(level > 0 && node->buddy->type == Node::TYPE_FREE) - { - RemoveFromFreeList(level, node->buddy); - Node* const parent = node->parent; - - vma_delete(GetAllocationCallbacks(), node->buddy); - vma_delete(GetAllocationCallbacks(), node); - parent->type = Node::TYPE_FREE; - - node = parent; - --level; - //m_SumFreeSize += LevelToNodeSize(level) % 2; // Useful only when level node sizes can be non power of 2. - --m_FreeCount; - } - - AddToFreeListFront(level, node); -} - -void VmaBlockMetadata_Buddy::CalcAllocationStatInfoNode(VmaStatInfo& outInfo, const Node* node, VkDeviceSize levelNodeSize) const -{ - switch(node->type) - { - case Node::TYPE_FREE: - ++outInfo.unusedRangeCount; - outInfo.unusedBytes += levelNodeSize; - outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, levelNodeSize); - outInfo.unusedRangeSizeMin = VMA_MAX(outInfo.unusedRangeSizeMin, levelNodeSize); - break; - case Node::TYPE_ALLOCATION: - { - const VkDeviceSize allocSize = node->allocation.alloc->GetSize(); - ++outInfo.allocationCount; - outInfo.usedBytes += allocSize; - outInfo.allocationSizeMax = VMA_MAX(outInfo.allocationSizeMax, allocSize); - outInfo.allocationSizeMin = VMA_MAX(outInfo.allocationSizeMin, allocSize); - - const VkDeviceSize unusedRangeSize = levelNodeSize - allocSize; - if(unusedRangeSize > 0) - { - ++outInfo.unusedRangeCount; - outInfo.unusedBytes += unusedRangeSize; - outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, unusedRangeSize); - outInfo.unusedRangeSizeMin = VMA_MAX(outInfo.unusedRangeSizeMin, unusedRangeSize); - } - } - break; - case Node::TYPE_SPLIT: - { - const VkDeviceSize childrenNodeSize = levelNodeSize / 2; - const Node* const leftChild = node->split.leftChild; - CalcAllocationStatInfoNode(outInfo, leftChild, childrenNodeSize); - const Node* const rightChild = leftChild->buddy; - CalcAllocationStatInfoNode(outInfo, rightChild, childrenNodeSize); - } - break; - default: - VMA_ASSERT(0); - } -} - -void VmaBlockMetadata_Buddy::AddToFreeListFront(uint32_t level, Node* node) -{ - VMA_ASSERT(node->type == Node::TYPE_FREE); - - // List is empty. - Node* const frontNode = m_FreeList[level].front; - if(frontNode == VMA_NULL) - { - VMA_ASSERT(m_FreeList[level].back == VMA_NULL); - node->free.prev = node->free.next = VMA_NULL; - m_FreeList[level].front = m_FreeList[level].back = node; - } - else - { - VMA_ASSERT(frontNode->free.prev == VMA_NULL); - node->free.prev = VMA_NULL; - node->free.next = frontNode; - frontNode->free.prev = node; - m_FreeList[level].front = node; - } -} - -void VmaBlockMetadata_Buddy::RemoveFromFreeList(uint32_t level, Node* node) -{ - VMA_ASSERT(m_FreeList[level].front != VMA_NULL); - - // It is at the front. - if(node->free.prev == VMA_NULL) - { - VMA_ASSERT(m_FreeList[level].front == node); - m_FreeList[level].front = node->free.next; - } - else - { - Node* const prevFreeNode = node->free.prev; - VMA_ASSERT(prevFreeNode->free.next == node); - prevFreeNode->free.next = node->free.next; - } - - // It is at the back. - if(node->free.next == VMA_NULL) - { - VMA_ASSERT(m_FreeList[level].back == node); - m_FreeList[level].back = node->free.prev; - } - else - { - Node* const nextFreeNode = node->free.next; - VMA_ASSERT(nextFreeNode->free.prev == node); - nextFreeNode->free.prev = node->free.prev; - } -} - -#if VMA_STATS_STRING_ENABLED -void VmaBlockMetadata_Buddy::PrintDetailedMapNode(class VmaJsonWriter& json, const Node* node, VkDeviceSize levelNodeSize) const -{ - switch(node->type) - { - case Node::TYPE_FREE: - PrintDetailedMap_UnusedRange(json, node->offset, levelNodeSize); - break; - case Node::TYPE_ALLOCATION: - { - PrintDetailedMap_Allocation(json, node->offset, node->allocation.alloc); - const VkDeviceSize allocSize = node->allocation.alloc->GetSize(); - if(allocSize < levelNodeSize) - { - PrintDetailedMap_UnusedRange(json, node->offset + allocSize, levelNodeSize - allocSize); - } - } - break; - case Node::TYPE_SPLIT: - { - const VkDeviceSize childrenNodeSize = levelNodeSize / 2; - const Node* const leftChild = node->split.leftChild; - PrintDetailedMapNode(json, leftChild, childrenNodeSize); - const Node* const rightChild = leftChild->buddy; - PrintDetailedMapNode(json, rightChild, childrenNodeSize); - } - break; - default: - VMA_ASSERT(0); - } -} -#endif // #if VMA_STATS_STRING_ENABLED - - -//////////////////////////////////////////////////////////////////////////////// -// class VmaDeviceMemoryBlock - -VmaDeviceMemoryBlock::VmaDeviceMemoryBlock(VmaAllocator hAllocator) : - m_pMetadata(VMA_NULL), - m_MemoryTypeIndex(UINT32_MAX), - m_Id(0), - m_hMemory(VK_NULL_HANDLE), - m_MapCount(0), - m_pMappedData(VMA_NULL) -{ -} - -void VmaDeviceMemoryBlock::Init( - VmaAllocator hAllocator, - VmaPool hParentPool, - uint32_t newMemoryTypeIndex, - VkDeviceMemory newMemory, - VkDeviceSize newSize, - uint32_t id, - uint32_t algorithm) -{ - VMA_ASSERT(m_hMemory == VK_NULL_HANDLE); - - m_hParentPool = hParentPool; - m_MemoryTypeIndex = newMemoryTypeIndex; - m_Id = id; - m_hMemory = newMemory; - - switch(algorithm) - { - case VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT: - m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Linear)(hAllocator); - break; - case VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT: - m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Buddy)(hAllocator); - break; - default: - VMA_ASSERT(0); - // Fall-through. - case 0: - m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Generic)(hAllocator); - } - m_pMetadata->Init(newSize); -} - -void VmaDeviceMemoryBlock::Destroy(VmaAllocator allocator) -{ - // This is the most important assert in the entire library. - // Hitting it means you have some memory leak - unreleased VmaAllocation objects. - VMA_ASSERT(m_pMetadata->IsEmpty() && "Some allocations were not freed before destruction of this memory block!"); - - VMA_ASSERT(m_hMemory != VK_NULL_HANDLE); - allocator->FreeVulkanMemory(m_MemoryTypeIndex, m_pMetadata->GetSize(), m_hMemory); - m_hMemory = VK_NULL_HANDLE; - - vma_delete(allocator, m_pMetadata); - m_pMetadata = VMA_NULL; -} - -bool VmaDeviceMemoryBlock::Validate() const -{ - VMA_VALIDATE((m_hMemory != VK_NULL_HANDLE) && - (m_pMetadata->GetSize() != 0)); - - return m_pMetadata->Validate(); -} - -VkResult VmaDeviceMemoryBlock::CheckCorruption(VmaAllocator hAllocator) -{ - void* pData = nullptr; - VkResult res = Map(hAllocator, 1, &pData); - if(res != VK_SUCCESS) - { - return res; - } - - res = m_pMetadata->CheckCorruption(pData); - - Unmap(hAllocator, 1); - - return res; -} - -VkResult VmaDeviceMemoryBlock::Map(VmaAllocator hAllocator, uint32_t count, void** ppData) -{ - if(count == 0) - { - return VK_SUCCESS; - } - - VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex); - if(m_MapCount != 0) - { - m_MapCount += count; - VMA_ASSERT(m_pMappedData != VMA_NULL); - if(ppData != VMA_NULL) - { - *ppData = m_pMappedData; - } - return VK_SUCCESS; - } - else - { - VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)( - hAllocator->m_hDevice, - m_hMemory, - 0, // offset - VK_WHOLE_SIZE, - 0, // flags - &m_pMappedData); - if(result == VK_SUCCESS) - { - if(ppData != VMA_NULL) - { - *ppData = m_pMappedData; - } - m_MapCount = count; - } - return result; - } -} - -void VmaDeviceMemoryBlock::Unmap(VmaAllocator hAllocator, uint32_t count) -{ - if(count == 0) - { - return; - } - - VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex); - if(m_MapCount >= count) - { - m_MapCount -= count; - if(m_MapCount == 0) - { - m_pMappedData = VMA_NULL; - (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(hAllocator->m_hDevice, m_hMemory); - } - } - else - { - VMA_ASSERT(0 && "VkDeviceMemory block is being unmapped while it was not previously mapped."); - } -} - -VkResult VmaDeviceMemoryBlock::WriteMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize) -{ - VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION); - VMA_ASSERT(allocOffset >= VMA_DEBUG_MARGIN); - - void* pData; - VkResult res = Map(hAllocator, 1, &pData); - if(res != VK_SUCCESS) - { - return res; - } - - VmaWriteMagicValue(pData, allocOffset - VMA_DEBUG_MARGIN); - VmaWriteMagicValue(pData, allocOffset + allocSize); - - Unmap(hAllocator, 1); - - return VK_SUCCESS; -} - -VkResult VmaDeviceMemoryBlock::ValidateMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize) -{ - VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION); - VMA_ASSERT(allocOffset >= VMA_DEBUG_MARGIN); - - void* pData; - VkResult res = Map(hAllocator, 1, &pData); - if(res != VK_SUCCESS) - { - return res; - } - - if(!VmaValidateMagicValue(pData, allocOffset - VMA_DEBUG_MARGIN)) - { - VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE FREED ALLOCATION!"); - } - else if(!VmaValidateMagicValue(pData, allocOffset + allocSize)) - { - VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER FREED ALLOCATION!"); - } - - Unmap(hAllocator, 1); - - return VK_SUCCESS; -} - -VkResult VmaDeviceMemoryBlock::BindBufferMemory( - const VmaAllocator hAllocator, - const VmaAllocation hAllocation, - VkDeviceSize allocationLocalOffset, - VkBuffer hBuffer, - const void* pNext) -{ - VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK && - hAllocation->GetBlock() == this); - VMA_ASSERT(allocationLocalOffset < hAllocation->GetSize() && - "Invalid allocationLocalOffset. Did you forget that this offset is relative to the beginning of the allocation, not the whole memory block?"); - const VkDeviceSize memoryOffset = hAllocation->GetOffset() + allocationLocalOffset; - // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads. - VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex); - return hAllocator->BindVulkanBuffer(m_hMemory, memoryOffset, hBuffer, pNext); -} - -VkResult VmaDeviceMemoryBlock::BindImageMemory( - const VmaAllocator hAllocator, - const VmaAllocation hAllocation, - VkDeviceSize allocationLocalOffset, - VkImage hImage, - const void* pNext) -{ - VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK && - hAllocation->GetBlock() == this); - VMA_ASSERT(allocationLocalOffset < hAllocation->GetSize() && - "Invalid allocationLocalOffset. Did you forget that this offset is relative to the beginning of the allocation, not the whole memory block?"); - const VkDeviceSize memoryOffset = hAllocation->GetOffset() + allocationLocalOffset; - // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads. - VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex); - return hAllocator->BindVulkanImage(m_hMemory, memoryOffset, hImage, pNext); -} - -static void InitStatInfo(VmaStatInfo& outInfo) -{ - memset(&outInfo, 0, sizeof(outInfo)); - outInfo.allocationSizeMin = UINT64_MAX; - outInfo.unusedRangeSizeMin = UINT64_MAX; -} - -// Adds statistics srcInfo into inoutInfo, like: inoutInfo += srcInfo. -static void VmaAddStatInfo(VmaStatInfo& inoutInfo, const VmaStatInfo& srcInfo) -{ - inoutInfo.blockCount += srcInfo.blockCount; - inoutInfo.allocationCount += srcInfo.allocationCount; - inoutInfo.unusedRangeCount += srcInfo.unusedRangeCount; - inoutInfo.usedBytes += srcInfo.usedBytes; - inoutInfo.unusedBytes += srcInfo.unusedBytes; - inoutInfo.allocationSizeMin = VMA_MIN(inoutInfo.allocationSizeMin, srcInfo.allocationSizeMin); - inoutInfo.allocationSizeMax = VMA_MAX(inoutInfo.allocationSizeMax, srcInfo.allocationSizeMax); - inoutInfo.unusedRangeSizeMin = VMA_MIN(inoutInfo.unusedRangeSizeMin, srcInfo.unusedRangeSizeMin); - inoutInfo.unusedRangeSizeMax = VMA_MAX(inoutInfo.unusedRangeSizeMax, srcInfo.unusedRangeSizeMax); -} - -static void VmaPostprocessCalcStatInfo(VmaStatInfo& inoutInfo) -{ - inoutInfo.allocationSizeAvg = (inoutInfo.allocationCount > 0) ? - VmaRoundDiv(inoutInfo.usedBytes, inoutInfo.allocationCount) : 0; - inoutInfo.unusedRangeSizeAvg = (inoutInfo.unusedRangeCount > 0) ? - VmaRoundDiv(inoutInfo.unusedBytes, inoutInfo.unusedRangeCount) : 0; -} - -VmaPool_T::VmaPool_T( - VmaAllocator hAllocator, - const VmaPoolCreateInfo& createInfo, - VkDeviceSize preferredBlockSize) : - m_BlockVector( - hAllocator, - this, // hParentPool - createInfo.memoryTypeIndex, - createInfo.blockSize != 0 ? createInfo.blockSize : preferredBlockSize, - createInfo.minBlockCount, - createInfo.maxBlockCount, - (createInfo.flags & VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT) != 0 ? 1 : hAllocator->GetBufferImageGranularity(), - createInfo.frameInUseCount, - createInfo.blockSize != 0, // explicitBlockSize - createInfo.flags & VMA_POOL_CREATE_ALGORITHM_MASK), // algorithm - m_Id(0), - m_Name(VMA_NULL) -{ -} - -VmaPool_T::~VmaPool_T() -{ -} - -void VmaPool_T::SetName(const char* pName) -{ - const VkAllocationCallbacks* allocs = m_BlockVector.GetAllocator()->GetAllocationCallbacks(); - VmaFreeString(allocs, m_Name); - - if(pName != VMA_NULL) - { - m_Name = VmaCreateStringCopy(allocs, pName); - } - else - { - m_Name = VMA_NULL; - } -} - -#if VMA_STATS_STRING_ENABLED - -#endif // #if VMA_STATS_STRING_ENABLED - -VmaBlockVector::VmaBlockVector( - VmaAllocator hAllocator, - VmaPool hParentPool, - uint32_t memoryTypeIndex, - VkDeviceSize preferredBlockSize, - size_t minBlockCount, - size_t maxBlockCount, - VkDeviceSize bufferImageGranularity, - uint32_t frameInUseCount, - bool explicitBlockSize, - uint32_t algorithm) : - m_hAllocator(hAllocator), - m_hParentPool(hParentPool), - m_MemoryTypeIndex(memoryTypeIndex), - m_PreferredBlockSize(preferredBlockSize), - m_MinBlockCount(minBlockCount), - m_MaxBlockCount(maxBlockCount), - m_BufferImageGranularity(bufferImageGranularity), - m_FrameInUseCount(frameInUseCount), - m_ExplicitBlockSize(explicitBlockSize), - m_Algorithm(algorithm), - m_HasEmptyBlock(false), - m_Blocks(VmaStlAllocator(hAllocator->GetAllocationCallbacks())), - m_NextBlockId(0) -{ -} - -VmaBlockVector::~VmaBlockVector() -{ - for(size_t i = m_Blocks.size(); i--; ) - { - m_Blocks[i]->Destroy(m_hAllocator); - vma_delete(m_hAllocator, m_Blocks[i]); - } -} - -VkResult VmaBlockVector::CreateMinBlocks() -{ - for(size_t i = 0; i < m_MinBlockCount; ++i) - { - VkResult res = CreateBlock(m_PreferredBlockSize, VMA_NULL); - if(res != VK_SUCCESS) - { - return res; - } - } - return VK_SUCCESS; -} - -void VmaBlockVector::GetPoolStats(VmaPoolStats* pStats) -{ - VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); - - const size_t blockCount = m_Blocks.size(); - - pStats->size = 0; - pStats->unusedSize = 0; - pStats->allocationCount = 0; - pStats->unusedRangeCount = 0; - pStats->unusedRangeSizeMax = 0; - pStats->blockCount = blockCount; - - for(uint32_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) - { - const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex]; - VMA_ASSERT(pBlock); - VMA_HEAVY_ASSERT(pBlock->Validate()); - pBlock->m_pMetadata->AddPoolStats(*pStats); - } -} - -bool VmaBlockVector::IsEmpty() -{ - VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); - return m_Blocks.empty(); -} - -bool VmaBlockVector::IsCorruptionDetectionEnabled() const -{ - const uint32_t requiredMemFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; - return (VMA_DEBUG_DETECT_CORRUPTION != 0) && - (VMA_DEBUG_MARGIN > 0) && - (m_Algorithm == 0 || m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) && - (m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags & requiredMemFlags) == requiredMemFlags; -} - -static const uint32_t VMA_ALLOCATION_TRY_COUNT = 32; - -VkResult VmaBlockVector::Allocate( - uint32_t currentFrameIndex, - VkDeviceSize size, - VkDeviceSize alignment, - const VmaAllocationCreateInfo& createInfo, - VmaSuballocationType suballocType, - size_t allocationCount, - VmaAllocation* pAllocations) -{ - size_t allocIndex; - VkResult res = VK_SUCCESS; - - if(IsCorruptionDetectionEnabled()) - { - size = VmaAlignUp(size, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE)); - alignment = VmaAlignUp(alignment, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE)); - } - - { - VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); - for(allocIndex = 0; allocIndex < allocationCount; ++allocIndex) - { - res = AllocatePage( - currentFrameIndex, - size, - alignment, - createInfo, - suballocType, - pAllocations + allocIndex); - if(res != VK_SUCCESS) - { - break; - } - } - } - - if(res != VK_SUCCESS) - { - // Free all already created allocations. - while(allocIndex--) - { - Free(pAllocations[allocIndex]); - } - memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount); - } - - return res; -} - -VkResult VmaBlockVector::AllocatePage( - uint32_t currentFrameIndex, - VkDeviceSize size, - VkDeviceSize alignment, - const VmaAllocationCreateInfo& createInfo, - VmaSuballocationType suballocType, - VmaAllocation* pAllocation) -{ - const bool isUpperAddress = (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0; - bool canMakeOtherLost = (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT) != 0; - const bool mapped = (createInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0; - const bool isUserDataString = (createInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0; - - const bool withinBudget = (createInfo.flags & VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT) != 0; - VkDeviceSize freeMemory; - { - const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex); - VmaBudget heapBudget = {}; - m_hAllocator->GetBudget(&heapBudget, heapIndex, 1); - freeMemory = (heapBudget.usage < heapBudget.budget) ? (heapBudget.budget - heapBudget.usage) : 0; - } - - const bool canFallbackToDedicated = !IsCustomPool(); - const bool canCreateNewBlock = - ((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0) && - (m_Blocks.size() < m_MaxBlockCount) && - (freeMemory >= size || !canFallbackToDedicated); - uint32_t strategy = createInfo.flags & VMA_ALLOCATION_CREATE_STRATEGY_MASK; - - // If linearAlgorithm is used, canMakeOtherLost is available only when used as ring buffer. - // Which in turn is available only when maxBlockCount = 1. - if(m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT && m_MaxBlockCount > 1) - { - canMakeOtherLost = false; - } - - // Upper address can only be used with linear allocator and within single memory block. - if(isUpperAddress && - (m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT || m_MaxBlockCount > 1)) - { - return VK_ERROR_FEATURE_NOT_PRESENT; - } - - // Validate strategy. - switch(strategy) - { - case 0: - strategy = VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT; - break; - case VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT: - case VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT: - case VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT: - break; - default: - return VK_ERROR_FEATURE_NOT_PRESENT; - } - - // Early reject: requested allocation size is larger that maximum block size for this block vector. - if(size + 2 * VMA_DEBUG_MARGIN > m_PreferredBlockSize) - { - return VK_ERROR_OUT_OF_DEVICE_MEMORY; - } - - /* - Under certain condition, this whole section can be skipped for optimization, so - we move on directly to trying to allocate with canMakeOtherLost. That's the case - e.g. for custom pools with linear algorithm. - */ - if(!canMakeOtherLost || canCreateNewBlock) - { - // 1. Search existing allocations. Try to allocate without making other allocations lost. - VmaAllocationCreateFlags allocFlagsCopy = createInfo.flags; - allocFlagsCopy &= ~VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT; - - if(m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) - { - // Use only last block. - if(!m_Blocks.empty()) - { - VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks.back(); - VMA_ASSERT(pCurrBlock); - VkResult res = AllocateFromBlock( - pCurrBlock, - currentFrameIndex, - size, - alignment, - allocFlagsCopy, - createInfo.pUserData, - suballocType, - strategy, - pAllocation); - if(res == VK_SUCCESS) - { - VMA_DEBUG_LOG(" Returned from last block #%u", pCurrBlock->GetId()); - return VK_SUCCESS; - } - } - } - else - { - if(strategy == VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT) - { - // Forward order in m_Blocks - prefer blocks with smallest amount of free space. - for(size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex ) - { - VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex]; - VMA_ASSERT(pCurrBlock); - VkResult res = AllocateFromBlock( - pCurrBlock, - currentFrameIndex, - size, - alignment, - allocFlagsCopy, - createInfo.pUserData, - suballocType, - strategy, - pAllocation); - if(res == VK_SUCCESS) - { - VMA_DEBUG_LOG(" Returned from existing block #%u", pCurrBlock->GetId()); - return VK_SUCCESS; - } - } - } - else // WORST_FIT, FIRST_FIT - { - // Backward order in m_Blocks - prefer blocks with largest amount of free space. - for(size_t blockIndex = m_Blocks.size(); blockIndex--; ) - { - VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex]; - VMA_ASSERT(pCurrBlock); - VkResult res = AllocateFromBlock( - pCurrBlock, - currentFrameIndex, - size, - alignment, - allocFlagsCopy, - createInfo.pUserData, - suballocType, - strategy, - pAllocation); - if(res == VK_SUCCESS) - { - VMA_DEBUG_LOG(" Returned from existing block #%u", pCurrBlock->GetId()); - return VK_SUCCESS; - } - } - } - } - - // 2. Try to create new block. - if(canCreateNewBlock) - { - // Calculate optimal size for new block. - VkDeviceSize newBlockSize = m_PreferredBlockSize; - uint32_t newBlockSizeShift = 0; - const uint32_t NEW_BLOCK_SIZE_SHIFT_MAX = 3; - - if(!m_ExplicitBlockSize) - { - // Allocate 1/8, 1/4, 1/2 as first blocks. - const VkDeviceSize maxExistingBlockSize = CalcMaxBlockSize(); - for(uint32_t i = 0; i < NEW_BLOCK_SIZE_SHIFT_MAX; ++i) - { - const VkDeviceSize smallerNewBlockSize = newBlockSize / 2; - if(smallerNewBlockSize > maxExistingBlockSize && smallerNewBlockSize >= size * 2) - { - newBlockSize = smallerNewBlockSize; - ++newBlockSizeShift; - } - else - { - break; - } - } - } - - size_t newBlockIndex = 0; - VkResult res = (newBlockSize <= freeMemory || !canFallbackToDedicated) ? - CreateBlock(newBlockSize, &newBlockIndex) : VK_ERROR_OUT_OF_DEVICE_MEMORY; - // Allocation of this size failed? Try 1/2, 1/4, 1/8 of m_PreferredBlockSize. - if(!m_ExplicitBlockSize) - { - while(res < 0 && newBlockSizeShift < NEW_BLOCK_SIZE_SHIFT_MAX) - { - const VkDeviceSize smallerNewBlockSize = newBlockSize / 2; - if(smallerNewBlockSize >= size) - { - newBlockSize = smallerNewBlockSize; - ++newBlockSizeShift; - res = (newBlockSize <= freeMemory || !canFallbackToDedicated) ? - CreateBlock(newBlockSize, &newBlockIndex) : VK_ERROR_OUT_OF_DEVICE_MEMORY; - } - else - { - break; - } - } - } - - if(res == VK_SUCCESS) - { - VmaDeviceMemoryBlock* const pBlock = m_Blocks[newBlockIndex]; - VMA_ASSERT(pBlock->m_pMetadata->GetSize() >= size); - - res = AllocateFromBlock( - pBlock, - currentFrameIndex, - size, - alignment, - allocFlagsCopy, - createInfo.pUserData, - suballocType, - strategy, - pAllocation); - if(res == VK_SUCCESS) - { - VMA_DEBUG_LOG(" Created new block #%u Size=%llu", pBlock->GetId(), newBlockSize); - return VK_SUCCESS; - } - else - { - // Allocation from new block failed, possibly due to VMA_DEBUG_MARGIN or alignment. - return VK_ERROR_OUT_OF_DEVICE_MEMORY; - } - } - } - } - - // 3. Try to allocate from existing blocks with making other allocations lost. - if(canMakeOtherLost) - { - uint32_t tryIndex = 0; - for(; tryIndex < VMA_ALLOCATION_TRY_COUNT; ++tryIndex) - { - VmaDeviceMemoryBlock* pBestRequestBlock = VMA_NULL; - VmaAllocationRequest bestRequest = {}; - VkDeviceSize bestRequestCost = VK_WHOLE_SIZE; - - // 1. Search existing allocations. - if(strategy == VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT) - { - // Forward order in m_Blocks - prefer blocks with smallest amount of free space. - for(size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex ) - { - VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex]; - VMA_ASSERT(pCurrBlock); - VmaAllocationRequest currRequest = {}; - if(pCurrBlock->m_pMetadata->CreateAllocationRequest( - currentFrameIndex, - m_FrameInUseCount, - m_BufferImageGranularity, - size, - alignment, - (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0, - suballocType, - canMakeOtherLost, - strategy, - &currRequest)) - { - const VkDeviceSize currRequestCost = currRequest.CalcCost(); - if(pBestRequestBlock == VMA_NULL || - currRequestCost < bestRequestCost) - { - pBestRequestBlock = pCurrBlock; - bestRequest = currRequest; - bestRequestCost = currRequestCost; - - if(bestRequestCost == 0) - { - break; - } - } - } - } - } - else // WORST_FIT, FIRST_FIT - { - // Backward order in m_Blocks - prefer blocks with largest amount of free space. - for(size_t blockIndex = m_Blocks.size(); blockIndex--; ) - { - VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex]; - VMA_ASSERT(pCurrBlock); - VmaAllocationRequest currRequest = {}; - if(pCurrBlock->m_pMetadata->CreateAllocationRequest( - currentFrameIndex, - m_FrameInUseCount, - m_BufferImageGranularity, - size, - alignment, - (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0, - suballocType, - canMakeOtherLost, - strategy, - &currRequest)) - { - const VkDeviceSize currRequestCost = currRequest.CalcCost(); - if(pBestRequestBlock == VMA_NULL || - currRequestCost < bestRequestCost || - strategy == VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT) - { - pBestRequestBlock = pCurrBlock; - bestRequest = currRequest; - bestRequestCost = currRequestCost; - - if(bestRequestCost == 0 || - strategy == VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT) - { - break; - } - } - } - } - } - - if(pBestRequestBlock != VMA_NULL) - { - if(mapped) - { - VkResult res = pBestRequestBlock->Map(m_hAllocator, 1, VMA_NULL); - if(res != VK_SUCCESS) - { - return res; - } - } - - if(pBestRequestBlock->m_pMetadata->MakeRequestedAllocationsLost( - currentFrameIndex, - m_FrameInUseCount, - &bestRequest)) - { - // Allocate from this pBlock. - *pAllocation = m_hAllocator->m_AllocationObjectAllocator.Allocate(); - (*pAllocation)->Ctor(currentFrameIndex, isUserDataString); - pBestRequestBlock->m_pMetadata->Alloc(bestRequest, suballocType, size, *pAllocation); - UpdateHasEmptyBlock(); - (*pAllocation)->InitBlockAllocation( - pBestRequestBlock, - bestRequest.offset, - alignment, - size, - m_MemoryTypeIndex, - suballocType, - mapped, - (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0); - VMA_HEAVY_ASSERT(pBestRequestBlock->Validate()); - VMA_DEBUG_LOG(" Returned from existing block"); - (*pAllocation)->SetUserData(m_hAllocator, createInfo.pUserData); - m_hAllocator->m_Budget.AddAllocation(m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex), size); - if(VMA_DEBUG_INITIALIZE_ALLOCATIONS) - { - m_hAllocator->FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED); - } - if(IsCorruptionDetectionEnabled()) - { - VkResult res = pBestRequestBlock->WriteMagicValueAroundAllocation(m_hAllocator, bestRequest.offset, size); - VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to write magic value."); - } - return VK_SUCCESS; - } - // else: Some allocations must have been touched while we are here. Next try. - } - else - { - // Could not find place in any of the blocks - break outer loop. - break; - } - } - /* Maximum number of tries exceeded - a very unlike event when many other - threads are simultaneously touching allocations making it impossible to make - lost at the same time as we try to allocate. */ - if(tryIndex == VMA_ALLOCATION_TRY_COUNT) - { - return VK_ERROR_TOO_MANY_OBJECTS; - } - } - - return VK_ERROR_OUT_OF_DEVICE_MEMORY; -} - -void VmaBlockVector::Free( - const VmaAllocation hAllocation) -{ - VmaDeviceMemoryBlock* pBlockToDelete = VMA_NULL; - - bool budgetExceeded = false; - { - const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex); - VmaBudget heapBudget = {}; - m_hAllocator->GetBudget(&heapBudget, heapIndex, 1); - budgetExceeded = heapBudget.usage >= heapBudget.budget; - } - - // Scope for lock. - { - VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); - - VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock(); - - if(IsCorruptionDetectionEnabled()) - { - VkResult res = pBlock->ValidateMagicValueAroundAllocation(m_hAllocator, hAllocation->GetOffset(), hAllocation->GetSize()); - VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to validate magic value."); - } - - if(hAllocation->IsPersistentMap()) - { - pBlock->Unmap(m_hAllocator, 1); - } - - pBlock->m_pMetadata->Free(hAllocation); - VMA_HEAVY_ASSERT(pBlock->Validate()); - - VMA_DEBUG_LOG(" Freed from MemoryTypeIndex=%u", m_MemoryTypeIndex); - - const bool canDeleteBlock = m_Blocks.size() > m_MinBlockCount; - // pBlock became empty after this deallocation. - if(pBlock->m_pMetadata->IsEmpty()) - { - // Already has empty block. We don't want to have two, so delete this one. - if((m_HasEmptyBlock || budgetExceeded) && canDeleteBlock) - { - pBlockToDelete = pBlock; - Remove(pBlock); - } - // else: We now have an empty block - leave it. - } - // pBlock didn't become empty, but we have another empty block - find and free that one. - // (This is optional, heuristics.) - else if(m_HasEmptyBlock && canDeleteBlock) - { - VmaDeviceMemoryBlock* pLastBlock = m_Blocks.back(); - if(pLastBlock->m_pMetadata->IsEmpty()) - { - pBlockToDelete = pLastBlock; - m_Blocks.pop_back(); - } - } - - UpdateHasEmptyBlock(); - IncrementallySortBlocks(); - } - - // Destruction of a free block. Deferred until this point, outside of mutex - // lock, for performance reason. - if(pBlockToDelete != VMA_NULL) - { - VMA_DEBUG_LOG(" Deleted empty block"); - pBlockToDelete->Destroy(m_hAllocator); - vma_delete(m_hAllocator, pBlockToDelete); - } -} - -VkDeviceSize VmaBlockVector::CalcMaxBlockSize() const -{ - VkDeviceSize result = 0; - for(size_t i = m_Blocks.size(); i--; ) - { - result = VMA_MAX(result, m_Blocks[i]->m_pMetadata->GetSize()); - if(result >= m_PreferredBlockSize) - { - break; - } - } - return result; -} - -void VmaBlockVector::Remove(VmaDeviceMemoryBlock* pBlock) -{ - for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) - { - if(m_Blocks[blockIndex] == pBlock) - { - VmaVectorRemove(m_Blocks, blockIndex); - return; - } - } - VMA_ASSERT(0); -} - -void VmaBlockVector::IncrementallySortBlocks() -{ - if(m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) - { - // Bubble sort only until first swap. - for(size_t i = 1; i < m_Blocks.size(); ++i) - { - if(m_Blocks[i - 1]->m_pMetadata->GetSumFreeSize() > m_Blocks[i]->m_pMetadata->GetSumFreeSize()) - { - VMA_SWAP(m_Blocks[i - 1], m_Blocks[i]); - return; - } - } - } -} - -VkResult VmaBlockVector::AllocateFromBlock( - VmaDeviceMemoryBlock* pBlock, - uint32_t currentFrameIndex, - VkDeviceSize size, - VkDeviceSize alignment, - VmaAllocationCreateFlags allocFlags, - void* pUserData, - VmaSuballocationType suballocType, - uint32_t strategy, - VmaAllocation* pAllocation) -{ - VMA_ASSERT((allocFlags & VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT) == 0); - const bool isUpperAddress = (allocFlags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0; - const bool mapped = (allocFlags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0; - const bool isUserDataString = (allocFlags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0; - - VmaAllocationRequest currRequest = {}; - if(pBlock->m_pMetadata->CreateAllocationRequest( - currentFrameIndex, - m_FrameInUseCount, - m_BufferImageGranularity, - size, - alignment, - isUpperAddress, - suballocType, - false, // canMakeOtherLost - strategy, - &currRequest)) - { - // Allocate from pCurrBlock. - VMA_ASSERT(currRequest.itemsToMakeLostCount == 0); - - if(mapped) - { - VkResult res = pBlock->Map(m_hAllocator, 1, VMA_NULL); - if(res != VK_SUCCESS) - { - return res; - } - } - - *pAllocation = m_hAllocator->m_AllocationObjectAllocator.Allocate(); - (*pAllocation)->Ctor(currentFrameIndex, isUserDataString); - pBlock->m_pMetadata->Alloc(currRequest, suballocType, size, *pAllocation); - UpdateHasEmptyBlock(); - (*pAllocation)->InitBlockAllocation( - pBlock, - currRequest.offset, - alignment, - size, - m_MemoryTypeIndex, - suballocType, - mapped, - (allocFlags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0); - VMA_HEAVY_ASSERT(pBlock->Validate()); - (*pAllocation)->SetUserData(m_hAllocator, pUserData); - m_hAllocator->m_Budget.AddAllocation(m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex), size); - if(VMA_DEBUG_INITIALIZE_ALLOCATIONS) - { - m_hAllocator->FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED); - } - if(IsCorruptionDetectionEnabled()) - { - VkResult res = pBlock->WriteMagicValueAroundAllocation(m_hAllocator, currRequest.offset, size); - VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to write magic value."); - } - return VK_SUCCESS; - } - return VK_ERROR_OUT_OF_DEVICE_MEMORY; -} - -VkResult VmaBlockVector::CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex) -{ - VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO }; - allocInfo.memoryTypeIndex = m_MemoryTypeIndex; - allocInfo.allocationSize = blockSize; - VkDeviceMemory mem = VK_NULL_HANDLE; - VkResult res = m_hAllocator->AllocateVulkanMemory(&allocInfo, &mem); - if(res < 0) - { - return res; - } - - // New VkDeviceMemory successfully created. - - // Create new Allocation for it. - VmaDeviceMemoryBlock* const pBlock = vma_new(m_hAllocator, VmaDeviceMemoryBlock)(m_hAllocator); - pBlock->Init( - m_hAllocator, - m_hParentPool, - m_MemoryTypeIndex, - mem, - allocInfo.allocationSize, - m_NextBlockId++, - m_Algorithm); - - m_Blocks.push_back(pBlock); - if(pNewBlockIndex != VMA_NULL) - { - *pNewBlockIndex = m_Blocks.size() - 1; - } - - return VK_SUCCESS; -} - -void VmaBlockVector::ApplyDefragmentationMovesCpu( - class VmaBlockVectorDefragmentationContext* pDefragCtx, - const VmaVector< VmaDefragmentationMove, VmaStlAllocator >& moves) -{ - const size_t blockCount = m_Blocks.size(); - const bool isNonCoherent = m_hAllocator->IsMemoryTypeNonCoherent(m_MemoryTypeIndex); - - enum BLOCK_FLAG - { - BLOCK_FLAG_USED = 0x00000001, - BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION = 0x00000002, - }; - - struct BlockInfo - { - uint32_t flags; - void* pMappedData; - }; - VmaVector< BlockInfo, VmaStlAllocator > - blockInfo(blockCount, BlockInfo(), VmaStlAllocator(m_hAllocator->GetAllocationCallbacks())); - memset(blockInfo.data(), 0, blockCount * sizeof(BlockInfo)); - - // Go over all moves. Mark blocks that are used with BLOCK_FLAG_USED. - const size_t moveCount = moves.size(); - for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex) - { - const VmaDefragmentationMove& move = moves[moveIndex]; - blockInfo[move.srcBlockIndex].flags |= BLOCK_FLAG_USED; - blockInfo[move.dstBlockIndex].flags |= BLOCK_FLAG_USED; - } - - VMA_ASSERT(pDefragCtx->res == VK_SUCCESS); - - // Go over all blocks. Get mapped pointer or map if necessary. - for(size_t blockIndex = 0; pDefragCtx->res == VK_SUCCESS && blockIndex < blockCount; ++blockIndex) - { - BlockInfo& currBlockInfo = blockInfo[blockIndex]; - VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex]; - if((currBlockInfo.flags & BLOCK_FLAG_USED) != 0) - { - currBlockInfo.pMappedData = pBlock->GetMappedData(); - // It is not originally mapped - map it. - if(currBlockInfo.pMappedData == VMA_NULL) - { - pDefragCtx->res = pBlock->Map(m_hAllocator, 1, &currBlockInfo.pMappedData); - if(pDefragCtx->res == VK_SUCCESS) - { - currBlockInfo.flags |= BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION; - } - } - } - } - - // Go over all moves. Do actual data transfer. - if(pDefragCtx->res == VK_SUCCESS) - { - const VkDeviceSize nonCoherentAtomSize = m_hAllocator->m_PhysicalDeviceProperties.limits.nonCoherentAtomSize; - VkMappedMemoryRange memRange = { VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE }; - - for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex) - { - const VmaDefragmentationMove& move = moves[moveIndex]; - - const BlockInfo& srcBlockInfo = blockInfo[move.srcBlockIndex]; - const BlockInfo& dstBlockInfo = blockInfo[move.dstBlockIndex]; - - VMA_ASSERT(srcBlockInfo.pMappedData && dstBlockInfo.pMappedData); - - // Invalidate source. - if(isNonCoherent) - { - VmaDeviceMemoryBlock* const pSrcBlock = m_Blocks[move.srcBlockIndex]; - memRange.memory = pSrcBlock->GetDeviceMemory(); - memRange.offset = VmaAlignDown(move.srcOffset, nonCoherentAtomSize); - memRange.size = VMA_MIN( - VmaAlignUp(move.size + (move.srcOffset - memRange.offset), nonCoherentAtomSize), - pSrcBlock->m_pMetadata->GetSize() - memRange.offset); - (*m_hAllocator->GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hAllocator->m_hDevice, 1, &memRange); - } - - // THE PLACE WHERE ACTUAL DATA COPY HAPPENS. - memmove( - reinterpret_cast(dstBlockInfo.pMappedData) + move.dstOffset, - reinterpret_cast(srcBlockInfo.pMappedData) + move.srcOffset, - static_cast(move.size)); - - if(IsCorruptionDetectionEnabled()) - { - VmaWriteMagicValue(dstBlockInfo.pMappedData, move.dstOffset - VMA_DEBUG_MARGIN); - VmaWriteMagicValue(dstBlockInfo.pMappedData, move.dstOffset + move.size); - } - - // Flush destination. - if(isNonCoherent) - { - VmaDeviceMemoryBlock* const pDstBlock = m_Blocks[move.dstBlockIndex]; - memRange.memory = pDstBlock->GetDeviceMemory(); - memRange.offset = VmaAlignDown(move.dstOffset, nonCoherentAtomSize); - memRange.size = VMA_MIN( - VmaAlignUp(move.size + (move.dstOffset - memRange.offset), nonCoherentAtomSize), - pDstBlock->m_pMetadata->GetSize() - memRange.offset); - (*m_hAllocator->GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hAllocator->m_hDevice, 1, &memRange); - } - } - } - - // Go over all blocks in reverse order. Unmap those that were mapped just for defragmentation. - // Regardless of pCtx->res == VK_SUCCESS. - for(size_t blockIndex = blockCount; blockIndex--; ) - { - const BlockInfo& currBlockInfo = blockInfo[blockIndex]; - if((currBlockInfo.flags & BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION) != 0) - { - VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex]; - pBlock->Unmap(m_hAllocator, 1); - } - } -} - -void VmaBlockVector::ApplyDefragmentationMovesGpu( - class VmaBlockVectorDefragmentationContext* pDefragCtx, - VmaVector< VmaDefragmentationMove, VmaStlAllocator >& moves, - VkCommandBuffer commandBuffer) -{ - const size_t blockCount = m_Blocks.size(); - - pDefragCtx->blockContexts.resize(blockCount); - memset(pDefragCtx->blockContexts.data(), 0, blockCount * sizeof(VmaBlockDefragmentationContext)); - - // Go over all moves. Mark blocks that are used with BLOCK_FLAG_USED. - const size_t moveCount = moves.size(); - for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex) - { - const VmaDefragmentationMove& move = moves[moveIndex]; - - //if(move.type == VMA_ALLOCATION_TYPE_UNKNOWN) - { - // Old school move still require us to map the whole block - pDefragCtx->blockContexts[move.srcBlockIndex].flags |= VmaBlockDefragmentationContext::BLOCK_FLAG_USED; - pDefragCtx->blockContexts[move.dstBlockIndex].flags |= VmaBlockDefragmentationContext::BLOCK_FLAG_USED; - } - } - - VMA_ASSERT(pDefragCtx->res == VK_SUCCESS); - - // Go over all blocks. Create and bind buffer for whole block if necessary. - { - VkBufferCreateInfo bufCreateInfo; - VmaFillGpuDefragmentationBufferCreateInfo(bufCreateInfo); - - for(size_t blockIndex = 0; pDefragCtx->res == VK_SUCCESS && blockIndex < blockCount; ++blockIndex) - { - VmaBlockDefragmentationContext& currBlockCtx = pDefragCtx->blockContexts[blockIndex]; - VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex]; - if((currBlockCtx.flags & VmaBlockDefragmentationContext::BLOCK_FLAG_USED) != 0) - { - bufCreateInfo.size = pBlock->m_pMetadata->GetSize(); - pDefragCtx->res = (*m_hAllocator->GetVulkanFunctions().vkCreateBuffer)( - m_hAllocator->m_hDevice, &bufCreateInfo, m_hAllocator->GetAllocationCallbacks(), &currBlockCtx.hBuffer); - if(pDefragCtx->res == VK_SUCCESS) - { - pDefragCtx->res = (*m_hAllocator->GetVulkanFunctions().vkBindBufferMemory)( - m_hAllocator->m_hDevice, currBlockCtx.hBuffer, pBlock->GetDeviceMemory(), 0); - } - } - } - } - - // Go over all moves. Post data transfer commands to command buffer. - if(pDefragCtx->res == VK_SUCCESS) - { - for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex) - { - const VmaDefragmentationMove& move = moves[moveIndex]; - - const VmaBlockDefragmentationContext& srcBlockCtx = pDefragCtx->blockContexts[move.srcBlockIndex]; - const VmaBlockDefragmentationContext& dstBlockCtx = pDefragCtx->blockContexts[move.dstBlockIndex]; - - VMA_ASSERT(srcBlockCtx.hBuffer && dstBlockCtx.hBuffer); - - VkBufferCopy region = { - move.srcOffset, - move.dstOffset, - move.size }; - (*m_hAllocator->GetVulkanFunctions().vkCmdCopyBuffer)( - commandBuffer, srcBlockCtx.hBuffer, dstBlockCtx.hBuffer, 1, ®ion); - } - } - - // Save buffers to defrag context for later destruction. - if(pDefragCtx->res == VK_SUCCESS && moveCount > 0) - { - pDefragCtx->res = VK_NOT_READY; - } -} - -void VmaBlockVector::FreeEmptyBlocks(VmaDefragmentationStats* pDefragmentationStats) -{ - for(size_t blockIndex = m_Blocks.size(); blockIndex--; ) - { - VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex]; - if(pBlock->m_pMetadata->IsEmpty()) - { - if(m_Blocks.size() > m_MinBlockCount) - { - if(pDefragmentationStats != VMA_NULL) - { - ++pDefragmentationStats->deviceMemoryBlocksFreed; - pDefragmentationStats->bytesFreed += pBlock->m_pMetadata->GetSize(); - } - - VmaVectorRemove(m_Blocks, blockIndex); - pBlock->Destroy(m_hAllocator); - vma_delete(m_hAllocator, pBlock); - } - else - { - break; - } - } - } - UpdateHasEmptyBlock(); -} - -void VmaBlockVector::UpdateHasEmptyBlock() -{ - m_HasEmptyBlock = false; - for(size_t index = 0, count = m_Blocks.size(); index < count; ++index) - { - VmaDeviceMemoryBlock* const pBlock = m_Blocks[index]; - if(pBlock->m_pMetadata->IsEmpty()) - { - m_HasEmptyBlock = true; - break; - } - } -} - -#if VMA_STATS_STRING_ENABLED - -void VmaBlockVector::PrintDetailedMap(class VmaJsonWriter& json) -{ - VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); - - json.BeginObject(); - - if(IsCustomPool()) - { - const char* poolName = m_hParentPool->GetName(); - if(poolName != VMA_NULL && poolName[0] != '\0') - { - json.WriteString("Name"); - json.WriteString(poolName); - } - - json.WriteString("MemoryTypeIndex"); - json.WriteNumber(m_MemoryTypeIndex); - - json.WriteString("BlockSize"); - json.WriteNumber(m_PreferredBlockSize); - - json.WriteString("BlockCount"); - json.BeginObject(true); - if(m_MinBlockCount > 0) - { - json.WriteString("Min"); - json.WriteNumber((uint64_t)m_MinBlockCount); - } - if(m_MaxBlockCount < SIZE_MAX) - { - json.WriteString("Max"); - json.WriteNumber((uint64_t)m_MaxBlockCount); - } - json.WriteString("Cur"); - json.WriteNumber((uint64_t)m_Blocks.size()); - json.EndObject(); - - if(m_FrameInUseCount > 0) - { - json.WriteString("FrameInUseCount"); - json.WriteNumber(m_FrameInUseCount); - } - - if(m_Algorithm != 0) - { - json.WriteString("Algorithm"); - json.WriteString(VmaAlgorithmToStr(m_Algorithm)); - } - } - else - { - json.WriteString("PreferredBlockSize"); - json.WriteNumber(m_PreferredBlockSize); - } - - json.WriteString("Blocks"); - json.BeginObject(); - for(size_t i = 0; i < m_Blocks.size(); ++i) - { - json.BeginString(); - json.ContinueString(m_Blocks[i]->GetId()); - json.EndString(); - - m_Blocks[i]->m_pMetadata->PrintDetailedMap(json); - } - json.EndObject(); - - json.EndObject(); -} - -#endif // #if VMA_STATS_STRING_ENABLED - -void VmaBlockVector::Defragment( - class VmaBlockVectorDefragmentationContext* pCtx, - VmaDefragmentationStats* pStats, VmaDefragmentationFlags flags, - VkDeviceSize& maxCpuBytesToMove, uint32_t& maxCpuAllocationsToMove, - VkDeviceSize& maxGpuBytesToMove, uint32_t& maxGpuAllocationsToMove, - VkCommandBuffer commandBuffer) -{ - pCtx->res = VK_SUCCESS; - - const VkMemoryPropertyFlags memPropFlags = - m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags; - const bool isHostVisible = (memPropFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0; - - const bool canDefragmentOnCpu = maxCpuBytesToMove > 0 && maxCpuAllocationsToMove > 0 && - isHostVisible; - const bool canDefragmentOnGpu = maxGpuBytesToMove > 0 && maxGpuAllocationsToMove > 0 && - !IsCorruptionDetectionEnabled() && - ((1u << m_MemoryTypeIndex) & m_hAllocator->GetGpuDefragmentationMemoryTypeBits()) != 0; - - // There are options to defragment this memory type. - if(canDefragmentOnCpu || canDefragmentOnGpu) - { - bool defragmentOnGpu; - // There is only one option to defragment this memory type. - if(canDefragmentOnGpu != canDefragmentOnCpu) - { - defragmentOnGpu = canDefragmentOnGpu; - } - // Both options are available: Heuristics to choose the best one. - else - { - defragmentOnGpu = (memPropFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0 || - m_hAllocator->IsIntegratedGpu(); - } - - bool overlappingMoveSupported = !defragmentOnGpu; - - if(m_hAllocator->m_UseMutex) - { - if(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL) - { - if(!m_Mutex.TryLockWrite()) - { - pCtx->res = VK_ERROR_INITIALIZATION_FAILED; - return; - } - } - else - { - m_Mutex.LockWrite(); - pCtx->mutexLocked = true; - } - } - - pCtx->Begin(overlappingMoveSupported, flags); - - // Defragment. - - const VkDeviceSize maxBytesToMove = defragmentOnGpu ? maxGpuBytesToMove : maxCpuBytesToMove; - const uint32_t maxAllocationsToMove = defragmentOnGpu ? maxGpuAllocationsToMove : maxCpuAllocationsToMove; - pCtx->res = pCtx->GetAlgorithm()->Defragment(pCtx->defragmentationMoves, maxBytesToMove, maxAllocationsToMove, flags); - - // Accumulate statistics. - if(pStats != VMA_NULL) - { - const VkDeviceSize bytesMoved = pCtx->GetAlgorithm()->GetBytesMoved(); - const uint32_t allocationsMoved = pCtx->GetAlgorithm()->GetAllocationsMoved(); - pStats->bytesMoved += bytesMoved; - pStats->allocationsMoved += allocationsMoved; - VMA_ASSERT(bytesMoved <= maxBytesToMove); - VMA_ASSERT(allocationsMoved <= maxAllocationsToMove); - if(defragmentOnGpu) - { - maxGpuBytesToMove -= bytesMoved; - maxGpuAllocationsToMove -= allocationsMoved; - } - else - { - maxCpuBytesToMove -= bytesMoved; - maxCpuAllocationsToMove -= allocationsMoved; - } - } - - if(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL) - { - if(m_hAllocator->m_UseMutex) - m_Mutex.UnlockWrite(); - - if(pCtx->res >= VK_SUCCESS && !pCtx->defragmentationMoves.empty()) - pCtx->res = VK_NOT_READY; - - return; - } - - if(pCtx->res >= VK_SUCCESS) - { - if(defragmentOnGpu) - { - ApplyDefragmentationMovesGpu(pCtx, pCtx->defragmentationMoves, commandBuffer); - } - else - { - ApplyDefragmentationMovesCpu(pCtx, pCtx->defragmentationMoves); - } - } - } -} - -void VmaBlockVector::DefragmentationEnd( - class VmaBlockVectorDefragmentationContext* pCtx, - VmaDefragmentationStats* pStats) -{ - // Destroy buffers. - for(size_t blockIndex = pCtx->blockContexts.size(); blockIndex--; ) - { - VmaBlockDefragmentationContext& blockCtx = pCtx->blockContexts[blockIndex]; - if(blockCtx.hBuffer) - { - (*m_hAllocator->GetVulkanFunctions().vkDestroyBuffer)( - m_hAllocator->m_hDevice, blockCtx.hBuffer, m_hAllocator->GetAllocationCallbacks()); - } - } - - if(pCtx->res >= VK_SUCCESS) - { - FreeEmptyBlocks(pStats); - } - - if(pCtx->mutexLocked) - { - VMA_ASSERT(m_hAllocator->m_UseMutex); - m_Mutex.UnlockWrite(); - } -} - -uint32_t VmaBlockVector::ProcessDefragmentations( - class VmaBlockVectorDefragmentationContext *pCtx, - VmaDefragmentationPassMoveInfo* pMove, uint32_t maxMoves) -{ - VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); - - const uint32_t moveCount = std::min(uint32_t(pCtx->defragmentationMoves.size()) - pCtx->defragmentationMovesProcessed, maxMoves); - - for(uint32_t i = pCtx->defragmentationMovesProcessed; i < moveCount; ++ i) - { - VmaDefragmentationMove& move = pCtx->defragmentationMoves[i]; - - pMove->allocation = move.hAllocation; - pMove->memory = move.pDstBlock->GetDeviceMemory(); - pMove->offset = move.dstOffset; - - ++ pMove; - } - - pCtx->defragmentationMovesProcessed += moveCount; - - return moveCount; -} - -void VmaBlockVector::CommitDefragmentations( - class VmaBlockVectorDefragmentationContext *pCtx, - VmaDefragmentationStats* pStats) -{ - VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); - - for(uint32_t i = pCtx->defragmentationMovesCommitted; i < pCtx->defragmentationMovesProcessed; ++ i) - { - const VmaDefragmentationMove &move = pCtx->defragmentationMoves[i]; - - move.pSrcBlock->m_pMetadata->FreeAtOffset(move.srcOffset); - move.hAllocation->ChangeBlockAllocation(m_hAllocator, move.pDstBlock, move.dstOffset); - } - - pCtx->defragmentationMovesCommitted = pCtx->defragmentationMovesProcessed; - FreeEmptyBlocks(pStats); -} - -size_t VmaBlockVector::CalcAllocationCount() const -{ - size_t result = 0; - for(size_t i = 0; i < m_Blocks.size(); ++i) - { - result += m_Blocks[i]->m_pMetadata->GetAllocationCount(); - } - return result; -} - -bool VmaBlockVector::IsBufferImageGranularityConflictPossible() const -{ - if(m_BufferImageGranularity == 1) - { - return false; - } - VmaSuballocationType lastSuballocType = VMA_SUBALLOCATION_TYPE_FREE; - for(size_t i = 0, count = m_Blocks.size(); i < count; ++i) - { - VmaDeviceMemoryBlock* const pBlock = m_Blocks[i]; - VMA_ASSERT(m_Algorithm == 0); - VmaBlockMetadata_Generic* const pMetadata = (VmaBlockMetadata_Generic*)pBlock->m_pMetadata; - if(pMetadata->IsBufferImageGranularityConflictPossible(m_BufferImageGranularity, lastSuballocType)) - { - return true; - } - } - return false; -} - -void VmaBlockVector::MakePoolAllocationsLost( - uint32_t currentFrameIndex, - size_t* pLostAllocationCount) -{ - VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); - size_t lostAllocationCount = 0; - for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) - { - VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex]; - VMA_ASSERT(pBlock); - lostAllocationCount += pBlock->m_pMetadata->MakeAllocationsLost(currentFrameIndex, m_FrameInUseCount); - } - if(pLostAllocationCount != VMA_NULL) - { - *pLostAllocationCount = lostAllocationCount; - } -} - -VkResult VmaBlockVector::CheckCorruption() -{ - if(!IsCorruptionDetectionEnabled()) - { - return VK_ERROR_FEATURE_NOT_PRESENT; - } - - VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); - for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) - { - VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex]; - VMA_ASSERT(pBlock); - VkResult res = pBlock->CheckCorruption(m_hAllocator); - if(res != VK_SUCCESS) - { - return res; - } - } - return VK_SUCCESS; -} - -void VmaBlockVector::AddStats(VmaStats* pStats) -{ - const uint32_t memTypeIndex = m_MemoryTypeIndex; - const uint32_t memHeapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(memTypeIndex); - - VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); - - for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) - { - const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex]; - VMA_ASSERT(pBlock); - VMA_HEAVY_ASSERT(pBlock->Validate()); - VmaStatInfo allocationStatInfo; - pBlock->m_pMetadata->CalcAllocationStatInfo(allocationStatInfo); - VmaAddStatInfo(pStats->total, allocationStatInfo); - VmaAddStatInfo(pStats->memoryType[memTypeIndex], allocationStatInfo); - VmaAddStatInfo(pStats->memoryHeap[memHeapIndex], allocationStatInfo); - } -} - -//////////////////////////////////////////////////////////////////////////////// -// VmaDefragmentationAlgorithm_Generic members definition - -VmaDefragmentationAlgorithm_Generic::VmaDefragmentationAlgorithm_Generic( - VmaAllocator hAllocator, - VmaBlockVector* pBlockVector, - uint32_t currentFrameIndex, - bool overlappingMoveSupported) : - VmaDefragmentationAlgorithm(hAllocator, pBlockVector, currentFrameIndex), - m_AllocationCount(0), - m_AllAllocations(false), - m_BytesMoved(0), - m_AllocationsMoved(0), - m_Blocks(VmaStlAllocator(hAllocator->GetAllocationCallbacks())) -{ - // Create block info for each block. - const size_t blockCount = m_pBlockVector->m_Blocks.size(); - for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) - { - BlockInfo* pBlockInfo = vma_new(m_hAllocator, BlockInfo)(m_hAllocator->GetAllocationCallbacks()); - pBlockInfo->m_OriginalBlockIndex = blockIndex; - pBlockInfo->m_pBlock = m_pBlockVector->m_Blocks[blockIndex]; - m_Blocks.push_back(pBlockInfo); - } - - // Sort them by m_pBlock pointer value. - VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockPointerLess()); -} - -VmaDefragmentationAlgorithm_Generic::~VmaDefragmentationAlgorithm_Generic() -{ - for(size_t i = m_Blocks.size(); i--; ) - { - vma_delete(m_hAllocator, m_Blocks[i]); - } -} - -void VmaDefragmentationAlgorithm_Generic::AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged) -{ - // Now as we are inside VmaBlockVector::m_Mutex, we can make final check if this allocation was not lost. - if(hAlloc->GetLastUseFrameIndex() != VMA_FRAME_INDEX_LOST) - { - VmaDeviceMemoryBlock* pBlock = hAlloc->GetBlock(); - BlockInfoVector::iterator it = VmaBinaryFindFirstNotLess(m_Blocks.begin(), m_Blocks.end(), pBlock, BlockPointerLess()); - if(it != m_Blocks.end() && (*it)->m_pBlock == pBlock) - { - AllocationInfo allocInfo = AllocationInfo(hAlloc, pChanged); - (*it)->m_Allocations.push_back(allocInfo); - } - else - { - VMA_ASSERT(0); - } - - ++m_AllocationCount; - } -} - -VkResult VmaDefragmentationAlgorithm_Generic::DefragmentRound( - VmaVector< VmaDefragmentationMove, VmaStlAllocator >& moves, - VkDeviceSize maxBytesToMove, - uint32_t maxAllocationsToMove, - bool freeOldAllocations) -{ - if(m_Blocks.empty()) - { - return VK_SUCCESS; - } - - // This is a choice based on research. - // Option 1: - uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT; - // Option 2: - //uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT; - // Option 3: - //uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_FRAGMENTATION_BIT; - - size_t srcBlockMinIndex = 0; - // When FAST_ALGORITHM, move allocations from only last out of blocks that contain non-movable allocations. - /* - if(m_AlgorithmFlags & VMA_DEFRAGMENTATION_FAST_ALGORITHM_BIT) - { - const size_t blocksWithNonMovableCount = CalcBlocksWithNonMovableCount(); - if(blocksWithNonMovableCount > 0) - { - srcBlockMinIndex = blocksWithNonMovableCount - 1; - } - } - */ - - size_t srcBlockIndex = m_Blocks.size() - 1; - size_t srcAllocIndex = SIZE_MAX; - for(;;) - { - // 1. Find next allocation to move. - // 1.1. Start from last to first m_Blocks - they are sorted from most "destination" to most "source". - // 1.2. Then start from last to first m_Allocations. - while(srcAllocIndex >= m_Blocks[srcBlockIndex]->m_Allocations.size()) - { - if(m_Blocks[srcBlockIndex]->m_Allocations.empty()) - { - // Finished: no more allocations to process. - if(srcBlockIndex == srcBlockMinIndex) - { - return VK_SUCCESS; - } - else - { - --srcBlockIndex; - srcAllocIndex = SIZE_MAX; - } - } - else - { - srcAllocIndex = m_Blocks[srcBlockIndex]->m_Allocations.size() - 1; - } - } - - BlockInfo* pSrcBlockInfo = m_Blocks[srcBlockIndex]; - AllocationInfo& allocInfo = pSrcBlockInfo->m_Allocations[srcAllocIndex]; - - const VkDeviceSize size = allocInfo.m_hAllocation->GetSize(); - const VkDeviceSize srcOffset = allocInfo.m_hAllocation->GetOffset(); - const VkDeviceSize alignment = allocInfo.m_hAllocation->GetAlignment(); - const VmaSuballocationType suballocType = allocInfo.m_hAllocation->GetSuballocationType(); - - // 2. Try to find new place for this allocation in preceding or current block. - for(size_t dstBlockIndex = 0; dstBlockIndex <= srcBlockIndex; ++dstBlockIndex) - { - BlockInfo* pDstBlockInfo = m_Blocks[dstBlockIndex]; - VmaAllocationRequest dstAllocRequest; - if(pDstBlockInfo->m_pBlock->m_pMetadata->CreateAllocationRequest( - m_CurrentFrameIndex, - m_pBlockVector->GetFrameInUseCount(), - m_pBlockVector->GetBufferImageGranularity(), - size, - alignment, - false, // upperAddress - suballocType, - false, // canMakeOtherLost - strategy, - &dstAllocRequest) && - MoveMakesSense( - dstBlockIndex, dstAllocRequest.offset, srcBlockIndex, srcOffset)) - { - VMA_ASSERT(dstAllocRequest.itemsToMakeLostCount == 0); - - // Reached limit on number of allocations or bytes to move. - if((m_AllocationsMoved + 1 > maxAllocationsToMove) || - (m_BytesMoved + size > maxBytesToMove)) - { - return VK_SUCCESS; - } - - VmaDefragmentationMove move = {}; - move.srcBlockIndex = pSrcBlockInfo->m_OriginalBlockIndex; - move.dstBlockIndex = pDstBlockInfo->m_OriginalBlockIndex; - move.srcOffset = srcOffset; - move.dstOffset = dstAllocRequest.offset; - move.size = size; - move.hAllocation = allocInfo.m_hAllocation; - move.pSrcBlock = pSrcBlockInfo->m_pBlock; - move.pDstBlock = pDstBlockInfo->m_pBlock; - - moves.push_back(move); - - pDstBlockInfo->m_pBlock->m_pMetadata->Alloc( - dstAllocRequest, - suballocType, - size, - allocInfo.m_hAllocation); - - if(freeOldAllocations) - { - pSrcBlockInfo->m_pBlock->m_pMetadata->FreeAtOffset(srcOffset); - allocInfo.m_hAllocation->ChangeBlockAllocation(m_hAllocator, pDstBlockInfo->m_pBlock, dstAllocRequest.offset); - } - - if(allocInfo.m_pChanged != VMA_NULL) - { - *allocInfo.m_pChanged = VK_TRUE; - } - - ++m_AllocationsMoved; - m_BytesMoved += size; - - VmaVectorRemove(pSrcBlockInfo->m_Allocations, srcAllocIndex); - - break; - } - } - - // If not processed, this allocInfo remains in pBlockInfo->m_Allocations for next round. - - if(srcAllocIndex > 0) - { - --srcAllocIndex; - } - else - { - if(srcBlockIndex > 0) - { - --srcBlockIndex; - srcAllocIndex = SIZE_MAX; - } - else - { - return VK_SUCCESS; - } - } - } -} - -size_t VmaDefragmentationAlgorithm_Generic::CalcBlocksWithNonMovableCount() const -{ - size_t result = 0; - for(size_t i = 0; i < m_Blocks.size(); ++i) - { - if(m_Blocks[i]->m_HasNonMovableAllocations) - { - ++result; - } - } - return result; -} - -VkResult VmaDefragmentationAlgorithm_Generic::Defragment( - VmaVector< VmaDefragmentationMove, VmaStlAllocator >& moves, - VkDeviceSize maxBytesToMove, - uint32_t maxAllocationsToMove, - VmaDefragmentationFlags flags) -{ - if(!m_AllAllocations && m_AllocationCount == 0) - { - return VK_SUCCESS; - } - - const size_t blockCount = m_Blocks.size(); - for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) - { - BlockInfo* pBlockInfo = m_Blocks[blockIndex]; - - if(m_AllAllocations) - { - VmaBlockMetadata_Generic* pMetadata = (VmaBlockMetadata_Generic*)pBlockInfo->m_pBlock->m_pMetadata; - for(VmaSuballocationList::const_iterator it = pMetadata->m_Suballocations.begin(); - it != pMetadata->m_Suballocations.end(); - ++it) - { - if(it->type != VMA_SUBALLOCATION_TYPE_FREE) - { - AllocationInfo allocInfo = AllocationInfo(it->hAllocation, VMA_NULL); - pBlockInfo->m_Allocations.push_back(allocInfo); - } - } - } - - pBlockInfo->CalcHasNonMovableAllocations(); - - // This is a choice based on research. - // Option 1: - pBlockInfo->SortAllocationsByOffsetDescending(); - // Option 2: - //pBlockInfo->SortAllocationsBySizeDescending(); - } - - // Sort m_Blocks this time by the main criterium, from most "destination" to most "source" blocks. - VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockInfoCompareMoveDestination()); - - // This is a choice based on research. - const uint32_t roundCount = 2; - - // Execute defragmentation rounds (the main part). - VkResult result = VK_SUCCESS; - for(uint32_t round = 0; (round < roundCount) && (result == VK_SUCCESS); ++round) - { - result = DefragmentRound(moves, maxBytesToMove, maxAllocationsToMove, !(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL)); - } - - return result; -} - -bool VmaDefragmentationAlgorithm_Generic::MoveMakesSense( - size_t dstBlockIndex, VkDeviceSize dstOffset, - size_t srcBlockIndex, VkDeviceSize srcOffset) -{ - if(dstBlockIndex < srcBlockIndex) - { - return true; - } - if(dstBlockIndex > srcBlockIndex) - { - return false; - } - if(dstOffset < srcOffset) - { - return true; - } - return false; -} - -//////////////////////////////////////////////////////////////////////////////// -// VmaDefragmentationAlgorithm_Fast - -VmaDefragmentationAlgorithm_Fast::VmaDefragmentationAlgorithm_Fast( - VmaAllocator hAllocator, - VmaBlockVector* pBlockVector, - uint32_t currentFrameIndex, - bool overlappingMoveSupported) : - VmaDefragmentationAlgorithm(hAllocator, pBlockVector, currentFrameIndex), - m_OverlappingMoveSupported(overlappingMoveSupported), - m_AllocationCount(0), - m_AllAllocations(false), - m_BytesMoved(0), - m_AllocationsMoved(0), - m_BlockInfos(VmaStlAllocator(hAllocator->GetAllocationCallbacks())) -{ - VMA_ASSERT(VMA_DEBUG_MARGIN == 0); - -} - -VmaDefragmentationAlgorithm_Fast::~VmaDefragmentationAlgorithm_Fast() -{ -} - -VkResult VmaDefragmentationAlgorithm_Fast::Defragment( - VmaVector< VmaDefragmentationMove, VmaStlAllocator >& moves, - VkDeviceSize maxBytesToMove, - uint32_t maxAllocationsToMove, - VmaDefragmentationFlags flags) -{ - VMA_ASSERT(m_AllAllocations || m_pBlockVector->CalcAllocationCount() == m_AllocationCount); - - const size_t blockCount = m_pBlockVector->GetBlockCount(); - if(blockCount == 0 || maxBytesToMove == 0 || maxAllocationsToMove == 0) - { - return VK_SUCCESS; - } - - PreprocessMetadata(); - - // Sort blocks in order from most destination. - - m_BlockInfos.resize(blockCount); - for(size_t i = 0; i < blockCount; ++i) - { - m_BlockInfos[i].origBlockIndex = i; - } - - VMA_SORT(m_BlockInfos.begin(), m_BlockInfos.end(), [this](const BlockInfo& lhs, const BlockInfo& rhs) -> bool { - return m_pBlockVector->GetBlock(lhs.origBlockIndex)->m_pMetadata->GetSumFreeSize() < - m_pBlockVector->GetBlock(rhs.origBlockIndex)->m_pMetadata->GetSumFreeSize(); - }); - - // THE MAIN ALGORITHM - - FreeSpaceDatabase freeSpaceDb; - - size_t dstBlockInfoIndex = 0; - size_t dstOrigBlockIndex = m_BlockInfos[dstBlockInfoIndex].origBlockIndex; - VmaDeviceMemoryBlock* pDstBlock = m_pBlockVector->GetBlock(dstOrigBlockIndex); - VmaBlockMetadata_Generic* pDstMetadata = (VmaBlockMetadata_Generic*)pDstBlock->m_pMetadata; - VkDeviceSize dstBlockSize = pDstMetadata->GetSize(); - VkDeviceSize dstOffset = 0; - - bool end = false; - for(size_t srcBlockInfoIndex = 0; !end && srcBlockInfoIndex < blockCount; ++srcBlockInfoIndex) - { - const size_t srcOrigBlockIndex = m_BlockInfos[srcBlockInfoIndex].origBlockIndex; - VmaDeviceMemoryBlock* const pSrcBlock = m_pBlockVector->GetBlock(srcOrigBlockIndex); - VmaBlockMetadata_Generic* const pSrcMetadata = (VmaBlockMetadata_Generic*)pSrcBlock->m_pMetadata; - for(VmaSuballocationList::iterator srcSuballocIt = pSrcMetadata->m_Suballocations.begin(); - !end && srcSuballocIt != pSrcMetadata->m_Suballocations.end(); ) - { - VmaAllocation_T* const pAlloc = srcSuballocIt->hAllocation; - const VkDeviceSize srcAllocAlignment = pAlloc->GetAlignment(); - const VkDeviceSize srcAllocSize = srcSuballocIt->size; - if(m_AllocationsMoved == maxAllocationsToMove || - m_BytesMoved + srcAllocSize > maxBytesToMove) - { - end = true; - break; - } - const VkDeviceSize srcAllocOffset = srcSuballocIt->offset; - - VmaDefragmentationMove move = {}; - // Try to place it in one of free spaces from the database. - size_t freeSpaceInfoIndex; - VkDeviceSize dstAllocOffset; - if(freeSpaceDb.Fetch(srcAllocAlignment, srcAllocSize, - freeSpaceInfoIndex, dstAllocOffset)) - { - size_t freeSpaceOrigBlockIndex = m_BlockInfos[freeSpaceInfoIndex].origBlockIndex; - VmaDeviceMemoryBlock* pFreeSpaceBlock = m_pBlockVector->GetBlock(freeSpaceOrigBlockIndex); - VmaBlockMetadata_Generic* pFreeSpaceMetadata = (VmaBlockMetadata_Generic*)pFreeSpaceBlock->m_pMetadata; - - // Same block - if(freeSpaceInfoIndex == srcBlockInfoIndex) - { - VMA_ASSERT(dstAllocOffset <= srcAllocOffset); - - // MOVE OPTION 1: Move the allocation inside the same block by decreasing offset. - - VmaSuballocation suballoc = *srcSuballocIt; - suballoc.offset = dstAllocOffset; - suballoc.hAllocation->ChangeOffset(dstAllocOffset); - m_BytesMoved += srcAllocSize; - ++m_AllocationsMoved; - - VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt; - ++nextSuballocIt; - pSrcMetadata->m_Suballocations.erase(srcSuballocIt); - srcSuballocIt = nextSuballocIt; - - InsertSuballoc(pFreeSpaceMetadata, suballoc); - - move.srcBlockIndex = srcOrigBlockIndex; - move.dstBlockIndex = freeSpaceOrigBlockIndex; - move.srcOffset = srcAllocOffset; - move.dstOffset = dstAllocOffset; - move.size = srcAllocSize; - - moves.push_back(move); - } - // Different block - else - { - // MOVE OPTION 2: Move the allocation to a different block. - - VMA_ASSERT(freeSpaceInfoIndex < srcBlockInfoIndex); - - VmaSuballocation suballoc = *srcSuballocIt; - suballoc.offset = dstAllocOffset; - suballoc.hAllocation->ChangeBlockAllocation(m_hAllocator, pFreeSpaceBlock, dstAllocOffset); - m_BytesMoved += srcAllocSize; - ++m_AllocationsMoved; - - VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt; - ++nextSuballocIt; - pSrcMetadata->m_Suballocations.erase(srcSuballocIt); - srcSuballocIt = nextSuballocIt; - - InsertSuballoc(pFreeSpaceMetadata, suballoc); - - move.srcBlockIndex = srcOrigBlockIndex; - move.dstBlockIndex = freeSpaceOrigBlockIndex; - move.srcOffset = srcAllocOffset; - move.dstOffset = dstAllocOffset; - move.size = srcAllocSize; - - moves.push_back(move); - } - } - else - { - dstAllocOffset = VmaAlignUp(dstOffset, srcAllocAlignment); - - // If the allocation doesn't fit before the end of dstBlock, forward to next block. - while(dstBlockInfoIndex < srcBlockInfoIndex && - dstAllocOffset + srcAllocSize > dstBlockSize) - { - // But before that, register remaining free space at the end of dst block. - freeSpaceDb.Register(dstBlockInfoIndex, dstOffset, dstBlockSize - dstOffset); - - ++dstBlockInfoIndex; - dstOrigBlockIndex = m_BlockInfos[dstBlockInfoIndex].origBlockIndex; - pDstBlock = m_pBlockVector->GetBlock(dstOrigBlockIndex); - pDstMetadata = (VmaBlockMetadata_Generic*)pDstBlock->m_pMetadata; - dstBlockSize = pDstMetadata->GetSize(); - dstOffset = 0; - dstAllocOffset = 0; - } - - // Same block - if(dstBlockInfoIndex == srcBlockInfoIndex) - { - VMA_ASSERT(dstAllocOffset <= srcAllocOffset); - - const bool overlap = dstAllocOffset + srcAllocSize > srcAllocOffset; - - bool skipOver = overlap; - if(overlap && m_OverlappingMoveSupported && dstAllocOffset < srcAllocOffset) - { - // If destination and source place overlap, skip if it would move it - // by only < 1/64 of its size. - skipOver = (srcAllocOffset - dstAllocOffset) * 64 < srcAllocSize; - } - - if(skipOver) - { - freeSpaceDb.Register(dstBlockInfoIndex, dstOffset, srcAllocOffset - dstOffset); - - dstOffset = srcAllocOffset + srcAllocSize; - ++srcSuballocIt; - } - // MOVE OPTION 1: Move the allocation inside the same block by decreasing offset. - else - { - srcSuballocIt->offset = dstAllocOffset; - srcSuballocIt->hAllocation->ChangeOffset(dstAllocOffset); - dstOffset = dstAllocOffset + srcAllocSize; - m_BytesMoved += srcAllocSize; - ++m_AllocationsMoved; - ++srcSuballocIt; - - move.srcBlockIndex = srcOrigBlockIndex; - move.dstBlockIndex = dstOrigBlockIndex; - move.srcOffset = srcAllocOffset; - move.dstOffset = dstAllocOffset; - move.size = srcAllocSize; - - moves.push_back(move); - } - } - // Different block - else - { - // MOVE OPTION 2: Move the allocation to a different block. - - VMA_ASSERT(dstBlockInfoIndex < srcBlockInfoIndex); - VMA_ASSERT(dstAllocOffset + srcAllocSize <= dstBlockSize); - - VmaSuballocation suballoc = *srcSuballocIt; - suballoc.offset = dstAllocOffset; - suballoc.hAllocation->ChangeBlockAllocation(m_hAllocator, pDstBlock, dstAllocOffset); - dstOffset = dstAllocOffset + srcAllocSize; - m_BytesMoved += srcAllocSize; - ++m_AllocationsMoved; - - VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt; - ++nextSuballocIt; - pSrcMetadata->m_Suballocations.erase(srcSuballocIt); - srcSuballocIt = nextSuballocIt; - - pDstMetadata->m_Suballocations.push_back(suballoc); - - move.srcBlockIndex = srcOrigBlockIndex; - move.dstBlockIndex = dstOrigBlockIndex; - move.srcOffset = srcAllocOffset; - move.dstOffset = dstAllocOffset; - move.size = srcAllocSize; - - moves.push_back(move); - } - } - } - } - - m_BlockInfos.clear(); - - PostprocessMetadata(); - - return VK_SUCCESS; -} - -void VmaDefragmentationAlgorithm_Fast::PreprocessMetadata() -{ - const size_t blockCount = m_pBlockVector->GetBlockCount(); - for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) - { - VmaBlockMetadata_Generic* const pMetadata = - (VmaBlockMetadata_Generic*)m_pBlockVector->GetBlock(blockIndex)->m_pMetadata; - pMetadata->m_FreeCount = 0; - pMetadata->m_SumFreeSize = pMetadata->GetSize(); - pMetadata->m_FreeSuballocationsBySize.clear(); - for(VmaSuballocationList::iterator it = pMetadata->m_Suballocations.begin(); - it != pMetadata->m_Suballocations.end(); ) - { - if(it->type == VMA_SUBALLOCATION_TYPE_FREE) - { - VmaSuballocationList::iterator nextIt = it; - ++nextIt; - pMetadata->m_Suballocations.erase(it); - it = nextIt; - } - else - { - ++it; - } - } - } -} - -void VmaDefragmentationAlgorithm_Fast::PostprocessMetadata() -{ - const size_t blockCount = m_pBlockVector->GetBlockCount(); - for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) - { - VmaBlockMetadata_Generic* const pMetadata = - (VmaBlockMetadata_Generic*)m_pBlockVector->GetBlock(blockIndex)->m_pMetadata; - const VkDeviceSize blockSize = pMetadata->GetSize(); - - // No allocations in this block - entire area is free. - if(pMetadata->m_Suballocations.empty()) - { - pMetadata->m_FreeCount = 1; - //pMetadata->m_SumFreeSize is already set to blockSize. - VmaSuballocation suballoc = { - 0, // offset - blockSize, // size - VMA_NULL, // hAllocation - VMA_SUBALLOCATION_TYPE_FREE }; - pMetadata->m_Suballocations.push_back(suballoc); - pMetadata->RegisterFreeSuballocation(pMetadata->m_Suballocations.begin()); - } - // There are some allocations in this block. - else - { - VkDeviceSize offset = 0; - VmaSuballocationList::iterator it; - for(it = pMetadata->m_Suballocations.begin(); - it != pMetadata->m_Suballocations.end(); - ++it) - { - VMA_ASSERT(it->type != VMA_SUBALLOCATION_TYPE_FREE); - VMA_ASSERT(it->offset >= offset); - - // Need to insert preceding free space. - if(it->offset > offset) - { - ++pMetadata->m_FreeCount; - const VkDeviceSize freeSize = it->offset - offset; - VmaSuballocation suballoc = { - offset, // offset - freeSize, // size - VMA_NULL, // hAllocation - VMA_SUBALLOCATION_TYPE_FREE }; - VmaSuballocationList::iterator precedingFreeIt = pMetadata->m_Suballocations.insert(it, suballoc); - if(freeSize >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) - { - pMetadata->m_FreeSuballocationsBySize.push_back(precedingFreeIt); - } - } - - pMetadata->m_SumFreeSize -= it->size; - offset = it->offset + it->size; - } - - // Need to insert trailing free space. - if(offset < blockSize) - { - ++pMetadata->m_FreeCount; - const VkDeviceSize freeSize = blockSize - offset; - VmaSuballocation suballoc = { - offset, // offset - freeSize, // size - VMA_NULL, // hAllocation - VMA_SUBALLOCATION_TYPE_FREE }; - VMA_ASSERT(it == pMetadata->m_Suballocations.end()); - VmaSuballocationList::iterator trailingFreeIt = pMetadata->m_Suballocations.insert(it, suballoc); - if(freeSize > VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) - { - pMetadata->m_FreeSuballocationsBySize.push_back(trailingFreeIt); - } - } - - VMA_SORT( - pMetadata->m_FreeSuballocationsBySize.begin(), - pMetadata->m_FreeSuballocationsBySize.end(), - VmaSuballocationItemSizeLess()); - } - - VMA_HEAVY_ASSERT(pMetadata->Validate()); - } -} - -void VmaDefragmentationAlgorithm_Fast::InsertSuballoc(VmaBlockMetadata_Generic* pMetadata, const VmaSuballocation& suballoc) -{ - // TODO: Optimize somehow. Remember iterator instead of searching for it linearly. - VmaSuballocationList::iterator it = pMetadata->m_Suballocations.begin(); - while(it != pMetadata->m_Suballocations.end()) - { - if(it->offset < suballoc.offset) - { - ++it; - } - } - pMetadata->m_Suballocations.insert(it, suballoc); -} - -//////////////////////////////////////////////////////////////////////////////// -// VmaBlockVectorDefragmentationContext - -VmaBlockVectorDefragmentationContext::VmaBlockVectorDefragmentationContext( - VmaAllocator hAllocator, - VmaPool hCustomPool, - VmaBlockVector* pBlockVector, - uint32_t currFrameIndex) : - res(VK_SUCCESS), - mutexLocked(false), - blockContexts(VmaStlAllocator(hAllocator->GetAllocationCallbacks())), - defragmentationMoves(VmaStlAllocator(hAllocator->GetAllocationCallbacks())), - defragmentationMovesProcessed(0), - defragmentationMovesCommitted(0), - hasDefragmentationPlan(0), - m_hAllocator(hAllocator), - m_hCustomPool(hCustomPool), - m_pBlockVector(pBlockVector), - m_CurrFrameIndex(currFrameIndex), - m_pAlgorithm(VMA_NULL), - m_Allocations(VmaStlAllocator(hAllocator->GetAllocationCallbacks())), - m_AllAllocations(false) -{ -} - -VmaBlockVectorDefragmentationContext::~VmaBlockVectorDefragmentationContext() -{ - vma_delete(m_hAllocator, m_pAlgorithm); -} - -void VmaBlockVectorDefragmentationContext::AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged) -{ - AllocInfo info = { hAlloc, pChanged }; - m_Allocations.push_back(info); -} - -void VmaBlockVectorDefragmentationContext::Begin(bool overlappingMoveSupported, VmaDefragmentationFlags flags) -{ - const bool allAllocations = m_AllAllocations || - m_Allocations.size() == m_pBlockVector->CalcAllocationCount(); - - /******************************** - HERE IS THE CHOICE OF DEFRAGMENTATION ALGORITHM. - ********************************/ - - /* - Fast algorithm is supported only when certain criteria are met: - - VMA_DEBUG_MARGIN is 0. - - All allocations in this block vector are moveable. - - There is no possibility of image/buffer granularity conflict. - - The defragmentation is not incremental - */ - if(VMA_DEBUG_MARGIN == 0 && - allAllocations && - !m_pBlockVector->IsBufferImageGranularityConflictPossible() && - !(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL)) - { - m_pAlgorithm = vma_new(m_hAllocator, VmaDefragmentationAlgorithm_Fast)( - m_hAllocator, m_pBlockVector, m_CurrFrameIndex, overlappingMoveSupported); - } - else - { - m_pAlgorithm = vma_new(m_hAllocator, VmaDefragmentationAlgorithm_Generic)( - m_hAllocator, m_pBlockVector, m_CurrFrameIndex, overlappingMoveSupported); - } - - if(allAllocations) - { - m_pAlgorithm->AddAll(); - } - else - { - for(size_t i = 0, count = m_Allocations.size(); i < count; ++i) - { - m_pAlgorithm->AddAllocation(m_Allocations[i].hAlloc, m_Allocations[i].pChanged); - } - } -} - -//////////////////////////////////////////////////////////////////////////////// -// VmaDefragmentationContext - -VmaDefragmentationContext_T::VmaDefragmentationContext_T( - VmaAllocator hAllocator, - uint32_t currFrameIndex, - uint32_t flags, - VmaDefragmentationStats* pStats) : - m_hAllocator(hAllocator), - m_CurrFrameIndex(currFrameIndex), - m_Flags(flags), - m_pStats(pStats), - m_CustomPoolContexts(VmaStlAllocator(hAllocator->GetAllocationCallbacks())) -{ - memset(m_DefaultPoolContexts, 0, sizeof(m_DefaultPoolContexts)); -} - -VmaDefragmentationContext_T::~VmaDefragmentationContext_T() -{ - for(size_t i = m_CustomPoolContexts.size(); i--; ) - { - VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_CustomPoolContexts[i]; - pBlockVectorCtx->GetBlockVector()->DefragmentationEnd(pBlockVectorCtx, m_pStats); - vma_delete(m_hAllocator, pBlockVectorCtx); - } - for(size_t i = m_hAllocator->m_MemProps.memoryTypeCount; i--; ) - { - VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_DefaultPoolContexts[i]; - if(pBlockVectorCtx) - { - pBlockVectorCtx->GetBlockVector()->DefragmentationEnd(pBlockVectorCtx, m_pStats); - vma_delete(m_hAllocator, pBlockVectorCtx); - } - } -} - -void VmaDefragmentationContext_T::AddPools(uint32_t poolCount, VmaPool* pPools) -{ - for(uint32_t poolIndex = 0; poolIndex < poolCount; ++poolIndex) - { - VmaPool pool = pPools[poolIndex]; - VMA_ASSERT(pool); - // Pools with algorithm other than default are not defragmented. - if(pool->m_BlockVector.GetAlgorithm() == 0) - { - VmaBlockVectorDefragmentationContext* pBlockVectorDefragCtx = VMA_NULL; - - for(size_t i = m_CustomPoolContexts.size(); i--; ) - { - if(m_CustomPoolContexts[i]->GetCustomPool() == pool) - { - pBlockVectorDefragCtx = m_CustomPoolContexts[i]; - break; - } - } - - if(!pBlockVectorDefragCtx) - { - pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)( - m_hAllocator, - pool, - &pool->m_BlockVector, - m_CurrFrameIndex); - m_CustomPoolContexts.push_back(pBlockVectorDefragCtx); - } - - pBlockVectorDefragCtx->AddAll(); - } - } -} - -void VmaDefragmentationContext_T::AddAllocations( - uint32_t allocationCount, - VmaAllocation* pAllocations, - VkBool32* pAllocationsChanged) -{ - // Dispatch pAllocations among defragmentators. Create them when necessary. - for(uint32_t allocIndex = 0; allocIndex < allocationCount; ++allocIndex) - { - const VmaAllocation hAlloc = pAllocations[allocIndex]; - VMA_ASSERT(hAlloc); - // DedicatedAlloc cannot be defragmented. - if((hAlloc->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK) && - // Lost allocation cannot be defragmented. - (hAlloc->GetLastUseFrameIndex() != VMA_FRAME_INDEX_LOST)) - { - VmaBlockVectorDefragmentationContext* pBlockVectorDefragCtx = VMA_NULL; - - const VmaPool hAllocPool = hAlloc->GetBlock()->GetParentPool(); - // This allocation belongs to custom pool. - if(hAllocPool != VK_NULL_HANDLE) - { - // Pools with algorithm other than default are not defragmented. - if(hAllocPool->m_BlockVector.GetAlgorithm() == 0) - { - for(size_t i = m_CustomPoolContexts.size(); i--; ) - { - if(m_CustomPoolContexts[i]->GetCustomPool() == hAllocPool) - { - pBlockVectorDefragCtx = m_CustomPoolContexts[i]; - break; - } - } - if(!pBlockVectorDefragCtx) - { - pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)( - m_hAllocator, - hAllocPool, - &hAllocPool->m_BlockVector, - m_CurrFrameIndex); - m_CustomPoolContexts.push_back(pBlockVectorDefragCtx); - } - } - } - // This allocation belongs to default pool. - else - { - const uint32_t memTypeIndex = hAlloc->GetMemoryTypeIndex(); - pBlockVectorDefragCtx = m_DefaultPoolContexts[memTypeIndex]; - if(!pBlockVectorDefragCtx) - { - pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)( - m_hAllocator, - VMA_NULL, // hCustomPool - m_hAllocator->m_pBlockVectors[memTypeIndex], - m_CurrFrameIndex); - m_DefaultPoolContexts[memTypeIndex] = pBlockVectorDefragCtx; - } - } - - if(pBlockVectorDefragCtx) - { - VkBool32* const pChanged = (pAllocationsChanged != VMA_NULL) ? - &pAllocationsChanged[allocIndex] : VMA_NULL; - pBlockVectorDefragCtx->AddAllocation(hAlloc, pChanged); - } - } - } -} - -VkResult VmaDefragmentationContext_T::Defragment( - VkDeviceSize maxCpuBytesToMove, uint32_t maxCpuAllocationsToMove, - VkDeviceSize maxGpuBytesToMove, uint32_t maxGpuAllocationsToMove, - VkCommandBuffer commandBuffer, VmaDefragmentationStats* pStats, VmaDefragmentationFlags flags) -{ - if(pStats) - { - memset(pStats, 0, sizeof(VmaDefragmentationStats)); - } - - if(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL) - { - // For incremental defragmetnations, we just earmark how much we can move - // The real meat is in the defragmentation steps - m_MaxCpuBytesToMove = maxCpuBytesToMove; - m_MaxCpuAllocationsToMove = maxCpuAllocationsToMove; - - m_MaxGpuBytesToMove = maxGpuBytesToMove; - m_MaxGpuAllocationsToMove = maxGpuAllocationsToMove; - - if(m_MaxCpuBytesToMove == 0 && m_MaxCpuAllocationsToMove == 0 && - m_MaxGpuBytesToMove == 0 && m_MaxGpuAllocationsToMove == 0) - return VK_SUCCESS; - - return VK_NOT_READY; - } - - if(commandBuffer == VK_NULL_HANDLE) - { - maxGpuBytesToMove = 0; - maxGpuAllocationsToMove = 0; - } - - VkResult res = VK_SUCCESS; - - // Process default pools. - for(uint32_t memTypeIndex = 0; - memTypeIndex < m_hAllocator->GetMemoryTypeCount() && res >= VK_SUCCESS; - ++memTypeIndex) - { - VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_DefaultPoolContexts[memTypeIndex]; - if(pBlockVectorCtx) - { - VMA_ASSERT(pBlockVectorCtx->GetBlockVector()); - pBlockVectorCtx->GetBlockVector()->Defragment( - pBlockVectorCtx, - pStats, flags, - maxCpuBytesToMove, maxCpuAllocationsToMove, - maxGpuBytesToMove, maxGpuAllocationsToMove, - commandBuffer); - if(pBlockVectorCtx->res != VK_SUCCESS) - { - res = pBlockVectorCtx->res; - } - } - } - - // Process custom pools. - for(size_t customCtxIndex = 0, customCtxCount = m_CustomPoolContexts.size(); - customCtxIndex < customCtxCount && res >= VK_SUCCESS; - ++customCtxIndex) - { - VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_CustomPoolContexts[customCtxIndex]; - VMA_ASSERT(pBlockVectorCtx && pBlockVectorCtx->GetBlockVector()); - pBlockVectorCtx->GetBlockVector()->Defragment( - pBlockVectorCtx, - pStats, flags, - maxCpuBytesToMove, maxCpuAllocationsToMove, - maxGpuBytesToMove, maxGpuAllocationsToMove, - commandBuffer); - if(pBlockVectorCtx->res != VK_SUCCESS) - { - res = pBlockVectorCtx->res; - } - } - - return res; -} - -VkResult VmaDefragmentationContext_T::DefragmentPassBegin(VmaDefragmentationPassInfo* pInfo) -{ - VmaDefragmentationPassMoveInfo* pCurrentMove = pInfo->pMoves; - uint32_t movesLeft = pInfo->moveCount; - - // Process default pools. - for(uint32_t memTypeIndex = 0; - memTypeIndex < m_hAllocator->GetMemoryTypeCount(); - ++memTypeIndex) - { - VmaBlockVectorDefragmentationContext *pBlockVectorCtx = m_DefaultPoolContexts[memTypeIndex]; - if(pBlockVectorCtx) - { - VMA_ASSERT(pBlockVectorCtx->GetBlockVector()); - - if(!pBlockVectorCtx->hasDefragmentationPlan) - { - pBlockVectorCtx->GetBlockVector()->Defragment( - pBlockVectorCtx, - m_pStats, m_Flags, - m_MaxCpuBytesToMove, m_MaxCpuAllocationsToMove, - m_MaxGpuBytesToMove, m_MaxGpuAllocationsToMove, - VK_NULL_HANDLE); - - if(pBlockVectorCtx->res < VK_SUCCESS) - continue; - - pBlockVectorCtx->hasDefragmentationPlan = true; - } - - const uint32_t processed = pBlockVectorCtx->GetBlockVector()->ProcessDefragmentations( - pBlockVectorCtx, - pCurrentMove, movesLeft); - - movesLeft -= processed; - pCurrentMove += processed; - } - } - - // Process custom pools. - for(size_t customCtxIndex = 0, customCtxCount = m_CustomPoolContexts.size(); - customCtxIndex < customCtxCount; - ++customCtxIndex) - { - VmaBlockVectorDefragmentationContext *pBlockVectorCtx = m_CustomPoolContexts[customCtxIndex]; - VMA_ASSERT(pBlockVectorCtx && pBlockVectorCtx->GetBlockVector()); - - if(!pBlockVectorCtx->hasDefragmentationPlan) - { - pBlockVectorCtx->GetBlockVector()->Defragment( - pBlockVectorCtx, - m_pStats, m_Flags, - m_MaxCpuBytesToMove, m_MaxCpuAllocationsToMove, - m_MaxGpuBytesToMove, m_MaxGpuAllocationsToMove, - VK_NULL_HANDLE); - - if(pBlockVectorCtx->res < VK_SUCCESS) - continue; - - pBlockVectorCtx->hasDefragmentationPlan = true; - } - - const uint32_t processed = pBlockVectorCtx->GetBlockVector()->ProcessDefragmentations( - pBlockVectorCtx, - pCurrentMove, movesLeft); - - movesLeft -= processed; - pCurrentMove += processed; - } - - pInfo->moveCount = pInfo->moveCount - movesLeft; - - return VK_SUCCESS; -} -VkResult VmaDefragmentationContext_T::DefragmentPassEnd() -{ - VkResult res = VK_SUCCESS; - - // Process default pools. - for(uint32_t memTypeIndex = 0; - memTypeIndex < m_hAllocator->GetMemoryTypeCount(); - ++memTypeIndex) - { - VmaBlockVectorDefragmentationContext *pBlockVectorCtx = m_DefaultPoolContexts[memTypeIndex]; - if(pBlockVectorCtx) - { - VMA_ASSERT(pBlockVectorCtx->GetBlockVector()); - - if(!pBlockVectorCtx->hasDefragmentationPlan) - { - res = VK_NOT_READY; - continue; - } - - pBlockVectorCtx->GetBlockVector()->CommitDefragmentations( - pBlockVectorCtx, m_pStats); - - if(pBlockVectorCtx->defragmentationMoves.size() != pBlockVectorCtx->defragmentationMovesCommitted) - res = VK_NOT_READY; - } - } - - // Process custom pools. - for(size_t customCtxIndex = 0, customCtxCount = m_CustomPoolContexts.size(); - customCtxIndex < customCtxCount; - ++customCtxIndex) - { - VmaBlockVectorDefragmentationContext *pBlockVectorCtx = m_CustomPoolContexts[customCtxIndex]; - VMA_ASSERT(pBlockVectorCtx && pBlockVectorCtx->GetBlockVector()); - - if(!pBlockVectorCtx->hasDefragmentationPlan) - { - res = VK_NOT_READY; - continue; - } - - pBlockVectorCtx->GetBlockVector()->CommitDefragmentations( - pBlockVectorCtx, m_pStats); - - if(pBlockVectorCtx->defragmentationMoves.size() != pBlockVectorCtx->defragmentationMovesCommitted) - res = VK_NOT_READY; - } - - return res; -} - -//////////////////////////////////////////////////////////////////////////////// -// VmaRecorder - -#if VMA_RECORDING_ENABLED - -VmaRecorder::VmaRecorder() : - m_UseMutex(true), - m_Flags(0), - m_File(VMA_NULL), - m_Freq(INT64_MAX), - m_StartCounter(INT64_MAX) -{ -} - -VkResult VmaRecorder::Init(const VmaRecordSettings& settings, bool useMutex) -{ - m_UseMutex = useMutex; - m_Flags = settings.flags; - - QueryPerformanceFrequency((LARGE_INTEGER*)&m_Freq); - QueryPerformanceCounter((LARGE_INTEGER*)&m_StartCounter); - - // Open file for writing. - errno_t err = fopen_s(&m_File, settings.pFilePath, "wb"); - if(err != 0) - { - return VK_ERROR_INITIALIZATION_FAILED; - } - - // Write header. - fprintf(m_File, "%s\n", "Vulkan Memory Allocator,Calls recording"); - fprintf(m_File, "%s\n", "1,8"); - - return VK_SUCCESS; -} - -VmaRecorder::~VmaRecorder() -{ - if(m_File != VMA_NULL) - { - fclose(m_File); - } -} - -void VmaRecorder::RecordCreateAllocator(uint32_t frameIndex) -{ - CallParams callParams; - GetBasicParams(callParams); - - VmaMutexLock lock(m_FileMutex, m_UseMutex); - fprintf(m_File, "%u,%.3f,%u,vmaCreateAllocator\n", callParams.threadId, callParams.time, frameIndex); - Flush(); -} - -void VmaRecorder::RecordDestroyAllocator(uint32_t frameIndex) -{ - CallParams callParams; - GetBasicParams(callParams); - - VmaMutexLock lock(m_FileMutex, m_UseMutex); - fprintf(m_File, "%u,%.3f,%u,vmaDestroyAllocator\n", callParams.threadId, callParams.time, frameIndex); - Flush(); -} - -void VmaRecorder::RecordCreatePool(uint32_t frameIndex, const VmaPoolCreateInfo& createInfo, VmaPool pool) -{ - CallParams callParams; - GetBasicParams(callParams); - - VmaMutexLock lock(m_FileMutex, m_UseMutex); - fprintf(m_File, "%u,%.3f,%u,vmaCreatePool,%u,%u,%llu,%llu,%llu,%u,%p\n", callParams.threadId, callParams.time, frameIndex, - createInfo.memoryTypeIndex, - createInfo.flags, - createInfo.blockSize, - (uint64_t)createInfo.minBlockCount, - (uint64_t)createInfo.maxBlockCount, - createInfo.frameInUseCount, - pool); - Flush(); -} - -void VmaRecorder::RecordDestroyPool(uint32_t frameIndex, VmaPool pool) -{ - CallParams callParams; - GetBasicParams(callParams); - - VmaMutexLock lock(m_FileMutex, m_UseMutex); - fprintf(m_File, "%u,%.3f,%u,vmaDestroyPool,%p\n", callParams.threadId, callParams.time, frameIndex, - pool); - Flush(); -} - -void VmaRecorder::RecordAllocateMemory(uint32_t frameIndex, - const VkMemoryRequirements& vkMemReq, - const VmaAllocationCreateInfo& createInfo, - VmaAllocation allocation) -{ - CallParams callParams; - GetBasicParams(callParams); - - VmaMutexLock lock(m_FileMutex, m_UseMutex); - UserDataString userDataStr(createInfo.flags, createInfo.pUserData); - fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemory,%llu,%llu,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex, - vkMemReq.size, - vkMemReq.alignment, - vkMemReq.memoryTypeBits, - createInfo.flags, - createInfo.usage, - createInfo.requiredFlags, - createInfo.preferredFlags, - createInfo.memoryTypeBits, - createInfo.pool, - allocation, - userDataStr.GetString()); - Flush(); -} - -void VmaRecorder::RecordAllocateMemoryPages(uint32_t frameIndex, - const VkMemoryRequirements& vkMemReq, - const VmaAllocationCreateInfo& createInfo, - uint64_t allocationCount, - const VmaAllocation* pAllocations) -{ - CallParams callParams; - GetBasicParams(callParams); - - VmaMutexLock lock(m_FileMutex, m_UseMutex); - UserDataString userDataStr(createInfo.flags, createInfo.pUserData); - fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemoryPages,%llu,%llu,%u,%u,%u,%u,%u,%u,%p,", callParams.threadId, callParams.time, frameIndex, - vkMemReq.size, - vkMemReq.alignment, - vkMemReq.memoryTypeBits, - createInfo.flags, - createInfo.usage, - createInfo.requiredFlags, - createInfo.preferredFlags, - createInfo.memoryTypeBits, - createInfo.pool); - PrintPointerList(allocationCount, pAllocations); - fprintf(m_File, ",%s\n", userDataStr.GetString()); - Flush(); -} - -void VmaRecorder::RecordAllocateMemoryForBuffer(uint32_t frameIndex, - const VkMemoryRequirements& vkMemReq, - bool requiresDedicatedAllocation, - bool prefersDedicatedAllocation, - const VmaAllocationCreateInfo& createInfo, - VmaAllocation allocation) -{ - CallParams callParams; - GetBasicParams(callParams); - - VmaMutexLock lock(m_FileMutex, m_UseMutex); - UserDataString userDataStr(createInfo.flags, createInfo.pUserData); - fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemoryForBuffer,%llu,%llu,%u,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex, - vkMemReq.size, - vkMemReq.alignment, - vkMemReq.memoryTypeBits, - requiresDedicatedAllocation ? 1 : 0, - prefersDedicatedAllocation ? 1 : 0, - createInfo.flags, - createInfo.usage, - createInfo.requiredFlags, - createInfo.preferredFlags, - createInfo.memoryTypeBits, - createInfo.pool, - allocation, - userDataStr.GetString()); - Flush(); -} - -void VmaRecorder::RecordAllocateMemoryForImage(uint32_t frameIndex, - const VkMemoryRequirements& vkMemReq, - bool requiresDedicatedAllocation, - bool prefersDedicatedAllocation, - const VmaAllocationCreateInfo& createInfo, - VmaAllocation allocation) -{ - CallParams callParams; - GetBasicParams(callParams); - - VmaMutexLock lock(m_FileMutex, m_UseMutex); - UserDataString userDataStr(createInfo.flags, createInfo.pUserData); - fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemoryForImage,%llu,%llu,%u,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex, - vkMemReq.size, - vkMemReq.alignment, - vkMemReq.memoryTypeBits, - requiresDedicatedAllocation ? 1 : 0, - prefersDedicatedAllocation ? 1 : 0, - createInfo.flags, - createInfo.usage, - createInfo.requiredFlags, - createInfo.preferredFlags, - createInfo.memoryTypeBits, - createInfo.pool, - allocation, - userDataStr.GetString()); - Flush(); -} - -void VmaRecorder::RecordFreeMemory(uint32_t frameIndex, - VmaAllocation allocation) -{ - CallParams callParams; - GetBasicParams(callParams); - - VmaMutexLock lock(m_FileMutex, m_UseMutex); - fprintf(m_File, "%u,%.3f,%u,vmaFreeMemory,%p\n", callParams.threadId, callParams.time, frameIndex, - allocation); - Flush(); -} - -void VmaRecorder::RecordFreeMemoryPages(uint32_t frameIndex, - uint64_t allocationCount, - const VmaAllocation* pAllocations) -{ - CallParams callParams; - GetBasicParams(callParams); - - VmaMutexLock lock(m_FileMutex, m_UseMutex); - fprintf(m_File, "%u,%.3f,%u,vmaFreeMemoryPages,", callParams.threadId, callParams.time, frameIndex); - PrintPointerList(allocationCount, pAllocations); - fprintf(m_File, "\n"); - Flush(); -} - -void VmaRecorder::RecordSetAllocationUserData(uint32_t frameIndex, - VmaAllocation allocation, - const void* pUserData) -{ - CallParams callParams; - GetBasicParams(callParams); - - VmaMutexLock lock(m_FileMutex, m_UseMutex); - UserDataString userDataStr( - allocation->IsUserDataString() ? VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT : 0, - pUserData); - fprintf(m_File, "%u,%.3f,%u,vmaSetAllocationUserData,%p,%s\n", callParams.threadId, callParams.time, frameIndex, - allocation, - userDataStr.GetString()); - Flush(); -} - -void VmaRecorder::RecordCreateLostAllocation(uint32_t frameIndex, - VmaAllocation allocation) -{ - CallParams callParams; - GetBasicParams(callParams); - - VmaMutexLock lock(m_FileMutex, m_UseMutex); - fprintf(m_File, "%u,%.3f,%u,vmaCreateLostAllocation,%p\n", callParams.threadId, callParams.time, frameIndex, - allocation); - Flush(); -} - -void VmaRecorder::RecordMapMemory(uint32_t frameIndex, - VmaAllocation allocation) -{ - CallParams callParams; - GetBasicParams(callParams); - - VmaMutexLock lock(m_FileMutex, m_UseMutex); - fprintf(m_File, "%u,%.3f,%u,vmaMapMemory,%p\n", callParams.threadId, callParams.time, frameIndex, - allocation); - Flush(); -} - -void VmaRecorder::RecordUnmapMemory(uint32_t frameIndex, - VmaAllocation allocation) -{ - CallParams callParams; - GetBasicParams(callParams); - - VmaMutexLock lock(m_FileMutex, m_UseMutex); - fprintf(m_File, "%u,%.3f,%u,vmaUnmapMemory,%p\n", callParams.threadId, callParams.time, frameIndex, - allocation); - Flush(); -} - -void VmaRecorder::RecordFlushAllocation(uint32_t frameIndex, - VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size) -{ - CallParams callParams; - GetBasicParams(callParams); - - VmaMutexLock lock(m_FileMutex, m_UseMutex); - fprintf(m_File, "%u,%.3f,%u,vmaFlushAllocation,%p,%llu,%llu\n", callParams.threadId, callParams.time, frameIndex, - allocation, - offset, - size); - Flush(); -} - -void VmaRecorder::RecordInvalidateAllocation(uint32_t frameIndex, - VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size) -{ - CallParams callParams; - GetBasicParams(callParams); - - VmaMutexLock lock(m_FileMutex, m_UseMutex); - fprintf(m_File, "%u,%.3f,%u,vmaInvalidateAllocation,%p,%llu,%llu\n", callParams.threadId, callParams.time, frameIndex, - allocation, - offset, - size); - Flush(); -} - -void VmaRecorder::RecordCreateBuffer(uint32_t frameIndex, - const VkBufferCreateInfo& bufCreateInfo, - const VmaAllocationCreateInfo& allocCreateInfo, - VmaAllocation allocation) -{ - CallParams callParams; - GetBasicParams(callParams); - - VmaMutexLock lock(m_FileMutex, m_UseMutex); - UserDataString userDataStr(allocCreateInfo.flags, allocCreateInfo.pUserData); - fprintf(m_File, "%u,%.3f,%u,vmaCreateBuffer,%u,%llu,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex, - bufCreateInfo.flags, - bufCreateInfo.size, - bufCreateInfo.usage, - bufCreateInfo.sharingMode, - allocCreateInfo.flags, - allocCreateInfo.usage, - allocCreateInfo.requiredFlags, - allocCreateInfo.preferredFlags, - allocCreateInfo.memoryTypeBits, - allocCreateInfo.pool, - allocation, - userDataStr.GetString()); - Flush(); -} - -void VmaRecorder::RecordCreateImage(uint32_t frameIndex, - const VkImageCreateInfo& imageCreateInfo, - const VmaAllocationCreateInfo& allocCreateInfo, - VmaAllocation allocation) -{ - CallParams callParams; - GetBasicParams(callParams); - - VmaMutexLock lock(m_FileMutex, m_UseMutex); - UserDataString userDataStr(allocCreateInfo.flags, allocCreateInfo.pUserData); - fprintf(m_File, "%u,%.3f,%u,vmaCreateImage,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex, - imageCreateInfo.flags, - imageCreateInfo.imageType, - imageCreateInfo.format, - imageCreateInfo.extent.width, - imageCreateInfo.extent.height, - imageCreateInfo.extent.depth, - imageCreateInfo.mipLevels, - imageCreateInfo.arrayLayers, - imageCreateInfo.samples, - imageCreateInfo.tiling, - imageCreateInfo.usage, - imageCreateInfo.sharingMode, - imageCreateInfo.initialLayout, - allocCreateInfo.flags, - allocCreateInfo.usage, - allocCreateInfo.requiredFlags, - allocCreateInfo.preferredFlags, - allocCreateInfo.memoryTypeBits, - allocCreateInfo.pool, - allocation, - userDataStr.GetString()); - Flush(); -} - -void VmaRecorder::RecordDestroyBuffer(uint32_t frameIndex, - VmaAllocation allocation) -{ - CallParams callParams; - GetBasicParams(callParams); - - VmaMutexLock lock(m_FileMutex, m_UseMutex); - fprintf(m_File, "%u,%.3f,%u,vmaDestroyBuffer,%p\n", callParams.threadId, callParams.time, frameIndex, - allocation); - Flush(); -} - -void VmaRecorder::RecordDestroyImage(uint32_t frameIndex, - VmaAllocation allocation) -{ - CallParams callParams; - GetBasicParams(callParams); - - VmaMutexLock lock(m_FileMutex, m_UseMutex); - fprintf(m_File, "%u,%.3f,%u,vmaDestroyImage,%p\n", callParams.threadId, callParams.time, frameIndex, - allocation); - Flush(); -} - -void VmaRecorder::RecordTouchAllocation(uint32_t frameIndex, - VmaAllocation allocation) -{ - CallParams callParams; - GetBasicParams(callParams); - - VmaMutexLock lock(m_FileMutex, m_UseMutex); - fprintf(m_File, "%u,%.3f,%u,vmaTouchAllocation,%p\n", callParams.threadId, callParams.time, frameIndex, - allocation); - Flush(); -} - -void VmaRecorder::RecordGetAllocationInfo(uint32_t frameIndex, - VmaAllocation allocation) -{ - CallParams callParams; - GetBasicParams(callParams); - - VmaMutexLock lock(m_FileMutex, m_UseMutex); - fprintf(m_File, "%u,%.3f,%u,vmaGetAllocationInfo,%p\n", callParams.threadId, callParams.time, frameIndex, - allocation); - Flush(); -} - -void VmaRecorder::RecordMakePoolAllocationsLost(uint32_t frameIndex, - VmaPool pool) -{ - CallParams callParams; - GetBasicParams(callParams); - - VmaMutexLock lock(m_FileMutex, m_UseMutex); - fprintf(m_File, "%u,%.3f,%u,vmaMakePoolAllocationsLost,%p\n", callParams.threadId, callParams.time, frameIndex, - pool); - Flush(); -} - -void VmaRecorder::RecordDefragmentationBegin(uint32_t frameIndex, - const VmaDefragmentationInfo2& info, - VmaDefragmentationContext ctx) -{ - CallParams callParams; - GetBasicParams(callParams); - - VmaMutexLock lock(m_FileMutex, m_UseMutex); - fprintf(m_File, "%u,%.3f,%u,vmaDefragmentationBegin,%u,", callParams.threadId, callParams.time, frameIndex, - info.flags); - PrintPointerList(info.allocationCount, info.pAllocations); - fprintf(m_File, ","); - PrintPointerList(info.poolCount, info.pPools); - fprintf(m_File, ",%llu,%u,%llu,%u,%p,%p\n", - info.maxCpuBytesToMove, - info.maxCpuAllocationsToMove, - info.maxGpuBytesToMove, - info.maxGpuAllocationsToMove, - info.commandBuffer, - ctx); - Flush(); -} - -void VmaRecorder::RecordDefragmentationEnd(uint32_t frameIndex, - VmaDefragmentationContext ctx) -{ - CallParams callParams; - GetBasicParams(callParams); - - VmaMutexLock lock(m_FileMutex, m_UseMutex); - fprintf(m_File, "%u,%.3f,%u,vmaDefragmentationEnd,%p\n", callParams.threadId, callParams.time, frameIndex, - ctx); - Flush(); -} - -void VmaRecorder::RecordSetPoolName(uint32_t frameIndex, - VmaPool pool, - const char* name) -{ - CallParams callParams; - GetBasicParams(callParams); - - VmaMutexLock lock(m_FileMutex, m_UseMutex); - fprintf(m_File, "%u,%.3f,%u,vmaSetPoolName,%p,%s\n", callParams.threadId, callParams.time, frameIndex, - pool, name != VMA_NULL ? name : ""); - Flush(); -} - -VmaRecorder::UserDataString::UserDataString(VmaAllocationCreateFlags allocFlags, const void* pUserData) -{ - if(pUserData != VMA_NULL) - { - if((allocFlags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0) - { - m_Str = (const char*)pUserData; - } - else - { - sprintf_s(m_PtrStr, "%p", pUserData); - m_Str = m_PtrStr; - } - } - else - { - m_Str = ""; - } -} - -void VmaRecorder::WriteConfiguration( - const VkPhysicalDeviceProperties& devProps, - const VkPhysicalDeviceMemoryProperties& memProps, - uint32_t vulkanApiVersion, - bool dedicatedAllocationExtensionEnabled, - bool bindMemory2ExtensionEnabled, - bool memoryBudgetExtensionEnabled) -{ - fprintf(m_File, "Config,Begin\n"); - - fprintf(m_File, "VulkanApiVersion,%u,%u\n", VK_VERSION_MAJOR(vulkanApiVersion), VK_VERSION_MINOR(vulkanApiVersion)); - - fprintf(m_File, "PhysicalDevice,apiVersion,%u\n", devProps.apiVersion); - fprintf(m_File, "PhysicalDevice,driverVersion,%u\n", devProps.driverVersion); - fprintf(m_File, "PhysicalDevice,vendorID,%u\n", devProps.vendorID); - fprintf(m_File, "PhysicalDevice,deviceID,%u\n", devProps.deviceID); - fprintf(m_File, "PhysicalDevice,deviceType,%u\n", devProps.deviceType); - fprintf(m_File, "PhysicalDevice,deviceName,%s\n", devProps.deviceName); - - fprintf(m_File, "PhysicalDeviceLimits,maxMemoryAllocationCount,%u\n", devProps.limits.maxMemoryAllocationCount); - fprintf(m_File, "PhysicalDeviceLimits,bufferImageGranularity,%llu\n", devProps.limits.bufferImageGranularity); - fprintf(m_File, "PhysicalDeviceLimits,nonCoherentAtomSize,%llu\n", devProps.limits.nonCoherentAtomSize); - - fprintf(m_File, "PhysicalDeviceMemory,HeapCount,%u\n", memProps.memoryHeapCount); - for(uint32_t i = 0; i < memProps.memoryHeapCount; ++i) - { - fprintf(m_File, "PhysicalDeviceMemory,Heap,%u,size,%llu\n", i, memProps.memoryHeaps[i].size); - fprintf(m_File, "PhysicalDeviceMemory,Heap,%u,flags,%u\n", i, memProps.memoryHeaps[i].flags); - } - fprintf(m_File, "PhysicalDeviceMemory,TypeCount,%u\n", memProps.memoryTypeCount); - for(uint32_t i = 0; i < memProps.memoryTypeCount; ++i) - { - fprintf(m_File, "PhysicalDeviceMemory,Type,%u,heapIndex,%u\n", i, memProps.memoryTypes[i].heapIndex); - fprintf(m_File, "PhysicalDeviceMemory,Type,%u,propertyFlags,%u\n", i, memProps.memoryTypes[i].propertyFlags); - } - - fprintf(m_File, "Extension,VK_KHR_dedicated_allocation,%u\n", dedicatedAllocationExtensionEnabled ? 1 : 0); - fprintf(m_File, "Extension,VK_KHR_bind_memory2,%u\n", bindMemory2ExtensionEnabled ? 1 : 0); - fprintf(m_File, "Extension,VK_EXT_memory_budget,%u\n", memoryBudgetExtensionEnabled ? 1 : 0); - - fprintf(m_File, "Macro,VMA_DEBUG_ALWAYS_DEDICATED_MEMORY,%u\n", VMA_DEBUG_ALWAYS_DEDICATED_MEMORY ? 1 : 0); - fprintf(m_File, "Macro,VMA_DEBUG_ALIGNMENT,%llu\n", (VkDeviceSize)VMA_DEBUG_ALIGNMENT); - fprintf(m_File, "Macro,VMA_DEBUG_MARGIN,%llu\n", (VkDeviceSize)VMA_DEBUG_MARGIN); - fprintf(m_File, "Macro,VMA_DEBUG_INITIALIZE_ALLOCATIONS,%u\n", VMA_DEBUG_INITIALIZE_ALLOCATIONS ? 1 : 0); - fprintf(m_File, "Macro,VMA_DEBUG_DETECT_CORRUPTION,%u\n", VMA_DEBUG_DETECT_CORRUPTION ? 1 : 0); - fprintf(m_File, "Macro,VMA_DEBUG_GLOBAL_MUTEX,%u\n", VMA_DEBUG_GLOBAL_MUTEX ? 1 : 0); - fprintf(m_File, "Macro,VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY,%llu\n", (VkDeviceSize)VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY); - fprintf(m_File, "Macro,VMA_SMALL_HEAP_MAX_SIZE,%llu\n", (VkDeviceSize)VMA_SMALL_HEAP_MAX_SIZE); - fprintf(m_File, "Macro,VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE,%llu\n", (VkDeviceSize)VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE); - - fprintf(m_File, "Config,End\n"); -} - -void VmaRecorder::GetBasicParams(CallParams& outParams) -{ - outParams.threadId = GetCurrentThreadId(); - - LARGE_INTEGER counter; - QueryPerformanceCounter(&counter); - outParams.time = (double)(counter.QuadPart - m_StartCounter) / (double)m_Freq; -} - -void VmaRecorder::PrintPointerList(uint64_t count, const VmaAllocation* pItems) -{ - if(count) - { - fprintf(m_File, "%p", pItems[0]); - for(uint64_t i = 1; i < count; ++i) - { - fprintf(m_File, " %p", pItems[i]); - } - } -} - -void VmaRecorder::Flush() -{ - if((m_Flags & VMA_RECORD_FLUSH_AFTER_CALL_BIT) != 0) - { - fflush(m_File); - } -} - -#endif // #if VMA_RECORDING_ENABLED - -//////////////////////////////////////////////////////////////////////////////// -// VmaAllocationObjectAllocator - -VmaAllocationObjectAllocator::VmaAllocationObjectAllocator(const VkAllocationCallbacks* pAllocationCallbacks) : - m_Allocator(pAllocationCallbacks, 1024) -{ -} - -VmaAllocation VmaAllocationObjectAllocator::Allocate() -{ - VmaMutexLock mutexLock(m_Mutex); - return m_Allocator.Alloc(); -} - -void VmaAllocationObjectAllocator::Free(VmaAllocation hAlloc) -{ - VmaMutexLock mutexLock(m_Mutex); - m_Allocator.Free(hAlloc); -} - -//////////////////////////////////////////////////////////////////////////////// -// VmaAllocator_T - -VmaAllocator_T::VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo) : - m_UseMutex((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT) == 0), - m_VulkanApiVersion(pCreateInfo->vulkanApiVersion != 0 ? pCreateInfo->vulkanApiVersion : VK_API_VERSION_1_0), - m_UseKhrDedicatedAllocation((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0), - m_UseKhrBindMemory2((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT) != 0), - m_UseExtMemoryBudget((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT) != 0), - m_hDevice(pCreateInfo->device), - m_hInstance(pCreateInfo->instance), - m_AllocationCallbacksSpecified(pCreateInfo->pAllocationCallbacks != VMA_NULL), - m_AllocationCallbacks(pCreateInfo->pAllocationCallbacks ? - *pCreateInfo->pAllocationCallbacks : VmaEmptyAllocationCallbacks), - m_AllocationObjectAllocator(&m_AllocationCallbacks), - m_HeapSizeLimitMask(0), - m_PreferredLargeHeapBlockSize(0), - m_PhysicalDevice(pCreateInfo->physicalDevice), - m_CurrentFrameIndex(0), - m_GpuDefragmentationMemoryTypeBits(UINT32_MAX), - m_Pools(VmaStlAllocator(GetAllocationCallbacks())), - m_NextPoolId(0) -#if VMA_RECORDING_ENABLED - ,m_pRecorder(VMA_NULL) -#endif -{ - if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) - { - m_UseKhrDedicatedAllocation = false; - m_UseKhrBindMemory2 = false; - } - - if(VMA_DEBUG_DETECT_CORRUPTION) - { - // Needs to be multiply of uint32_t size because we are going to write VMA_CORRUPTION_DETECTION_MAGIC_VALUE to it. - VMA_ASSERT(VMA_DEBUG_MARGIN % sizeof(uint32_t) == 0); - } - - VMA_ASSERT(pCreateInfo->physicalDevice && pCreateInfo->device); - - if(m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0)) - { -#if !(VMA_DEDICATED_ALLOCATION) - if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0) - { - VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT set but required extensions are disabled by preprocessor macros."); - } -#endif -#if !(VMA_BIND_MEMORY2) - if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT) != 0) - { - VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT set but required extension is disabled by preprocessor macros."); - } -#endif - } -#if !(VMA_MEMORY_BUDGET) - if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT) != 0) - { - VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT set but required extension is disabled by preprocessor macros."); - } -#endif -#if VMA_VULKAN_VERSION < 1001000 - if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) - { - VMA_ASSERT(0 && "vulkanApiVersion >= VK_API_VERSION_1_1 but required Vulkan version is disabled by preprocessor macros."); - } -#endif - - memset(&m_DeviceMemoryCallbacks, 0 ,sizeof(m_DeviceMemoryCallbacks)); - memset(&m_PhysicalDeviceProperties, 0, sizeof(m_PhysicalDeviceProperties)); - memset(&m_MemProps, 0, sizeof(m_MemProps)); - - memset(&m_pBlockVectors, 0, sizeof(m_pBlockVectors)); - memset(&m_pDedicatedAllocations, 0, sizeof(m_pDedicatedAllocations)); - memset(&m_VulkanFunctions, 0, sizeof(m_VulkanFunctions)); - - if(pCreateInfo->pDeviceMemoryCallbacks != VMA_NULL) - { - m_DeviceMemoryCallbacks.pfnAllocate = pCreateInfo->pDeviceMemoryCallbacks->pfnAllocate; - m_DeviceMemoryCallbacks.pfnFree = pCreateInfo->pDeviceMemoryCallbacks->pfnFree; - } - - ImportVulkanFunctions(pCreateInfo->pVulkanFunctions); - - (*m_VulkanFunctions.vkGetPhysicalDeviceProperties)(m_PhysicalDevice, &m_PhysicalDeviceProperties); - (*m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties)(m_PhysicalDevice, &m_MemProps); - - VMA_ASSERT(VmaIsPow2(VMA_DEBUG_ALIGNMENT)); - VMA_ASSERT(VmaIsPow2(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY)); - VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.bufferImageGranularity)); - VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.nonCoherentAtomSize)); - - m_PreferredLargeHeapBlockSize = (pCreateInfo->preferredLargeHeapBlockSize != 0) ? - pCreateInfo->preferredLargeHeapBlockSize : static_cast(VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE); - - if(pCreateInfo->pHeapSizeLimit != VMA_NULL) - { - for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex) - { - const VkDeviceSize limit = pCreateInfo->pHeapSizeLimit[heapIndex]; - if(limit != VK_WHOLE_SIZE) - { - m_HeapSizeLimitMask |= 1u << heapIndex; - if(limit < m_MemProps.memoryHeaps[heapIndex].size) - { - m_MemProps.memoryHeaps[heapIndex].size = limit; - } - } - } - } - - for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) - { - const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(memTypeIndex); - - m_pBlockVectors[memTypeIndex] = vma_new(this, VmaBlockVector)( - this, - VK_NULL_HANDLE, // hParentPool - memTypeIndex, - preferredBlockSize, - 0, - SIZE_MAX, - GetBufferImageGranularity(), - pCreateInfo->frameInUseCount, - false, // explicitBlockSize - false); // linearAlgorithm - // No need to call m_pBlockVectors[memTypeIndex][blockVectorTypeIndex]->CreateMinBlocks here, - // becase minBlockCount is 0. - m_pDedicatedAllocations[memTypeIndex] = vma_new(this, AllocationVectorType)(VmaStlAllocator(GetAllocationCallbacks())); - - } -} - -VkResult VmaAllocator_T::Init(const VmaAllocatorCreateInfo* pCreateInfo) -{ - VkResult res = VK_SUCCESS; - - if(pCreateInfo->pRecordSettings != VMA_NULL && - !VmaStrIsEmpty(pCreateInfo->pRecordSettings->pFilePath)) - { -#if VMA_RECORDING_ENABLED - m_pRecorder = vma_new(this, VmaRecorder)(); - res = m_pRecorder->Init(*pCreateInfo->pRecordSettings, m_UseMutex); - if(res != VK_SUCCESS) - { - return res; - } - m_pRecorder->WriteConfiguration( - m_PhysicalDeviceProperties, - m_MemProps, - m_VulkanApiVersion, - m_UseKhrDedicatedAllocation, - m_UseKhrBindMemory2, - m_UseExtMemoryBudget); - m_pRecorder->RecordCreateAllocator(GetCurrentFrameIndex()); -#else - VMA_ASSERT(0 && "VmaAllocatorCreateInfo::pRecordSettings used, but not supported due to VMA_RECORDING_ENABLED not defined to 1."); - return VK_ERROR_FEATURE_NOT_PRESENT; -#endif - } - -#if VMA_MEMORY_BUDGET - if(m_UseExtMemoryBudget) - { - UpdateVulkanBudget(); - } -#endif // #if VMA_MEMORY_BUDGET - - return res; -} - -VmaAllocator_T::~VmaAllocator_T() -{ -#if VMA_RECORDING_ENABLED - if(m_pRecorder != VMA_NULL) - { - m_pRecorder->RecordDestroyAllocator(GetCurrentFrameIndex()); - vma_delete(this, m_pRecorder); - } -#endif - - VMA_ASSERT(m_Pools.empty()); - - for(size_t i = GetMemoryTypeCount(); i--; ) - { - if(m_pDedicatedAllocations[i] != VMA_NULL && !m_pDedicatedAllocations[i]->empty()) - { - VMA_ASSERT(0 && "Unfreed dedicated allocations found."); - } - - vma_delete(this, m_pDedicatedAllocations[i]); - vma_delete(this, m_pBlockVectors[i]); - } -} - -void VmaAllocator_T::ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions) -{ -#if VMA_STATIC_VULKAN_FUNCTIONS == 1 - m_VulkanFunctions.vkGetPhysicalDeviceProperties = (PFN_vkGetPhysicalDeviceProperties)vkGetPhysicalDeviceProperties; - m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties = (PFN_vkGetPhysicalDeviceMemoryProperties)vkGetPhysicalDeviceMemoryProperties; - m_VulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkAllocateMemory; - m_VulkanFunctions.vkFreeMemory = (PFN_vkFreeMemory)vkFreeMemory; - m_VulkanFunctions.vkMapMemory = (PFN_vkMapMemory)vkMapMemory; - m_VulkanFunctions.vkUnmapMemory = (PFN_vkUnmapMemory)vkUnmapMemory; - m_VulkanFunctions.vkFlushMappedMemoryRanges = (PFN_vkFlushMappedMemoryRanges)vkFlushMappedMemoryRanges; - m_VulkanFunctions.vkInvalidateMappedMemoryRanges = (PFN_vkInvalidateMappedMemoryRanges)vkInvalidateMappedMemoryRanges; - m_VulkanFunctions.vkBindBufferMemory = (PFN_vkBindBufferMemory)vkBindBufferMemory; - m_VulkanFunctions.vkBindImageMemory = (PFN_vkBindImageMemory)vkBindImageMemory; - m_VulkanFunctions.vkGetBufferMemoryRequirements = (PFN_vkGetBufferMemoryRequirements)vkGetBufferMemoryRequirements; - m_VulkanFunctions.vkGetImageMemoryRequirements = (PFN_vkGetImageMemoryRequirements)vkGetImageMemoryRequirements; - m_VulkanFunctions.vkCreateBuffer = (PFN_vkCreateBuffer)vkCreateBuffer; - m_VulkanFunctions.vkDestroyBuffer = (PFN_vkDestroyBuffer)vkDestroyBuffer; - m_VulkanFunctions.vkCreateImage = (PFN_vkCreateImage)vkCreateImage; - m_VulkanFunctions.vkDestroyImage = (PFN_vkDestroyImage)vkDestroyImage; - m_VulkanFunctions.vkCmdCopyBuffer = (PFN_vkCmdCopyBuffer)vkCmdCopyBuffer; -#if VMA_VULKAN_VERSION >= 1001000 - if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) - { - VMA_ASSERT(m_hInstance != VK_NULL_HANDLE); - m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR = - (PFN_vkGetBufferMemoryRequirements2KHR)vkGetDeviceProcAddr(m_hDevice, "vkGetBufferMemoryRequirements2"); - m_VulkanFunctions.vkGetImageMemoryRequirements2KHR = - (PFN_vkGetImageMemoryRequirements2KHR)vkGetDeviceProcAddr(m_hDevice, "vkGetImageMemoryRequirements2"); - m_VulkanFunctions.vkBindBufferMemory2KHR = - (PFN_vkBindBufferMemory2KHR)vkGetDeviceProcAddr(m_hDevice, "vkBindBufferMemory2"); - m_VulkanFunctions.vkBindImageMemory2KHR = - (PFN_vkBindImageMemory2KHR)vkGetDeviceProcAddr(m_hDevice, "vkBindImageMemory2"); - m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties2KHR = - (PFN_vkGetPhysicalDeviceMemoryProperties2KHR)vkGetInstanceProcAddr(m_hInstance, "vkGetPhysicalDeviceMemoryProperties2"); - } -#endif -#if VMA_DEDICATED_ALLOCATION - if(m_UseKhrDedicatedAllocation) - { - m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR = - (PFN_vkGetBufferMemoryRequirements2KHR)vkGetDeviceProcAddr(m_hDevice, "vkGetBufferMemoryRequirements2KHR"); - m_VulkanFunctions.vkGetImageMemoryRequirements2KHR = - (PFN_vkGetImageMemoryRequirements2KHR)vkGetDeviceProcAddr(m_hDevice, "vkGetImageMemoryRequirements2KHR"); - } -#endif -#if VMA_BIND_MEMORY2 - if(m_UseKhrBindMemory2) - { - m_VulkanFunctions.vkBindBufferMemory2KHR = - (PFN_vkBindBufferMemory2KHR)vkGetDeviceProcAddr(m_hDevice, "vkBindBufferMemory2KHR"); - m_VulkanFunctions.vkBindImageMemory2KHR = - (PFN_vkBindImageMemory2KHR)vkGetDeviceProcAddr(m_hDevice, "vkBindImageMemory2KHR"); - } -#endif // #if VMA_BIND_MEMORY2 -#if VMA_MEMORY_BUDGET - if(m_UseExtMemoryBudget && m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0)) - { - VMA_ASSERT(m_hInstance != VK_NULL_HANDLE); - m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties2KHR = - (PFN_vkGetPhysicalDeviceMemoryProperties2KHR)vkGetInstanceProcAddr(m_hInstance, "vkGetPhysicalDeviceMemoryProperties2KHR"); - } -#endif // #if VMA_MEMORY_BUDGET -#endif // #if VMA_STATIC_VULKAN_FUNCTIONS == 1 - -#define VMA_COPY_IF_NOT_NULL(funcName) \ - if(pVulkanFunctions->funcName != VMA_NULL) m_VulkanFunctions.funcName = pVulkanFunctions->funcName; - - if(pVulkanFunctions != VMA_NULL) - { - VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceProperties); - VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties); - VMA_COPY_IF_NOT_NULL(vkAllocateMemory); - VMA_COPY_IF_NOT_NULL(vkFreeMemory); - VMA_COPY_IF_NOT_NULL(vkMapMemory); - VMA_COPY_IF_NOT_NULL(vkUnmapMemory); - VMA_COPY_IF_NOT_NULL(vkFlushMappedMemoryRanges); - VMA_COPY_IF_NOT_NULL(vkInvalidateMappedMemoryRanges); - VMA_COPY_IF_NOT_NULL(vkBindBufferMemory); - VMA_COPY_IF_NOT_NULL(vkBindImageMemory); - VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements); - VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements); - VMA_COPY_IF_NOT_NULL(vkCreateBuffer); - VMA_COPY_IF_NOT_NULL(vkDestroyBuffer); - VMA_COPY_IF_NOT_NULL(vkCreateImage); - VMA_COPY_IF_NOT_NULL(vkDestroyImage); - VMA_COPY_IF_NOT_NULL(vkCmdCopyBuffer); -#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 - VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements2KHR); - VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements2KHR); -#endif -#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000 - VMA_COPY_IF_NOT_NULL(vkBindBufferMemory2KHR); - VMA_COPY_IF_NOT_NULL(vkBindImageMemory2KHR); -#endif -#if VMA_MEMORY_BUDGET - VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties2KHR); -#endif - } - -#undef VMA_COPY_IF_NOT_NULL - - // If these asserts are hit, you must either #define VMA_STATIC_VULKAN_FUNCTIONS 1 - // or pass valid pointers as VmaAllocatorCreateInfo::pVulkanFunctions. - VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceProperties != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkAllocateMemory != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkFreeMemory != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkMapMemory != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkUnmapMemory != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkFlushMappedMemoryRanges != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkInvalidateMappedMemoryRanges != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkCreateBuffer != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkDestroyBuffer != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkCreateImage != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkDestroyImage != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkCmdCopyBuffer != VMA_NULL); -#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 - if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0) || m_UseKhrDedicatedAllocation) - { - VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements2KHR != VMA_NULL); - } -#endif -#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000 - if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0) || m_UseKhrBindMemory2) - { - VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory2KHR != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory2KHR != VMA_NULL); - } -#endif -#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000 - if(m_UseExtMemoryBudget || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) - { - VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties2KHR != VMA_NULL); - } -#endif -} - -VkDeviceSize VmaAllocator_T::CalcPreferredBlockSize(uint32_t memTypeIndex) -{ - const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex); - const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size; - const bool isSmallHeap = heapSize <= VMA_SMALL_HEAP_MAX_SIZE; - return VmaAlignUp(isSmallHeap ? (heapSize / 8) : m_PreferredLargeHeapBlockSize, (VkDeviceSize)32); -} - -VkResult VmaAllocator_T::AllocateMemoryOfType( - VkDeviceSize size, - VkDeviceSize alignment, - bool dedicatedAllocation, - VkBuffer dedicatedBuffer, - VkImage dedicatedImage, - const VmaAllocationCreateInfo& createInfo, - uint32_t memTypeIndex, - VmaSuballocationType suballocType, - size_t allocationCount, - VmaAllocation* pAllocations) -{ - VMA_ASSERT(pAllocations != VMA_NULL); - VMA_DEBUG_LOG(" AllocateMemory: MemoryTypeIndex=%u, AllocationCount=%zu, Size=%llu", memTypeIndex, allocationCount, size); - - VmaAllocationCreateInfo finalCreateInfo = createInfo; - - // If memory type is not HOST_VISIBLE, disable MAPPED. - if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 && - (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) - { - finalCreateInfo.flags &= ~VMA_ALLOCATION_CREATE_MAPPED_BIT; - } - // If memory is lazily allocated, it should be always dedicated. - if(finalCreateInfo.usage == VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED) - { - finalCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT; - } - - VmaBlockVector* const blockVector = m_pBlockVectors[memTypeIndex]; - VMA_ASSERT(blockVector); - - const VkDeviceSize preferredBlockSize = blockVector->GetPreferredBlockSize(); - bool preferDedicatedMemory = - VMA_DEBUG_ALWAYS_DEDICATED_MEMORY || - dedicatedAllocation || - // Heuristics: Allocate dedicated memory if requested size if greater than half of preferred block size. - size > preferredBlockSize / 2; - - if(preferDedicatedMemory && - (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0 && - finalCreateInfo.pool == VK_NULL_HANDLE) - { - finalCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT; - } - - if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0) - { - if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0) - { - return VK_ERROR_OUT_OF_DEVICE_MEMORY; - } - else - { - return AllocateDedicatedMemory( - size, - suballocType, - memTypeIndex, - (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT) != 0, - (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0, - (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0, - finalCreateInfo.pUserData, - dedicatedBuffer, - dedicatedImage, - allocationCount, - pAllocations); - } - } - else - { - VkResult res = blockVector->Allocate( - m_CurrentFrameIndex.load(), - size, - alignment, - finalCreateInfo, - suballocType, - allocationCount, - pAllocations); - if(res == VK_SUCCESS) - { - return res; - } - - // 5. Try dedicated memory. - if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0) - { - return VK_ERROR_OUT_OF_DEVICE_MEMORY; - } - else - { - res = AllocateDedicatedMemory( - size, - suballocType, - memTypeIndex, - (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT) != 0, - (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0, - (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0, - finalCreateInfo.pUserData, - dedicatedBuffer, - dedicatedImage, - allocationCount, - pAllocations); - if(res == VK_SUCCESS) - { - // Succeeded: AllocateDedicatedMemory function already filld pMemory, nothing more to do here. - VMA_DEBUG_LOG(" Allocated as DedicatedMemory"); - return VK_SUCCESS; - } - else - { - // Everything failed: Return error code. - VMA_DEBUG_LOG(" vkAllocateMemory FAILED"); - return res; - } - } - } -} - -VkResult VmaAllocator_T::AllocateDedicatedMemory( - VkDeviceSize size, - VmaSuballocationType suballocType, - uint32_t memTypeIndex, - bool withinBudget, - bool map, - bool isUserDataString, - void* pUserData, - VkBuffer dedicatedBuffer, - VkImage dedicatedImage, - size_t allocationCount, - VmaAllocation* pAllocations) -{ - VMA_ASSERT(allocationCount > 0 && pAllocations); - - if(withinBudget) - { - const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex); - VmaBudget heapBudget = {}; - GetBudget(&heapBudget, heapIndex, 1); - if(heapBudget.usage + size * allocationCount > heapBudget.budget) - { - return VK_ERROR_OUT_OF_DEVICE_MEMORY; - } - } - - VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO }; - allocInfo.memoryTypeIndex = memTypeIndex; - allocInfo.allocationSize = size; - -#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 - VkMemoryDedicatedAllocateInfoKHR dedicatedAllocInfo = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR }; - if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) - { - if(dedicatedBuffer != VK_NULL_HANDLE) - { - VMA_ASSERT(dedicatedImage == VK_NULL_HANDLE); - dedicatedAllocInfo.buffer = dedicatedBuffer; - allocInfo.pNext = &dedicatedAllocInfo; - } - else if(dedicatedImage != VK_NULL_HANDLE) - { - dedicatedAllocInfo.image = dedicatedImage; - allocInfo.pNext = &dedicatedAllocInfo; - } - } -#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 - - size_t allocIndex; - VkResult res = VK_SUCCESS; - for(allocIndex = 0; allocIndex < allocationCount; ++allocIndex) - { - res = AllocateDedicatedMemoryPage( - size, - suballocType, - memTypeIndex, - allocInfo, - map, - isUserDataString, - pUserData, - pAllocations + allocIndex); - if(res != VK_SUCCESS) - { - break; - } - } - - if(res == VK_SUCCESS) - { - // Register them in m_pDedicatedAllocations. - { - VmaMutexLockWrite lock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex); - AllocationVectorType* pDedicatedAllocations = m_pDedicatedAllocations[memTypeIndex]; - VMA_ASSERT(pDedicatedAllocations); - for(allocIndex = 0; allocIndex < allocationCount; ++allocIndex) - { - VmaVectorInsertSorted(*pDedicatedAllocations, pAllocations[allocIndex]); - } - } - - VMA_DEBUG_LOG(" Allocated DedicatedMemory Count=%zu, MemoryTypeIndex=#%u", allocationCount, memTypeIndex); - } - else - { - // Free all already created allocations. - while(allocIndex--) - { - VmaAllocation currAlloc = pAllocations[allocIndex]; - VkDeviceMemory hMemory = currAlloc->GetMemory(); - - /* - There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory - before vkFreeMemory. - - if(currAlloc->GetMappedData() != VMA_NULL) - { - (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory); - } - */ - - FreeVulkanMemory(memTypeIndex, currAlloc->GetSize(), hMemory); - m_Budget.RemoveAllocation(MemoryTypeIndexToHeapIndex(memTypeIndex), currAlloc->GetSize()); - currAlloc->SetUserData(this, VMA_NULL); - currAlloc->Dtor(); - m_AllocationObjectAllocator.Free(currAlloc); - } - - memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount); - } - - return res; -} - -VkResult VmaAllocator_T::AllocateDedicatedMemoryPage( - VkDeviceSize size, - VmaSuballocationType suballocType, - uint32_t memTypeIndex, - const VkMemoryAllocateInfo& allocInfo, - bool map, - bool isUserDataString, - void* pUserData, - VmaAllocation* pAllocation) -{ - VkDeviceMemory hMemory = VK_NULL_HANDLE; - VkResult res = AllocateVulkanMemory(&allocInfo, &hMemory); - if(res < 0) - { - VMA_DEBUG_LOG(" vkAllocateMemory FAILED"); - return res; - } - - void* pMappedData = VMA_NULL; - if(map) - { - res = (*m_VulkanFunctions.vkMapMemory)( - m_hDevice, - hMemory, - 0, - VK_WHOLE_SIZE, - 0, - &pMappedData); - if(res < 0) - { - VMA_DEBUG_LOG(" vkMapMemory FAILED"); - FreeVulkanMemory(memTypeIndex, size, hMemory); - return res; - } - } - - *pAllocation = m_AllocationObjectAllocator.Allocate(); - (*pAllocation)->Ctor(m_CurrentFrameIndex.load(), isUserDataString); - (*pAllocation)->InitDedicatedAllocation(memTypeIndex, hMemory, suballocType, pMappedData, size); - (*pAllocation)->SetUserData(this, pUserData); - m_Budget.AddAllocation(MemoryTypeIndexToHeapIndex(memTypeIndex), size); - if(VMA_DEBUG_INITIALIZE_ALLOCATIONS) - { - FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED); - } - - return VK_SUCCESS; -} - -void VmaAllocator_T::GetBufferMemoryRequirements( - VkBuffer hBuffer, - VkMemoryRequirements& memReq, - bool& requiresDedicatedAllocation, - bool& prefersDedicatedAllocation) const -{ -#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 - if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) - { - VkBufferMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2_KHR }; - memReqInfo.buffer = hBuffer; - - VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR }; - - VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR }; - memReq2.pNext = &memDedicatedReq; - - (*m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2); - - memReq = memReq2.memoryRequirements; - requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE); - prefersDedicatedAllocation = (memDedicatedReq.prefersDedicatedAllocation != VK_FALSE); - } - else -#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 - { - (*m_VulkanFunctions.vkGetBufferMemoryRequirements)(m_hDevice, hBuffer, &memReq); - requiresDedicatedAllocation = false; - prefersDedicatedAllocation = false; - } -} - -void VmaAllocator_T::GetImageMemoryRequirements( - VkImage hImage, - VkMemoryRequirements& memReq, - bool& requiresDedicatedAllocation, - bool& prefersDedicatedAllocation) const -{ -#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 - if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) - { - VkImageMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2_KHR }; - memReqInfo.image = hImage; - - VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR }; - - VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR }; - memReq2.pNext = &memDedicatedReq; - - (*m_VulkanFunctions.vkGetImageMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2); - - memReq = memReq2.memoryRequirements; - requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE); - prefersDedicatedAllocation = (memDedicatedReq.prefersDedicatedAllocation != VK_FALSE); - } - else -#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 - { - (*m_VulkanFunctions.vkGetImageMemoryRequirements)(m_hDevice, hImage, &memReq); - requiresDedicatedAllocation = false; - prefersDedicatedAllocation = false; - } -} - -VkResult VmaAllocator_T::AllocateMemory( - const VkMemoryRequirements& vkMemReq, - bool requiresDedicatedAllocation, - bool prefersDedicatedAllocation, - VkBuffer dedicatedBuffer, - VkImage dedicatedImage, - const VmaAllocationCreateInfo& createInfo, - VmaSuballocationType suballocType, - size_t allocationCount, - VmaAllocation* pAllocations) -{ - memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount); - - VMA_ASSERT(VmaIsPow2(vkMemReq.alignment)); - - if(vkMemReq.size == 0) - { - return VK_ERROR_VALIDATION_FAILED_EXT; - } - if((createInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 && - (createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0) - { - VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT together with VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT makes no sense."); - return VK_ERROR_OUT_OF_DEVICE_MEMORY; - } - if((createInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 && - (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0) - { - VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_MAPPED_BIT together with VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT is invalid."); - return VK_ERROR_OUT_OF_DEVICE_MEMORY; - } - if(requiresDedicatedAllocation) - { - if((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0) - { - VMA_ASSERT(0 && "VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT specified while dedicated allocation is required."); - return VK_ERROR_OUT_OF_DEVICE_MEMORY; - } - if(createInfo.pool != VK_NULL_HANDLE) - { - VMA_ASSERT(0 && "Pool specified while dedicated allocation is required."); - return VK_ERROR_OUT_OF_DEVICE_MEMORY; - } - } - if((createInfo.pool != VK_NULL_HANDLE) && - ((createInfo.flags & (VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT)) != 0)) - { - VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT when pool != null is invalid."); - return VK_ERROR_OUT_OF_DEVICE_MEMORY; - } - - if(createInfo.pool != VK_NULL_HANDLE) - { - const VkDeviceSize alignmentForPool = VMA_MAX( - vkMemReq.alignment, - GetMemoryTypeMinAlignment(createInfo.pool->m_BlockVector.GetMemoryTypeIndex())); - - VmaAllocationCreateInfo createInfoForPool = createInfo; - // If memory type is not HOST_VISIBLE, disable MAPPED. - if((createInfoForPool.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 && - (m_MemProps.memoryTypes[createInfo.pool->m_BlockVector.GetMemoryTypeIndex()].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) - { - createInfoForPool.flags &= ~VMA_ALLOCATION_CREATE_MAPPED_BIT; - } - - return createInfo.pool->m_BlockVector.Allocate( - m_CurrentFrameIndex.load(), - vkMemReq.size, - alignmentForPool, - createInfoForPool, - suballocType, - allocationCount, - pAllocations); - } - else - { - // Bit mask of memory Vulkan types acceptable for this allocation. - uint32_t memoryTypeBits = vkMemReq.memoryTypeBits; - uint32_t memTypeIndex = UINT32_MAX; - VkResult res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfo, &memTypeIndex); - if(res == VK_SUCCESS) - { - VkDeviceSize alignmentForMemType = VMA_MAX( - vkMemReq.alignment, - GetMemoryTypeMinAlignment(memTypeIndex)); - - res = AllocateMemoryOfType( - vkMemReq.size, - alignmentForMemType, - requiresDedicatedAllocation || prefersDedicatedAllocation, - dedicatedBuffer, - dedicatedImage, - createInfo, - memTypeIndex, - suballocType, - allocationCount, - pAllocations); - // Succeeded on first try. - if(res == VK_SUCCESS) - { - return res; - } - // Allocation from this memory type failed. Try other compatible memory types. - else - { - for(;;) - { - // Remove old memTypeIndex from list of possibilities. - memoryTypeBits &= ~(1u << memTypeIndex); - // Find alternative memTypeIndex. - res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfo, &memTypeIndex); - if(res == VK_SUCCESS) - { - alignmentForMemType = VMA_MAX( - vkMemReq.alignment, - GetMemoryTypeMinAlignment(memTypeIndex)); - - res = AllocateMemoryOfType( - vkMemReq.size, - alignmentForMemType, - requiresDedicatedAllocation || prefersDedicatedAllocation, - dedicatedBuffer, - dedicatedImage, - createInfo, - memTypeIndex, - suballocType, - allocationCount, - pAllocations); - // Allocation from this alternative memory type succeeded. - if(res == VK_SUCCESS) - { - return res; - } - // else: Allocation from this memory type failed. Try next one - next loop iteration. - } - // No other matching memory type index could be found. - else - { - // Not returning res, which is VK_ERROR_FEATURE_NOT_PRESENT, because we already failed to allocate once. - return VK_ERROR_OUT_OF_DEVICE_MEMORY; - } - } - } - } - // Can't find any single memory type maching requirements. res is VK_ERROR_FEATURE_NOT_PRESENT. - else - return res; - } -} - -void VmaAllocator_T::FreeMemory( - size_t allocationCount, - const VmaAllocation* pAllocations) -{ - VMA_ASSERT(pAllocations); - - for(size_t allocIndex = allocationCount; allocIndex--; ) - { - VmaAllocation allocation = pAllocations[allocIndex]; - - if(allocation != VK_NULL_HANDLE) - { - if(TouchAllocation(allocation)) - { - if(VMA_DEBUG_INITIALIZE_ALLOCATIONS) - { - FillAllocation(allocation, VMA_ALLOCATION_FILL_PATTERN_DESTROYED); - } - - switch(allocation->GetType()) - { - case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: - { - VmaBlockVector* pBlockVector = VMA_NULL; - VmaPool hPool = allocation->GetBlock()->GetParentPool(); - if(hPool != VK_NULL_HANDLE) - { - pBlockVector = &hPool->m_BlockVector; - } - else - { - const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex(); - pBlockVector = m_pBlockVectors[memTypeIndex]; - } - pBlockVector->Free(allocation); - } - break; - case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: - FreeDedicatedMemory(allocation); - break; - default: - VMA_ASSERT(0); - } - } - - // Do this regardless of whether the allocation is lost. Lost allocations still account to Budget.AllocationBytes. - m_Budget.RemoveAllocation(MemoryTypeIndexToHeapIndex(allocation->GetMemoryTypeIndex()), allocation->GetSize()); - allocation->SetUserData(this, VMA_NULL); - allocation->Dtor(); - m_AllocationObjectAllocator.Free(allocation); - } - } -} - -VkResult VmaAllocator_T::ResizeAllocation( - const VmaAllocation alloc, - VkDeviceSize newSize) -{ - // This function is deprecated and so it does nothing. It's left for backward compatibility. - if(newSize == 0 || alloc->GetLastUseFrameIndex() == VMA_FRAME_INDEX_LOST) - { - return VK_ERROR_VALIDATION_FAILED_EXT; - } - if(newSize == alloc->GetSize()) - { - return VK_SUCCESS; - } - return VK_ERROR_OUT_OF_POOL_MEMORY; -} - -void VmaAllocator_T::CalculateStats(VmaStats* pStats) -{ - // Initialize. - InitStatInfo(pStats->total); - for(size_t i = 0; i < VK_MAX_MEMORY_TYPES; ++i) - InitStatInfo(pStats->memoryType[i]); - for(size_t i = 0; i < VK_MAX_MEMORY_HEAPS; ++i) - InitStatInfo(pStats->memoryHeap[i]); - - // Process default pools. - for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) - { - VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex]; - VMA_ASSERT(pBlockVector); - pBlockVector->AddStats(pStats); - } - - // Process custom pools. - { - VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex); - for(size_t poolIndex = 0, poolCount = m_Pools.size(); poolIndex < poolCount; ++poolIndex) - { - m_Pools[poolIndex]->m_BlockVector.AddStats(pStats); - } - } - - // Process dedicated allocations. - for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) - { - const uint32_t memHeapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex); - VmaMutexLockRead dedicatedAllocationsLock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex); - AllocationVectorType* const pDedicatedAllocVector = m_pDedicatedAllocations[memTypeIndex]; - VMA_ASSERT(pDedicatedAllocVector); - for(size_t allocIndex = 0, allocCount = pDedicatedAllocVector->size(); allocIndex < allocCount; ++allocIndex) - { - VmaStatInfo allocationStatInfo; - (*pDedicatedAllocVector)[allocIndex]->DedicatedAllocCalcStatsInfo(allocationStatInfo); - VmaAddStatInfo(pStats->total, allocationStatInfo); - VmaAddStatInfo(pStats->memoryType[memTypeIndex], allocationStatInfo); - VmaAddStatInfo(pStats->memoryHeap[memHeapIndex], allocationStatInfo); - } - } - - // Postprocess. - VmaPostprocessCalcStatInfo(pStats->total); - for(size_t i = 0; i < GetMemoryTypeCount(); ++i) - VmaPostprocessCalcStatInfo(pStats->memoryType[i]); - for(size_t i = 0; i < GetMemoryHeapCount(); ++i) - VmaPostprocessCalcStatInfo(pStats->memoryHeap[i]); -} - -void VmaAllocator_T::GetBudget(VmaBudget* outBudget, uint32_t firstHeap, uint32_t heapCount) -{ -#if VMA_MEMORY_BUDGET - if(m_UseExtMemoryBudget) - { - if(m_Budget.m_OperationsSinceBudgetFetch < 30) - { - VmaMutexLockRead lockRead(m_Budget.m_BudgetMutex, m_UseMutex); - for(uint32_t i = 0; i < heapCount; ++i, ++outBudget) - { - const uint32_t heapIndex = firstHeap + i; - - outBudget->blockBytes = m_Budget.m_BlockBytes[heapIndex]; - outBudget->allocationBytes = m_Budget.m_AllocationBytes[heapIndex]; - - if(m_Budget.m_VulkanUsage[heapIndex] + outBudget->blockBytes > m_Budget.m_BlockBytesAtBudgetFetch[heapIndex]) - { - outBudget->usage = m_Budget.m_VulkanUsage[heapIndex] + - outBudget->blockBytes - m_Budget.m_BlockBytesAtBudgetFetch[heapIndex]; - } - else - { - outBudget->usage = 0; - } - - // Have to take MIN with heap size because explicit HeapSizeLimit is included in it. - outBudget->budget = VMA_MIN( - m_Budget.m_VulkanBudget[heapIndex], m_MemProps.memoryHeaps[heapIndex].size); - } - } - else - { - UpdateVulkanBudget(); // Outside of mutex lock - GetBudget(outBudget, firstHeap, heapCount); // Recursion - } - } - else -#endif - { - for(uint32_t i = 0; i < heapCount; ++i, ++outBudget) - { - const uint32_t heapIndex = firstHeap + i; - - outBudget->blockBytes = m_Budget.m_BlockBytes[heapIndex]; - outBudget->allocationBytes = m_Budget.m_AllocationBytes[heapIndex]; - - outBudget->usage = outBudget->blockBytes; - outBudget->budget = m_MemProps.memoryHeaps[heapIndex].size * 8 / 10; // 80% heuristics. - } - } -} - -static const uint32_t VMA_VENDOR_ID_AMD = 4098; - -VkResult VmaAllocator_T::DefragmentationBegin( - const VmaDefragmentationInfo2& info, - VmaDefragmentationStats* pStats, - VmaDefragmentationContext* pContext) -{ - if(info.pAllocationsChanged != VMA_NULL) - { - memset(info.pAllocationsChanged, 0, info.allocationCount * sizeof(VkBool32)); - } - - *pContext = vma_new(this, VmaDefragmentationContext_T)( - this, m_CurrentFrameIndex.load(), info.flags, pStats); - - (*pContext)->AddPools(info.poolCount, info.pPools); - (*pContext)->AddAllocations( - info.allocationCount, info.pAllocations, info.pAllocationsChanged); - - VkResult res = (*pContext)->Defragment( - info.maxCpuBytesToMove, info.maxCpuAllocationsToMove, - info.maxGpuBytesToMove, info.maxGpuAllocationsToMove, - info.commandBuffer, pStats, info.flags); - - if(res != VK_NOT_READY) - { - vma_delete(this, *pContext); - *pContext = VMA_NULL; - } - - return res; -} - -VkResult VmaAllocator_T::DefragmentationEnd( - VmaDefragmentationContext context) -{ - vma_delete(this, context); - return VK_SUCCESS; -} - -VkResult VmaAllocator_T::DefragmentationPassBegin( - VmaDefragmentationPassInfo* pInfo, - VmaDefragmentationContext context) -{ - return context->DefragmentPassBegin(pInfo); -} -VkResult VmaAllocator_T::DefragmentationPassEnd( - VmaDefragmentationContext context) -{ - return context->DefragmentPassEnd(); - -} - -void VmaAllocator_T::GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo) -{ - if(hAllocation->CanBecomeLost()) - { - /* - Warning: This is a carefully designed algorithm. - Do not modify unless you really know what you're doing :) - */ - const uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load(); - uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex(); - for(;;) - { - if(localLastUseFrameIndex == VMA_FRAME_INDEX_LOST) - { - pAllocationInfo->memoryType = UINT32_MAX; - pAllocationInfo->deviceMemory = VK_NULL_HANDLE; - pAllocationInfo->offset = 0; - pAllocationInfo->size = hAllocation->GetSize(); - pAllocationInfo->pMappedData = VMA_NULL; - pAllocationInfo->pUserData = hAllocation->GetUserData(); - return; - } - else if(localLastUseFrameIndex == localCurrFrameIndex) - { - pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex(); - pAllocationInfo->deviceMemory = hAllocation->GetMemory(); - pAllocationInfo->offset = hAllocation->GetOffset(); - pAllocationInfo->size = hAllocation->GetSize(); - pAllocationInfo->pMappedData = VMA_NULL; - pAllocationInfo->pUserData = hAllocation->GetUserData(); - return; - } - else // Last use time earlier than current time. - { - if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex)) - { - localLastUseFrameIndex = localCurrFrameIndex; - } - } - } - } - else - { -#if VMA_STATS_STRING_ENABLED - uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load(); - uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex(); - for(;;) - { - VMA_ASSERT(localLastUseFrameIndex != VMA_FRAME_INDEX_LOST); - if(localLastUseFrameIndex == localCurrFrameIndex) - { - break; - } - else // Last use time earlier than current time. - { - if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex)) - { - localLastUseFrameIndex = localCurrFrameIndex; - } - } - } -#endif - - pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex(); - pAllocationInfo->deviceMemory = hAllocation->GetMemory(); - pAllocationInfo->offset = hAllocation->GetOffset(); - pAllocationInfo->size = hAllocation->GetSize(); - pAllocationInfo->pMappedData = hAllocation->GetMappedData(); - pAllocationInfo->pUserData = hAllocation->GetUserData(); - } -} - -bool VmaAllocator_T::TouchAllocation(VmaAllocation hAllocation) -{ - // This is a stripped-down version of VmaAllocator_T::GetAllocationInfo. - if(hAllocation->CanBecomeLost()) - { - uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load(); - uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex(); - for(;;) - { - if(localLastUseFrameIndex == VMA_FRAME_INDEX_LOST) - { - return false; - } - else if(localLastUseFrameIndex == localCurrFrameIndex) - { - return true; - } - else // Last use time earlier than current time. - { - if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex)) - { - localLastUseFrameIndex = localCurrFrameIndex; - } - } - } - } - else - { -#if VMA_STATS_STRING_ENABLED - uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load(); - uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex(); - for(;;) - { - VMA_ASSERT(localLastUseFrameIndex != VMA_FRAME_INDEX_LOST); - if(localLastUseFrameIndex == localCurrFrameIndex) - { - break; - } - else // Last use time earlier than current time. - { - if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex)) - { - localLastUseFrameIndex = localCurrFrameIndex; - } - } - } -#endif - - return true; - } -} - -VkResult VmaAllocator_T::CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool) -{ - VMA_DEBUG_LOG(" CreatePool: MemoryTypeIndex=%u, flags=%u", pCreateInfo->memoryTypeIndex, pCreateInfo->flags); - - VmaPoolCreateInfo newCreateInfo = *pCreateInfo; - - if(newCreateInfo.maxBlockCount == 0) - { - newCreateInfo.maxBlockCount = SIZE_MAX; - } - if(newCreateInfo.minBlockCount > newCreateInfo.maxBlockCount) - { - return VK_ERROR_INITIALIZATION_FAILED; - } - - const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(newCreateInfo.memoryTypeIndex); - - *pPool = vma_new(this, VmaPool_T)(this, newCreateInfo, preferredBlockSize); - - VkResult res = (*pPool)->m_BlockVector.CreateMinBlocks(); - if(res != VK_SUCCESS) - { - vma_delete(this, *pPool); - *pPool = VMA_NULL; - return res; - } - - // Add to m_Pools. - { - VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex); - (*pPool)->SetId(m_NextPoolId++); - VmaVectorInsertSorted(m_Pools, *pPool); - } - - return VK_SUCCESS; -} - -void VmaAllocator_T::DestroyPool(VmaPool pool) -{ - // Remove from m_Pools. - { - VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex); - bool success = VmaVectorRemoveSorted(m_Pools, pool); - VMA_ASSERT(success && "Pool not found in Allocator."); - } - - vma_delete(this, pool); -} - -void VmaAllocator_T::GetPoolStats(VmaPool pool, VmaPoolStats* pPoolStats) -{ - pool->m_BlockVector.GetPoolStats(pPoolStats); -} - -void VmaAllocator_T::SetCurrentFrameIndex(uint32_t frameIndex) -{ - m_CurrentFrameIndex.store(frameIndex); - -#if VMA_MEMORY_BUDGET - if(m_UseExtMemoryBudget) - { - UpdateVulkanBudget(); - } -#endif // #if VMA_MEMORY_BUDGET -} - -void VmaAllocator_T::MakePoolAllocationsLost( - VmaPool hPool, - size_t* pLostAllocationCount) -{ - hPool->m_BlockVector.MakePoolAllocationsLost( - m_CurrentFrameIndex.load(), - pLostAllocationCount); -} - -VkResult VmaAllocator_T::CheckPoolCorruption(VmaPool hPool) -{ - return hPool->m_BlockVector.CheckCorruption(); -} - -VkResult VmaAllocator_T::CheckCorruption(uint32_t memoryTypeBits) -{ - VkResult finalRes = VK_ERROR_FEATURE_NOT_PRESENT; - - // Process default pools. - for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) - { - if(((1u << memTypeIndex) & memoryTypeBits) != 0) - { - VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex]; - VMA_ASSERT(pBlockVector); - VkResult localRes = pBlockVector->CheckCorruption(); - switch(localRes) - { - case VK_ERROR_FEATURE_NOT_PRESENT: - break; - case VK_SUCCESS: - finalRes = VK_SUCCESS; - break; - default: - return localRes; - } - } - } - - // Process custom pools. - { - VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex); - for(size_t poolIndex = 0, poolCount = m_Pools.size(); poolIndex < poolCount; ++poolIndex) - { - if(((1u << m_Pools[poolIndex]->m_BlockVector.GetMemoryTypeIndex()) & memoryTypeBits) != 0) - { - VkResult localRes = m_Pools[poolIndex]->m_BlockVector.CheckCorruption(); - switch(localRes) - { - case VK_ERROR_FEATURE_NOT_PRESENT: - break; - case VK_SUCCESS: - finalRes = VK_SUCCESS; - break; - default: - return localRes; - } - } - } - } - - return finalRes; -} - -void VmaAllocator_T::CreateLostAllocation(VmaAllocation* pAllocation) -{ - *pAllocation = m_AllocationObjectAllocator.Allocate(); - (*pAllocation)->Ctor(VMA_FRAME_INDEX_LOST, false); - (*pAllocation)->InitLost(); -} - -VkResult VmaAllocator_T::AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory) -{ - const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(pAllocateInfo->memoryTypeIndex); - - // HeapSizeLimit is in effect for this heap. - if((m_HeapSizeLimitMask & (1u << heapIndex)) != 0) - { - const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size; - VkDeviceSize blockBytes = m_Budget.m_BlockBytes[heapIndex]; - for(;;) - { - const VkDeviceSize blockBytesAfterAllocation = blockBytes + pAllocateInfo->allocationSize; - if(blockBytesAfterAllocation > heapSize) - { - return VK_ERROR_OUT_OF_DEVICE_MEMORY; - } - if(m_Budget.m_BlockBytes[heapIndex].compare_exchange_strong(blockBytes, blockBytesAfterAllocation)) - { - break; - } - } - } - else - { - m_Budget.m_BlockBytes[heapIndex] += pAllocateInfo->allocationSize; - } - - // VULKAN CALL vkAllocateMemory. - VkResult res = (*m_VulkanFunctions.vkAllocateMemory)(m_hDevice, pAllocateInfo, GetAllocationCallbacks(), pMemory); - - if(res == VK_SUCCESS) - { -#if VMA_MEMORY_BUDGET - ++m_Budget.m_OperationsSinceBudgetFetch; -#endif - - // Informative callback. - if(m_DeviceMemoryCallbacks.pfnAllocate != VMA_NULL) - { - (*m_DeviceMemoryCallbacks.pfnAllocate)(this, pAllocateInfo->memoryTypeIndex, *pMemory, pAllocateInfo->allocationSize); - } - } - else - { - m_Budget.m_BlockBytes[heapIndex] -= pAllocateInfo->allocationSize; - } - - return res; -} - -void VmaAllocator_T::FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory) -{ - // Informative callback. - if(m_DeviceMemoryCallbacks.pfnFree != VMA_NULL) - { - (*m_DeviceMemoryCallbacks.pfnFree)(this, memoryType, hMemory, size); - } - - // VULKAN CALL vkFreeMemory. - (*m_VulkanFunctions.vkFreeMemory)(m_hDevice, hMemory, GetAllocationCallbacks()); - - m_Budget.m_BlockBytes[MemoryTypeIndexToHeapIndex(memoryType)] -= size; -} - -VkResult VmaAllocator_T::BindVulkanBuffer( - VkDeviceMemory memory, - VkDeviceSize memoryOffset, - VkBuffer buffer, - const void* pNext) -{ - if(pNext != VMA_NULL) - { -#if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2 - if((m_UseKhrBindMemory2 || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) && - m_VulkanFunctions.vkBindBufferMemory2KHR != VMA_NULL) - { - VkBindBufferMemoryInfoKHR bindBufferMemoryInfo = { VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHR }; - bindBufferMemoryInfo.pNext = pNext; - bindBufferMemoryInfo.buffer = buffer; - bindBufferMemoryInfo.memory = memory; - bindBufferMemoryInfo.memoryOffset = memoryOffset; - return (*m_VulkanFunctions.vkBindBufferMemory2KHR)(m_hDevice, 1, &bindBufferMemoryInfo); - } - else -#endif // #if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2 - { - return VK_ERROR_EXTENSION_NOT_PRESENT; - } - } - else - { - return (*m_VulkanFunctions.vkBindBufferMemory)(m_hDevice, buffer, memory, memoryOffset); - } -} - -VkResult VmaAllocator_T::BindVulkanImage( - VkDeviceMemory memory, - VkDeviceSize memoryOffset, - VkImage image, - const void* pNext) -{ - if(pNext != VMA_NULL) - { -#if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2 - if((m_UseKhrBindMemory2 || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) && - m_VulkanFunctions.vkBindImageMemory2KHR != VMA_NULL) - { - VkBindImageMemoryInfoKHR bindBufferMemoryInfo = { VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO_KHR }; - bindBufferMemoryInfo.pNext = pNext; - bindBufferMemoryInfo.image = image; - bindBufferMemoryInfo.memory = memory; - bindBufferMemoryInfo.memoryOffset = memoryOffset; - return (*m_VulkanFunctions.vkBindImageMemory2KHR)(m_hDevice, 1, &bindBufferMemoryInfo); - } - else -#endif // #if VMA_BIND_MEMORY2 - { - return VK_ERROR_EXTENSION_NOT_PRESENT; - } - } - else - { - return (*m_VulkanFunctions.vkBindImageMemory)(m_hDevice, image, memory, memoryOffset); - } -} - -VkResult VmaAllocator_T::Map(VmaAllocation hAllocation, void** ppData) -{ - if(hAllocation->CanBecomeLost()) - { - return VK_ERROR_MEMORY_MAP_FAILED; - } - - switch(hAllocation->GetType()) - { - case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: - { - VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock(); - char *pBytes = VMA_NULL; - VkResult res = pBlock->Map(this, 1, (void**)&pBytes); - if(res == VK_SUCCESS) - { - *ppData = pBytes + (ptrdiff_t)hAllocation->GetOffset(); - hAllocation->BlockAllocMap(); - } - return res; - } - case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: - return hAllocation->DedicatedAllocMap(this, ppData); - default: - VMA_ASSERT(0); - return VK_ERROR_MEMORY_MAP_FAILED; - } -} - -void VmaAllocator_T::Unmap(VmaAllocation hAllocation) -{ - switch(hAllocation->GetType()) - { - case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: - { - VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock(); - hAllocation->BlockAllocUnmap(); - pBlock->Unmap(this, 1); - } - break; - case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: - hAllocation->DedicatedAllocUnmap(this); - break; - default: - VMA_ASSERT(0); - } -} - -VkResult VmaAllocator_T::BindBufferMemory( - VmaAllocation hAllocation, - VkDeviceSize allocationLocalOffset, - VkBuffer hBuffer, - const void* pNext) -{ - VkResult res = VK_SUCCESS; - switch(hAllocation->GetType()) - { - case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: - res = BindVulkanBuffer(hAllocation->GetMemory(), allocationLocalOffset, hBuffer, pNext); - break; - case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: - { - VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock(); - VMA_ASSERT(pBlock && "Binding buffer to allocation that doesn't belong to any block. Is the allocation lost?"); - res = pBlock->BindBufferMemory(this, hAllocation, allocationLocalOffset, hBuffer, pNext); - break; - } - default: - VMA_ASSERT(0); - } - return res; -} - -VkResult VmaAllocator_T::BindImageMemory( - VmaAllocation hAllocation, - VkDeviceSize allocationLocalOffset, - VkImage hImage, - const void* pNext) -{ - VkResult res = VK_SUCCESS; - switch(hAllocation->GetType()) - { - case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: - res = BindVulkanImage(hAllocation->GetMemory(), allocationLocalOffset, hImage, pNext); - break; - case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: - { - VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock(); - VMA_ASSERT(pBlock && "Binding image to allocation that doesn't belong to any block. Is the allocation lost?"); - res = pBlock->BindImageMemory(this, hAllocation, allocationLocalOffset, hImage, pNext); - break; - } - default: - VMA_ASSERT(0); - } - return res; -} - -void VmaAllocator_T::FlushOrInvalidateAllocation( - VmaAllocation hAllocation, - VkDeviceSize offset, VkDeviceSize size, - VMA_CACHE_OPERATION op) -{ - const uint32_t memTypeIndex = hAllocation->GetMemoryTypeIndex(); - if(size > 0 && IsMemoryTypeNonCoherent(memTypeIndex)) - { - const VkDeviceSize allocationSize = hAllocation->GetSize(); - VMA_ASSERT(offset <= allocationSize); - - const VkDeviceSize nonCoherentAtomSize = m_PhysicalDeviceProperties.limits.nonCoherentAtomSize; - - VkMappedMemoryRange memRange = { VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE }; - memRange.memory = hAllocation->GetMemory(); - - switch(hAllocation->GetType()) - { - case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: - memRange.offset = VmaAlignDown(offset, nonCoherentAtomSize); - if(size == VK_WHOLE_SIZE) - { - memRange.size = allocationSize - memRange.offset; - } - else - { - VMA_ASSERT(offset + size <= allocationSize); - memRange.size = VMA_MIN( - VmaAlignUp(size + (offset - memRange.offset), nonCoherentAtomSize), - allocationSize - memRange.offset); - } - break; - - case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: - { - // 1. Still within this allocation. - memRange.offset = VmaAlignDown(offset, nonCoherentAtomSize); - if(size == VK_WHOLE_SIZE) - { - size = allocationSize - offset; - } - else - { - VMA_ASSERT(offset + size <= allocationSize); - } - memRange.size = VmaAlignUp(size + (offset - memRange.offset), nonCoherentAtomSize); - - // 2. Adjust to whole block. - const VkDeviceSize allocationOffset = hAllocation->GetOffset(); - VMA_ASSERT(allocationOffset % nonCoherentAtomSize == 0); - const VkDeviceSize blockSize = hAllocation->GetBlock()->m_pMetadata->GetSize(); - memRange.offset += allocationOffset; - memRange.size = VMA_MIN(memRange.size, blockSize - memRange.offset); - - break; - } - - default: - VMA_ASSERT(0); - } - - switch(op) - { - case VMA_CACHE_FLUSH: - (*GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hDevice, 1, &memRange); - break; - case VMA_CACHE_INVALIDATE: - (*GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hDevice, 1, &memRange); - break; - default: - VMA_ASSERT(0); - } - } - // else: Just ignore this call. -} - -void VmaAllocator_T::FreeDedicatedMemory(const VmaAllocation allocation) -{ - VMA_ASSERT(allocation && allocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED); - - const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex(); - { - VmaMutexLockWrite lock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex); - AllocationVectorType* const pDedicatedAllocations = m_pDedicatedAllocations[memTypeIndex]; - VMA_ASSERT(pDedicatedAllocations); - bool success = VmaVectorRemoveSorted(*pDedicatedAllocations, allocation); - VMA_ASSERT(success); - } - - VkDeviceMemory hMemory = allocation->GetMemory(); - - /* - There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory - before vkFreeMemory. - - if(allocation->GetMappedData() != VMA_NULL) - { - (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory); - } - */ - - FreeVulkanMemory(memTypeIndex, allocation->GetSize(), hMemory); - - VMA_DEBUG_LOG(" Freed DedicatedMemory MemoryTypeIndex=%u", memTypeIndex); -} - -uint32_t VmaAllocator_T::CalculateGpuDefragmentationMemoryTypeBits() const -{ - VkBufferCreateInfo dummyBufCreateInfo; - VmaFillGpuDefragmentationBufferCreateInfo(dummyBufCreateInfo); - - uint32_t memoryTypeBits = 0; - - // Create buffer. - VkBuffer buf = VK_NULL_HANDLE; - VkResult res = (*GetVulkanFunctions().vkCreateBuffer)( - m_hDevice, &dummyBufCreateInfo, GetAllocationCallbacks(), &buf); - if(res == VK_SUCCESS) - { - // Query for supported memory types. - VkMemoryRequirements memReq; - (*GetVulkanFunctions().vkGetBufferMemoryRequirements)(m_hDevice, buf, &memReq); - memoryTypeBits = memReq.memoryTypeBits; - - // Destroy buffer. - (*GetVulkanFunctions().vkDestroyBuffer)(m_hDevice, buf, GetAllocationCallbacks()); - } - - return memoryTypeBits; -} - -#if VMA_MEMORY_BUDGET - -void VmaAllocator_T::UpdateVulkanBudget() -{ - VMA_ASSERT(m_UseExtMemoryBudget); - - VkPhysicalDeviceMemoryProperties2KHR memProps = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2_KHR }; - - VkPhysicalDeviceMemoryBudgetPropertiesEXT budgetProps = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT }; - memProps.pNext = &budgetProps; - - GetVulkanFunctions().vkGetPhysicalDeviceMemoryProperties2KHR(m_PhysicalDevice, &memProps); - - { - VmaMutexLockWrite lockWrite(m_Budget.m_BudgetMutex, m_UseMutex); - - for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex) - { - m_Budget.m_VulkanUsage[heapIndex] = budgetProps.heapUsage[heapIndex]; - m_Budget.m_VulkanBudget[heapIndex] = budgetProps.heapBudget[heapIndex]; - m_Budget.m_BlockBytesAtBudgetFetch[heapIndex] = m_Budget.m_BlockBytes[heapIndex].load(); - } - m_Budget.m_OperationsSinceBudgetFetch = 0; - } -} - -#endif // #if VMA_MEMORY_BUDGET - -void VmaAllocator_T::FillAllocation(const VmaAllocation hAllocation, uint8_t pattern) -{ - if(VMA_DEBUG_INITIALIZE_ALLOCATIONS && - !hAllocation->CanBecomeLost() && - (m_MemProps.memoryTypes[hAllocation->GetMemoryTypeIndex()].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0) - { - void* pData = VMA_NULL; - VkResult res = Map(hAllocation, &pData); - if(res == VK_SUCCESS) - { - memset(pData, (int)pattern, (size_t)hAllocation->GetSize()); - FlushOrInvalidateAllocation(hAllocation, 0, VK_WHOLE_SIZE, VMA_CACHE_FLUSH); - Unmap(hAllocation); - } - else - { - VMA_ASSERT(0 && "VMA_DEBUG_INITIALIZE_ALLOCATIONS is enabled, but couldn't map memory to fill allocation."); - } - } -} - -uint32_t VmaAllocator_T::GetGpuDefragmentationMemoryTypeBits() -{ - uint32_t memoryTypeBits = m_GpuDefragmentationMemoryTypeBits.load(); - if(memoryTypeBits == UINT32_MAX) - { - memoryTypeBits = CalculateGpuDefragmentationMemoryTypeBits(); - m_GpuDefragmentationMemoryTypeBits.store(memoryTypeBits); - } - return memoryTypeBits; -} - -#if VMA_STATS_STRING_ENABLED - -void VmaAllocator_T::PrintDetailedMap(VmaJsonWriter& json) -{ - bool dedicatedAllocationsStarted = false; - for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) - { - VmaMutexLockRead dedicatedAllocationsLock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex); - AllocationVectorType* const pDedicatedAllocVector = m_pDedicatedAllocations[memTypeIndex]; - VMA_ASSERT(pDedicatedAllocVector); - if(pDedicatedAllocVector->empty() == false) - { - if(dedicatedAllocationsStarted == false) - { - dedicatedAllocationsStarted = true; - json.WriteString("DedicatedAllocations"); - json.BeginObject(); - } - - json.BeginString("Type "); - json.ContinueString(memTypeIndex); - json.EndString(); - - json.BeginArray(); - - for(size_t i = 0; i < pDedicatedAllocVector->size(); ++i) - { - json.BeginObject(true); - const VmaAllocation hAlloc = (*pDedicatedAllocVector)[i]; - hAlloc->PrintParameters(json); - json.EndObject(); - } - - json.EndArray(); - } - } - if(dedicatedAllocationsStarted) - { - json.EndObject(); - } - - { - bool allocationsStarted = false; - for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) - { - if(m_pBlockVectors[memTypeIndex]->IsEmpty() == false) - { - if(allocationsStarted == false) - { - allocationsStarted = true; - json.WriteString("DefaultPools"); - json.BeginObject(); - } - - json.BeginString("Type "); - json.ContinueString(memTypeIndex); - json.EndString(); - - m_pBlockVectors[memTypeIndex]->PrintDetailedMap(json); - } - } - if(allocationsStarted) - { - json.EndObject(); - } - } - - // Custom pools - { - VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex); - const size_t poolCount = m_Pools.size(); - if(poolCount > 0) - { - json.WriteString("Pools"); - json.BeginObject(); - for(size_t poolIndex = 0; poolIndex < poolCount; ++poolIndex) - { - json.BeginString(); - json.ContinueString(m_Pools[poolIndex]->GetId()); - json.EndString(); - - m_Pools[poolIndex]->m_BlockVector.PrintDetailedMap(json); - } - json.EndObject(); - } - } -} - -#endif // #if VMA_STATS_STRING_ENABLED - -//////////////////////////////////////////////////////////////////////////////// -// Public interface - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAllocator( - const VmaAllocatorCreateInfo* pCreateInfo, - VmaAllocator* pAllocator) -{ - VMA_ASSERT(pCreateInfo && pAllocator); - VMA_ASSERT(pCreateInfo->vulkanApiVersion == 0 || - (VK_VERSION_MAJOR(pCreateInfo->vulkanApiVersion) == 1 && VK_VERSION_MINOR(pCreateInfo->vulkanApiVersion) <= 1)); - VMA_DEBUG_LOG("vmaCreateAllocator"); - *pAllocator = vma_new(pCreateInfo->pAllocationCallbacks, VmaAllocator_T)(pCreateInfo); - return (*pAllocator)->Init(pCreateInfo); -} - -VMA_CALL_PRE void VMA_CALL_POST vmaDestroyAllocator( - VmaAllocator allocator) -{ - if(allocator != VK_NULL_HANDLE) - { - VMA_DEBUG_LOG("vmaDestroyAllocator"); - VkAllocationCallbacks allocationCallbacks = allocator->m_AllocationCallbacks; - vma_delete(&allocationCallbacks, allocator); - } -} - -VMA_CALL_PRE void VMA_CALL_POST vmaGetPhysicalDeviceProperties( - VmaAllocator allocator, - const VkPhysicalDeviceProperties **ppPhysicalDeviceProperties) -{ - VMA_ASSERT(allocator && ppPhysicalDeviceProperties); - *ppPhysicalDeviceProperties = &allocator->m_PhysicalDeviceProperties; -} - -VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryProperties( - VmaAllocator allocator, - const VkPhysicalDeviceMemoryProperties** ppPhysicalDeviceMemoryProperties) -{ - VMA_ASSERT(allocator && ppPhysicalDeviceMemoryProperties); - *ppPhysicalDeviceMemoryProperties = &allocator->m_MemProps; -} - -VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryTypeProperties( - VmaAllocator allocator, - uint32_t memoryTypeIndex, - VkMemoryPropertyFlags* pFlags) -{ - VMA_ASSERT(allocator && pFlags); - VMA_ASSERT(memoryTypeIndex < allocator->GetMemoryTypeCount()); - *pFlags = allocator->m_MemProps.memoryTypes[memoryTypeIndex].propertyFlags; -} - -VMA_CALL_PRE void VMA_CALL_POST vmaSetCurrentFrameIndex( - VmaAllocator allocator, - uint32_t frameIndex) -{ - VMA_ASSERT(allocator); - VMA_ASSERT(frameIndex != VMA_FRAME_INDEX_LOST); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - allocator->SetCurrentFrameIndex(frameIndex); -} - -VMA_CALL_PRE void VMA_CALL_POST vmaCalculateStats( - VmaAllocator allocator, - VmaStats* pStats) -{ - VMA_ASSERT(allocator && pStats); - VMA_DEBUG_GLOBAL_MUTEX_LOCK - allocator->CalculateStats(pStats); -} - -VMA_CALL_PRE void VMA_CALL_POST vmaGetBudget( - VmaAllocator allocator, - VmaBudget* pBudget) -{ - VMA_ASSERT(allocator && pBudget); - VMA_DEBUG_GLOBAL_MUTEX_LOCK - allocator->GetBudget(pBudget, 0, allocator->GetMemoryHeapCount()); -} - -#if VMA_STATS_STRING_ENABLED - -VMA_CALL_PRE void VMA_CALL_POST vmaBuildStatsString( - VmaAllocator allocator, - char** ppStatsString, - VkBool32 detailedMap) -{ - VMA_ASSERT(allocator && ppStatsString); - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - VmaStringBuilder sb(allocator); - { - VmaJsonWriter json(allocator->GetAllocationCallbacks(), sb); - json.BeginObject(); - - VmaBudget budget[VK_MAX_MEMORY_HEAPS]; - allocator->GetBudget(budget, 0, allocator->GetMemoryHeapCount()); - - VmaStats stats; - allocator->CalculateStats(&stats); - - json.WriteString("Total"); - VmaPrintStatInfo(json, stats.total); - - for(uint32_t heapIndex = 0; heapIndex < allocator->GetMemoryHeapCount(); ++heapIndex) - { - json.BeginString("Heap "); - json.ContinueString(heapIndex); - json.EndString(); - json.BeginObject(); - - json.WriteString("Size"); - json.WriteNumber(allocator->m_MemProps.memoryHeaps[heapIndex].size); - - json.WriteString("Flags"); - json.BeginArray(true); - if((allocator->m_MemProps.memoryHeaps[heapIndex].flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) != 0) - { - json.WriteString("DEVICE_LOCAL"); - } - json.EndArray(); - - json.WriteString("Budget"); - json.BeginObject(); - { - json.WriteString("BlockBytes"); - json.WriteNumber(budget[heapIndex].blockBytes); - json.WriteString("AllocationBytes"); - json.WriteNumber(budget[heapIndex].allocationBytes); - json.WriteString("Usage"); - json.WriteNumber(budget[heapIndex].usage); - json.WriteString("Budget"); - json.WriteNumber(budget[heapIndex].budget); - } - json.EndObject(); - - if(stats.memoryHeap[heapIndex].blockCount > 0) - { - json.WriteString("Stats"); - VmaPrintStatInfo(json, stats.memoryHeap[heapIndex]); - } - - for(uint32_t typeIndex = 0; typeIndex < allocator->GetMemoryTypeCount(); ++typeIndex) - { - if(allocator->MemoryTypeIndexToHeapIndex(typeIndex) == heapIndex) - { - json.BeginString("Type "); - json.ContinueString(typeIndex); - json.EndString(); - - json.BeginObject(); - - json.WriteString("Flags"); - json.BeginArray(true); - VkMemoryPropertyFlags flags = allocator->m_MemProps.memoryTypes[typeIndex].propertyFlags; - if((flags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0) - { - json.WriteString("DEVICE_LOCAL"); - } - if((flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0) - { - json.WriteString("HOST_VISIBLE"); - } - if((flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) != 0) - { - json.WriteString("HOST_COHERENT"); - } - if((flags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT) != 0) - { - json.WriteString("HOST_CACHED"); - } - if((flags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT) != 0) - { - json.WriteString("LAZILY_ALLOCATED"); - } - json.EndArray(); - - if(stats.memoryType[typeIndex].blockCount > 0) - { - json.WriteString("Stats"); - VmaPrintStatInfo(json, stats.memoryType[typeIndex]); - } - - json.EndObject(); - } - } - - json.EndObject(); - } - if(detailedMap == VK_TRUE) - { - allocator->PrintDetailedMap(json); - } - - json.EndObject(); - } - - const size_t len = sb.GetLength(); - char* const pChars = vma_new_array(allocator, char, len + 1); - if(len > 0) - { - memcpy(pChars, sb.GetData(), len); - } - pChars[len] = '\0'; - *ppStatsString = pChars; -} - -VMA_CALL_PRE void VMA_CALL_POST vmaFreeStatsString( - VmaAllocator allocator, - char* pStatsString) -{ - if(pStatsString != VMA_NULL) - { - VMA_ASSERT(allocator); - size_t len = strlen(pStatsString); - vma_delete_array(allocator, pStatsString, len + 1); - } -} - -#endif // #if VMA_STATS_STRING_ENABLED - -/* -This function is not protected by any mutex because it just reads immutable data. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndex( - VmaAllocator allocator, - uint32_t memoryTypeBits, - const VmaAllocationCreateInfo* pAllocationCreateInfo, - uint32_t* pMemoryTypeIndex) -{ - VMA_ASSERT(allocator != VK_NULL_HANDLE); - VMA_ASSERT(pAllocationCreateInfo != VMA_NULL); - VMA_ASSERT(pMemoryTypeIndex != VMA_NULL); - - if(pAllocationCreateInfo->memoryTypeBits != 0) - { - memoryTypeBits &= pAllocationCreateInfo->memoryTypeBits; - } - - uint32_t requiredFlags = pAllocationCreateInfo->requiredFlags; - uint32_t preferredFlags = pAllocationCreateInfo->preferredFlags; - uint32_t notPreferredFlags = 0; - - // Convert usage to requiredFlags and preferredFlags. - switch(pAllocationCreateInfo->usage) - { - case VMA_MEMORY_USAGE_UNKNOWN: - break; - case VMA_MEMORY_USAGE_GPU_ONLY: - if(!allocator->IsIntegratedGpu() || (preferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) - { - preferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; - } - break; - case VMA_MEMORY_USAGE_CPU_ONLY: - requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; - break; - case VMA_MEMORY_USAGE_CPU_TO_GPU: - requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; - if(!allocator->IsIntegratedGpu() || (preferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) - { - preferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; - } - break; - case VMA_MEMORY_USAGE_GPU_TO_CPU: - requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; - preferredFlags |= VK_MEMORY_PROPERTY_HOST_CACHED_BIT; - break; - case VMA_MEMORY_USAGE_CPU_COPY: - notPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; - break; - case VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED: - requiredFlags |= VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT; - break; - default: - VMA_ASSERT(0); - break; - } - - *pMemoryTypeIndex = UINT32_MAX; - uint32_t minCost = UINT32_MAX; - for(uint32_t memTypeIndex = 0, memTypeBit = 1; - memTypeIndex < allocator->GetMemoryTypeCount(); - ++memTypeIndex, memTypeBit <<= 1) - { - // This memory type is acceptable according to memoryTypeBits bitmask. - if((memTypeBit & memoryTypeBits) != 0) - { - const VkMemoryPropertyFlags currFlags = - allocator->m_MemProps.memoryTypes[memTypeIndex].propertyFlags; - // This memory type contains requiredFlags. - if((requiredFlags & ~currFlags) == 0) - { - // Calculate cost as number of bits from preferredFlags not present in this memory type. - uint32_t currCost = VmaCountBitsSet(preferredFlags & ~currFlags) + - VmaCountBitsSet(currFlags & notPreferredFlags); - // Remember memory type with lowest cost. - if(currCost < minCost) - { - *pMemoryTypeIndex = memTypeIndex; - if(currCost == 0) - { - return VK_SUCCESS; - } - minCost = currCost; - } - } - } - } - return (*pMemoryTypeIndex != UINT32_MAX) ? VK_SUCCESS : VK_ERROR_FEATURE_NOT_PRESENT; -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForBufferInfo( - VmaAllocator allocator, - const VkBufferCreateInfo* pBufferCreateInfo, - const VmaAllocationCreateInfo* pAllocationCreateInfo, - uint32_t* pMemoryTypeIndex) -{ - VMA_ASSERT(allocator != VK_NULL_HANDLE); - VMA_ASSERT(pBufferCreateInfo != VMA_NULL); - VMA_ASSERT(pAllocationCreateInfo != VMA_NULL); - VMA_ASSERT(pMemoryTypeIndex != VMA_NULL); - - const VkDevice hDev = allocator->m_hDevice; - VkBuffer hBuffer = VK_NULL_HANDLE; - VkResult res = allocator->GetVulkanFunctions().vkCreateBuffer( - hDev, pBufferCreateInfo, allocator->GetAllocationCallbacks(), &hBuffer); - if(res == VK_SUCCESS) - { - VkMemoryRequirements memReq = {}; - allocator->GetVulkanFunctions().vkGetBufferMemoryRequirements( - hDev, hBuffer, &memReq); - - res = vmaFindMemoryTypeIndex( - allocator, - memReq.memoryTypeBits, - pAllocationCreateInfo, - pMemoryTypeIndex); - - allocator->GetVulkanFunctions().vkDestroyBuffer( - hDev, hBuffer, allocator->GetAllocationCallbacks()); - } - return res; -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForImageInfo( - VmaAllocator allocator, - const VkImageCreateInfo* pImageCreateInfo, - const VmaAllocationCreateInfo* pAllocationCreateInfo, - uint32_t* pMemoryTypeIndex) -{ - VMA_ASSERT(allocator != VK_NULL_HANDLE); - VMA_ASSERT(pImageCreateInfo != VMA_NULL); - VMA_ASSERT(pAllocationCreateInfo != VMA_NULL); - VMA_ASSERT(pMemoryTypeIndex != VMA_NULL); - - const VkDevice hDev = allocator->m_hDevice; - VkImage hImage = VK_NULL_HANDLE; - VkResult res = allocator->GetVulkanFunctions().vkCreateImage( - hDev, pImageCreateInfo, allocator->GetAllocationCallbacks(), &hImage); - if(res == VK_SUCCESS) - { - VkMemoryRequirements memReq = {}; - allocator->GetVulkanFunctions().vkGetImageMemoryRequirements( - hDev, hImage, &memReq); - - res = vmaFindMemoryTypeIndex( - allocator, - memReq.memoryTypeBits, - pAllocationCreateInfo, - pMemoryTypeIndex); - - allocator->GetVulkanFunctions().vkDestroyImage( - hDev, hImage, allocator->GetAllocationCallbacks()); - } - return res; -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreatePool( - VmaAllocator allocator, - const VmaPoolCreateInfo* pCreateInfo, - VmaPool* pPool) -{ - VMA_ASSERT(allocator && pCreateInfo && pPool); - - VMA_DEBUG_LOG("vmaCreatePool"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - VkResult res = allocator->CreatePool(pCreateInfo, pPool); - -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordCreatePool(allocator->GetCurrentFrameIndex(), *pCreateInfo, *pPool); - } -#endif - - return res; -} - -VMA_CALL_PRE void VMA_CALL_POST vmaDestroyPool( - VmaAllocator allocator, - VmaPool pool) -{ - VMA_ASSERT(allocator); - - if(pool == VK_NULL_HANDLE) - { - return; - } - - VMA_DEBUG_LOG("vmaDestroyPool"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordDestroyPool(allocator->GetCurrentFrameIndex(), pool); - } -#endif - - allocator->DestroyPool(pool); -} - -VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolStats( - VmaAllocator allocator, - VmaPool pool, - VmaPoolStats* pPoolStats) -{ - VMA_ASSERT(allocator && pool && pPoolStats); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - allocator->GetPoolStats(pool, pPoolStats); -} - -VMA_CALL_PRE void VMA_CALL_POST vmaMakePoolAllocationsLost( - VmaAllocator allocator, - VmaPool pool, - size_t* pLostAllocationCount) -{ - VMA_ASSERT(allocator && pool); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordMakePoolAllocationsLost(allocator->GetCurrentFrameIndex(), pool); - } -#endif - - allocator->MakePoolAllocationsLost(pool, pLostAllocationCount); -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckPoolCorruption(VmaAllocator allocator, VmaPool pool) -{ - VMA_ASSERT(allocator && pool); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - VMA_DEBUG_LOG("vmaCheckPoolCorruption"); - - return allocator->CheckPoolCorruption(pool); -} - -VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolName( - VmaAllocator allocator, - VmaPool pool, - const char** ppName) -{ - VMA_ASSERT(allocator && pool); - - VMA_DEBUG_LOG("vmaGetPoolName"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - *ppName = pool->GetName(); -} - -VMA_CALL_PRE void VMA_CALL_POST vmaSetPoolName( - VmaAllocator allocator, - VmaPool pool, - const char* pName) -{ - VMA_ASSERT(allocator && pool); - - VMA_DEBUG_LOG("vmaSetPoolName"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - pool->SetName(pName); - -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordSetPoolName(allocator->GetCurrentFrameIndex(), pool, pName); - } -#endif -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemory( - VmaAllocator allocator, - const VkMemoryRequirements* pVkMemoryRequirements, - const VmaAllocationCreateInfo* pCreateInfo, - VmaAllocation* pAllocation, - VmaAllocationInfo* pAllocationInfo) -{ - VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocation); - - VMA_DEBUG_LOG("vmaAllocateMemory"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - VkResult result = allocator->AllocateMemory( - *pVkMemoryRequirements, - false, // requiresDedicatedAllocation - false, // prefersDedicatedAllocation - VK_NULL_HANDLE, // dedicatedBuffer - VK_NULL_HANDLE, // dedicatedImage - *pCreateInfo, - VMA_SUBALLOCATION_TYPE_UNKNOWN, - 1, // allocationCount - pAllocation); - -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordAllocateMemory( - allocator->GetCurrentFrameIndex(), - *pVkMemoryRequirements, - *pCreateInfo, - *pAllocation); - } -#endif - - if(pAllocationInfo != VMA_NULL && result == VK_SUCCESS) - { - allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); - } - - return result; -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryPages( - VmaAllocator allocator, - const VkMemoryRequirements* pVkMemoryRequirements, - const VmaAllocationCreateInfo* pCreateInfo, - size_t allocationCount, - VmaAllocation* pAllocations, - VmaAllocationInfo* pAllocationInfo) -{ - if(allocationCount == 0) - { - return VK_SUCCESS; - } - - VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocations); - - VMA_DEBUG_LOG("vmaAllocateMemoryPages"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - VkResult result = allocator->AllocateMemory( - *pVkMemoryRequirements, - false, // requiresDedicatedAllocation - false, // prefersDedicatedAllocation - VK_NULL_HANDLE, // dedicatedBuffer - VK_NULL_HANDLE, // dedicatedImage - *pCreateInfo, - VMA_SUBALLOCATION_TYPE_UNKNOWN, - allocationCount, - pAllocations); - -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordAllocateMemoryPages( - allocator->GetCurrentFrameIndex(), - *pVkMemoryRequirements, - *pCreateInfo, - (uint64_t)allocationCount, - pAllocations); - } -#endif - - if(pAllocationInfo != VMA_NULL && result == VK_SUCCESS) - { - for(size_t i = 0; i < allocationCount; ++i) - { - allocator->GetAllocationInfo(pAllocations[i], pAllocationInfo + i); - } - } - - return result; -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForBuffer( - VmaAllocator allocator, - VkBuffer buffer, - const VmaAllocationCreateInfo* pCreateInfo, - VmaAllocation* pAllocation, - VmaAllocationInfo* pAllocationInfo) -{ - VMA_ASSERT(allocator && buffer != VK_NULL_HANDLE && pCreateInfo && pAllocation); - - VMA_DEBUG_LOG("vmaAllocateMemoryForBuffer"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - VkMemoryRequirements vkMemReq = {}; - bool requiresDedicatedAllocation = false; - bool prefersDedicatedAllocation = false; - allocator->GetBufferMemoryRequirements(buffer, vkMemReq, - requiresDedicatedAllocation, - prefersDedicatedAllocation); - - VkResult result = allocator->AllocateMemory( - vkMemReq, - requiresDedicatedAllocation, - prefersDedicatedAllocation, - buffer, // dedicatedBuffer - VK_NULL_HANDLE, // dedicatedImage - *pCreateInfo, - VMA_SUBALLOCATION_TYPE_BUFFER, - 1, // allocationCount - pAllocation); - -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordAllocateMemoryForBuffer( - allocator->GetCurrentFrameIndex(), - vkMemReq, - requiresDedicatedAllocation, - prefersDedicatedAllocation, - *pCreateInfo, - *pAllocation); - } -#endif - - if(pAllocationInfo && result == VK_SUCCESS) - { - allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); - } - - return result; -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForImage( - VmaAllocator allocator, - VkImage image, - const VmaAllocationCreateInfo* pCreateInfo, - VmaAllocation* pAllocation, - VmaAllocationInfo* pAllocationInfo) -{ - VMA_ASSERT(allocator && image != VK_NULL_HANDLE && pCreateInfo && pAllocation); - - VMA_DEBUG_LOG("vmaAllocateMemoryForImage"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - VkMemoryRequirements vkMemReq = {}; - bool requiresDedicatedAllocation = false; - bool prefersDedicatedAllocation = false; - allocator->GetImageMemoryRequirements(image, vkMemReq, - requiresDedicatedAllocation, prefersDedicatedAllocation); - - VkResult result = allocator->AllocateMemory( - vkMemReq, - requiresDedicatedAllocation, - prefersDedicatedAllocation, - VK_NULL_HANDLE, // dedicatedBuffer - image, // dedicatedImage - *pCreateInfo, - VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN, - 1, // allocationCount - pAllocation); - -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordAllocateMemoryForImage( - allocator->GetCurrentFrameIndex(), - vkMemReq, - requiresDedicatedAllocation, - prefersDedicatedAllocation, - *pCreateInfo, - *pAllocation); - } -#endif - - if(pAllocationInfo && result == VK_SUCCESS) - { - allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); - } - - return result; -} - -VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemory( - VmaAllocator allocator, - VmaAllocation allocation) -{ - VMA_ASSERT(allocator); - - if(allocation == VK_NULL_HANDLE) - { - return; - } - - VMA_DEBUG_LOG("vmaFreeMemory"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordFreeMemory( - allocator->GetCurrentFrameIndex(), - allocation); - } -#endif - - allocator->FreeMemory( - 1, // allocationCount - &allocation); -} - -VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemoryPages( - VmaAllocator allocator, - size_t allocationCount, - VmaAllocation* pAllocations) -{ - if(allocationCount == 0) - { - return; - } - - VMA_ASSERT(allocator); - - VMA_DEBUG_LOG("vmaFreeMemoryPages"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordFreeMemoryPages( - allocator->GetCurrentFrameIndex(), - (uint64_t)allocationCount, - pAllocations); - } -#endif - - allocator->FreeMemory(allocationCount, pAllocations); -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaResizeAllocation( - VmaAllocator allocator, - VmaAllocation allocation, - VkDeviceSize newSize) -{ - VMA_ASSERT(allocator && allocation); - - VMA_DEBUG_LOG("vmaResizeAllocation"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - return allocator->ResizeAllocation(allocation, newSize); -} - -VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo( - VmaAllocator allocator, - VmaAllocation allocation, - VmaAllocationInfo* pAllocationInfo) -{ - VMA_ASSERT(allocator && allocation && pAllocationInfo); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordGetAllocationInfo( - allocator->GetCurrentFrameIndex(), - allocation); - } -#endif - - allocator->GetAllocationInfo(allocation, pAllocationInfo); -} - -VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaTouchAllocation( - VmaAllocator allocator, - VmaAllocation allocation) -{ - VMA_ASSERT(allocator && allocation); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordTouchAllocation( - allocator->GetCurrentFrameIndex(), - allocation); - } -#endif - - return allocator->TouchAllocation(allocation); -} - -VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationUserData( - VmaAllocator allocator, - VmaAllocation allocation, - void* pUserData) -{ - VMA_ASSERT(allocator && allocation); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - allocation->SetUserData(allocator, pUserData); - -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordSetAllocationUserData( - allocator->GetCurrentFrameIndex(), - allocation, - pUserData); - } -#endif -} - -VMA_CALL_PRE void VMA_CALL_POST vmaCreateLostAllocation( - VmaAllocator allocator, - VmaAllocation* pAllocation) -{ - VMA_ASSERT(allocator && pAllocation); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK; - - allocator->CreateLostAllocation(pAllocation); - -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordCreateLostAllocation( - allocator->GetCurrentFrameIndex(), - *pAllocation); - } -#endif -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaMapMemory( - VmaAllocator allocator, - VmaAllocation allocation, - void** ppData) -{ - VMA_ASSERT(allocator && allocation && ppData); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - VkResult res = allocator->Map(allocation, ppData); - -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordMapMemory( - allocator->GetCurrentFrameIndex(), - allocation); - } -#endif - - return res; -} - -VMA_CALL_PRE void VMA_CALL_POST vmaUnmapMemory( - VmaAllocator allocator, - VmaAllocation allocation) -{ - VMA_ASSERT(allocator && allocation); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordUnmapMemory( - allocator->GetCurrentFrameIndex(), - allocation); - } -#endif - - allocator->Unmap(allocation); -} - -VMA_CALL_PRE void VMA_CALL_POST vmaFlushAllocation(VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size) -{ - VMA_ASSERT(allocator && allocation); - - VMA_DEBUG_LOG("vmaFlushAllocation"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_FLUSH); - -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordFlushAllocation( - allocator->GetCurrentFrameIndex(), - allocation, offset, size); - } -#endif -} - -VMA_CALL_PRE void VMA_CALL_POST vmaInvalidateAllocation(VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size) -{ - VMA_ASSERT(allocator && allocation); - - VMA_DEBUG_LOG("vmaInvalidateAllocation"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_INVALIDATE); - -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordInvalidateAllocation( - allocator->GetCurrentFrameIndex(), - allocation, offset, size); - } -#endif -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckCorruption(VmaAllocator allocator, uint32_t memoryTypeBits) -{ - VMA_ASSERT(allocator); - - VMA_DEBUG_LOG("vmaCheckCorruption"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - return allocator->CheckCorruption(memoryTypeBits); -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragment( - VmaAllocator allocator, - VmaAllocation* pAllocations, - size_t allocationCount, - VkBool32* pAllocationsChanged, - const VmaDefragmentationInfo *pDefragmentationInfo, - VmaDefragmentationStats* pDefragmentationStats) -{ - // Deprecated interface, reimplemented using new one. - - VmaDefragmentationInfo2 info2 = {}; - info2.allocationCount = (uint32_t)allocationCount; - info2.pAllocations = pAllocations; - info2.pAllocationsChanged = pAllocationsChanged; - if(pDefragmentationInfo != VMA_NULL) - { - info2.maxCpuAllocationsToMove = pDefragmentationInfo->maxAllocationsToMove; - info2.maxCpuBytesToMove = pDefragmentationInfo->maxBytesToMove; - } - else - { - info2.maxCpuAllocationsToMove = UINT32_MAX; - info2.maxCpuBytesToMove = VK_WHOLE_SIZE; - } - // info2.flags, maxGpuAllocationsToMove, maxGpuBytesToMove, commandBuffer deliberately left zero. - - VmaDefragmentationContext ctx; - VkResult res = vmaDefragmentationBegin(allocator, &info2, pDefragmentationStats, &ctx); - if(res == VK_NOT_READY) - { - res = vmaDefragmentationEnd( allocator, ctx); - } - return res; -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationBegin( - VmaAllocator allocator, - const VmaDefragmentationInfo2* pInfo, - VmaDefragmentationStats* pStats, - VmaDefragmentationContext *pContext) -{ - VMA_ASSERT(allocator && pInfo && pContext); - - // Degenerate case: Nothing to defragment. - if(pInfo->allocationCount == 0 && pInfo->poolCount == 0) - { - return VK_SUCCESS; - } - - VMA_ASSERT(pInfo->allocationCount == 0 || pInfo->pAllocations != VMA_NULL); - VMA_ASSERT(pInfo->poolCount == 0 || pInfo->pPools != VMA_NULL); - VMA_HEAVY_ASSERT(VmaValidatePointerArray(pInfo->allocationCount, pInfo->pAllocations)); - VMA_HEAVY_ASSERT(VmaValidatePointerArray(pInfo->poolCount, pInfo->pPools)); - - VMA_DEBUG_LOG("vmaDefragmentationBegin"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - VkResult res = allocator->DefragmentationBegin(*pInfo, pStats, pContext); - -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordDefragmentationBegin( - allocator->GetCurrentFrameIndex(), *pInfo, *pContext); - } -#endif - - return res; -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationEnd( - VmaAllocator allocator, - VmaDefragmentationContext context) -{ - VMA_ASSERT(allocator); - - VMA_DEBUG_LOG("vmaDefragmentationEnd"); - - if(context != VK_NULL_HANDLE) - { - VMA_DEBUG_GLOBAL_MUTEX_LOCK - -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordDefragmentationEnd( - allocator->GetCurrentFrameIndex(), context); - } -#endif - - return allocator->DefragmentationEnd(context); - } - else - { - return VK_SUCCESS; - } -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentationPass( - VmaAllocator allocator, - VmaDefragmentationContext context, - VmaDefragmentationPassInfo* pInfo - ) -{ - VMA_ASSERT(allocator); - VMA_ASSERT(pInfo); - VMA_HEAVY_ASSERT(VmaValidatePointerArray(pInfo->moveCount, pInfo->pMoves)); - - VMA_DEBUG_LOG("vmaBeginDefragmentationPass"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - if(context == VK_NULL_HANDLE) - { - pInfo->moveCount = 0; - return VK_SUCCESS; - } - - return allocator->DefragmentationPassBegin(pInfo, context); -} -VMA_CALL_PRE VkResult VMA_CALL_POST vmaEndDefragmentationPass( - VmaAllocator allocator, - VmaDefragmentationContext context) -{ - VMA_ASSERT(allocator); - - VMA_DEBUG_LOG("vmaEndDefragmentationPass"); - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - if(context == VK_NULL_HANDLE) - return VK_SUCCESS; - - return allocator->DefragmentationPassEnd(context); -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory( - VmaAllocator allocator, - VmaAllocation allocation, - VkBuffer buffer) -{ - VMA_ASSERT(allocator && allocation && buffer); - - VMA_DEBUG_LOG("vmaBindBufferMemory"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - return allocator->BindBufferMemory(allocation, 0, buffer, VMA_NULL); -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory2( - VmaAllocator allocator, - VmaAllocation allocation, - VkDeviceSize allocationLocalOffset, - VkBuffer buffer, - const void* pNext) -{ - VMA_ASSERT(allocator && allocation && buffer); - - VMA_DEBUG_LOG("vmaBindBufferMemory2"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - return allocator->BindBufferMemory(allocation, allocationLocalOffset, buffer, pNext); -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory( - VmaAllocator allocator, - VmaAllocation allocation, - VkImage image) -{ - VMA_ASSERT(allocator && allocation && image); - - VMA_DEBUG_LOG("vmaBindImageMemory"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - return allocator->BindImageMemory(allocation, 0, image, VMA_NULL); -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory2( - VmaAllocator allocator, - VmaAllocation allocation, - VkDeviceSize allocationLocalOffset, - VkImage image, - const void* pNext) -{ - VMA_ASSERT(allocator && allocation && image); - - VMA_DEBUG_LOG("vmaBindImageMemory2"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - return allocator->BindImageMemory(allocation, allocationLocalOffset, image, pNext); -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBuffer( - VmaAllocator allocator, - const VkBufferCreateInfo* pBufferCreateInfo, - const VmaAllocationCreateInfo* pAllocationCreateInfo, - VkBuffer* pBuffer, - VmaAllocation* pAllocation, - VmaAllocationInfo* pAllocationInfo) -{ - VMA_ASSERT(allocator && pBufferCreateInfo && pAllocationCreateInfo && pBuffer && pAllocation); - - if(pBufferCreateInfo->size == 0) - { - return VK_ERROR_VALIDATION_FAILED_EXT; - } - - VMA_DEBUG_LOG("vmaCreateBuffer"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - *pBuffer = VK_NULL_HANDLE; - *pAllocation = VK_NULL_HANDLE; - - // 1. Create VkBuffer. - VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)( - allocator->m_hDevice, - pBufferCreateInfo, - allocator->GetAllocationCallbacks(), - pBuffer); - if(res >= 0) - { - // 2. vkGetBufferMemoryRequirements. - VkMemoryRequirements vkMemReq = {}; - bool requiresDedicatedAllocation = false; - bool prefersDedicatedAllocation = false; - allocator->GetBufferMemoryRequirements(*pBuffer, vkMemReq, - requiresDedicatedAllocation, prefersDedicatedAllocation); - - // Make sure alignment requirements for specific buffer usages reported - // in Physical Device Properties are included in alignment reported by memory requirements. - if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT) != 0) - { - VMA_ASSERT(vkMemReq.alignment % - allocator->m_PhysicalDeviceProperties.limits.minTexelBufferOffsetAlignment == 0); - } - if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT) != 0) - { - VMA_ASSERT(vkMemReq.alignment % - allocator->m_PhysicalDeviceProperties.limits.minUniformBufferOffsetAlignment == 0); - } - if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT) != 0) - { - VMA_ASSERT(vkMemReq.alignment % - allocator->m_PhysicalDeviceProperties.limits.minStorageBufferOffsetAlignment == 0); - } - - // 3. Allocate memory using allocator. - res = allocator->AllocateMemory( - vkMemReq, - requiresDedicatedAllocation, - prefersDedicatedAllocation, - *pBuffer, // dedicatedBuffer - VK_NULL_HANDLE, // dedicatedImage - *pAllocationCreateInfo, - VMA_SUBALLOCATION_TYPE_BUFFER, - 1, // allocationCount - pAllocation); - -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordCreateBuffer( - allocator->GetCurrentFrameIndex(), - *pBufferCreateInfo, - *pAllocationCreateInfo, - *pAllocation); - } -#endif - - if(res >= 0) - { - // 3. Bind buffer with memory. - if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0) - { - res = allocator->BindBufferMemory(*pAllocation, 0, *pBuffer, VMA_NULL); - } - if(res >= 0) - { - // All steps succeeded. - #if VMA_STATS_STRING_ENABLED - (*pAllocation)->InitBufferImageUsage(pBufferCreateInfo->usage); - #endif - if(pAllocationInfo != VMA_NULL) - { - allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); - } - - return VK_SUCCESS; - } - allocator->FreeMemory( - 1, // allocationCount - pAllocation); - *pAllocation = VK_NULL_HANDLE; - (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks()); - *pBuffer = VK_NULL_HANDLE; - return res; - } - (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks()); - *pBuffer = VK_NULL_HANDLE; - return res; - } - return res; -} - -VMA_CALL_PRE void VMA_CALL_POST vmaDestroyBuffer( - VmaAllocator allocator, - VkBuffer buffer, - VmaAllocation allocation) -{ - VMA_ASSERT(allocator); - - if(buffer == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE) - { - return; - } - - VMA_DEBUG_LOG("vmaDestroyBuffer"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordDestroyBuffer( - allocator->GetCurrentFrameIndex(), - allocation); - } -#endif - - if(buffer != VK_NULL_HANDLE) - { - (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, buffer, allocator->GetAllocationCallbacks()); - } - - if(allocation != VK_NULL_HANDLE) - { - allocator->FreeMemory( - 1, // allocationCount - &allocation); - } -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateImage( - VmaAllocator allocator, - const VkImageCreateInfo* pImageCreateInfo, - const VmaAllocationCreateInfo* pAllocationCreateInfo, - VkImage* pImage, - VmaAllocation* pAllocation, - VmaAllocationInfo* pAllocationInfo) -{ - VMA_ASSERT(allocator && pImageCreateInfo && pAllocationCreateInfo && pImage && pAllocation); - - if(pImageCreateInfo->extent.width == 0 || - pImageCreateInfo->extent.height == 0 || - pImageCreateInfo->extent.depth == 0 || - pImageCreateInfo->mipLevels == 0 || - pImageCreateInfo->arrayLayers == 0) - { - return VK_ERROR_VALIDATION_FAILED_EXT; - } - - VMA_DEBUG_LOG("vmaCreateImage"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - *pImage = VK_NULL_HANDLE; - *pAllocation = VK_NULL_HANDLE; - - // 1. Create VkImage. - VkResult res = (*allocator->GetVulkanFunctions().vkCreateImage)( - allocator->m_hDevice, - pImageCreateInfo, - allocator->GetAllocationCallbacks(), - pImage); - if(res >= 0) - { - VmaSuballocationType suballocType = pImageCreateInfo->tiling == VK_IMAGE_TILING_OPTIMAL ? - VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL : - VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR; - - // 2. Allocate memory using allocator. - VkMemoryRequirements vkMemReq = {}; - bool requiresDedicatedAllocation = false; - bool prefersDedicatedAllocation = false; - allocator->GetImageMemoryRequirements(*pImage, vkMemReq, - requiresDedicatedAllocation, prefersDedicatedAllocation); - - res = allocator->AllocateMemory( - vkMemReq, - requiresDedicatedAllocation, - prefersDedicatedAllocation, - VK_NULL_HANDLE, // dedicatedBuffer - *pImage, // dedicatedImage - *pAllocationCreateInfo, - suballocType, - 1, // allocationCount - pAllocation); - -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordCreateImage( - allocator->GetCurrentFrameIndex(), - *pImageCreateInfo, - *pAllocationCreateInfo, - *pAllocation); - } -#endif - - if(res >= 0) - { - // 3. Bind image with memory. - if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0) - { - res = allocator->BindImageMemory(*pAllocation, 0, *pImage, VMA_NULL); - } - if(res >= 0) - { - // All steps succeeded. - #if VMA_STATS_STRING_ENABLED - (*pAllocation)->InitBufferImageUsage(pImageCreateInfo->usage); - #endif - if(pAllocationInfo != VMA_NULL) - { - allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); - } - - return VK_SUCCESS; - } - allocator->FreeMemory( - 1, // allocationCount - pAllocation); - *pAllocation = VK_NULL_HANDLE; - (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks()); - *pImage = VK_NULL_HANDLE; - return res; - } - (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks()); - *pImage = VK_NULL_HANDLE; - return res; - } - return res; -} - -VMA_CALL_PRE void VMA_CALL_POST vmaDestroyImage( - VmaAllocator allocator, - VkImage image, - VmaAllocation allocation) -{ - VMA_ASSERT(allocator); - - if(image == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE) - { - return; - } - - VMA_DEBUG_LOG("vmaDestroyImage"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordDestroyImage( - allocator->GetCurrentFrameIndex(), - allocation); - } -#endif - - if(image != VK_NULL_HANDLE) - { - (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, image, allocator->GetAllocationCallbacks()); - } - if(allocation != VK_NULL_HANDLE) - { - allocator->FreeMemory( - 1, // allocationCount - &allocation); - } -} - -#endif // #ifdef VMA_IMPLEMENTATION diff --git a/rpcs3/Emu/RSX/VK/VKMemAlloc.cpp b/rpcs3/Emu/RSX/VK/VKMemAlloc.cpp index e3a1d90a42..e6cf921dc7 100644 --- a/rpcs3/Emu/RSX/VK/VKMemAlloc.cpp +++ b/rpcs3/Emu/RSX/VK/VKMemAlloc.cpp @@ -53,7 +53,7 @@ private: #pragma GCC diagnostic ignored "-Wsuggest-attribute=noreturn" #endif #endif -#include "3rdparty/GPUOpen/include/vk_mem_alloc.h" +#include "3rdparty/GPUOpen/VulkanMemoryAllocator/src/vk_mem_alloc.h" #ifdef _MSC_VER #pragma warning(pop) #else diff --git a/rpcs3/Emu/RSX/VK/vkutils/mem_allocator.h b/rpcs3/Emu/RSX/VK/vkutils/mem_allocator.h deleted file mode 100644 index 67e2d14af8..0000000000 --- a/rpcs3/Emu/RSX/VK/vkutils/mem_allocator.h +++ /dev/null @@ -1,14 +0,0 @@ -#pragma once - -#include "../VulkanAPI.h" -#include "../../rsx_utils.h" -#include "shared.h" - -#include "3rdparty/GPUOpen/include/vk_mem_alloc.h" - -namespace vk -{ - // Memory Allocator - base class - - -} diff --git a/rpcs3/Emu/RSX/VK/vkutils/memory.h b/rpcs3/Emu/RSX/VK/vkutils/memory.h index 61509b2e47..9ab7d44f88 100644 --- a/rpcs3/Emu/RSX/VK/vkutils/memory.h +++ b/rpcs3/Emu/RSX/VK/vkutils/memory.h @@ -4,7 +4,7 @@ #include "../../rsx_utils.h" #include "shared.h" -#include "3rdparty/GPUOpen/include/vk_mem_alloc.h" +#include "3rdparty/GPUOpen/VulkanMemoryAllocator/src/vk_mem_alloc.h" namespace vk { diff --git a/rpcs3/Emu/RSX/VK/vkutils/sampler.cpp b/rpcs3/Emu/RSX/VK/vkutils/sampler.cpp index 9127afcc4e..073fc514d0 100644 --- a/rpcs3/Emu/RSX/VK/vkutils/sampler.cpp +++ b/rpcs3/Emu/RSX/VK/vkutils/sampler.cpp @@ -22,7 +22,7 @@ namespace vk } border_color_t::border_color_t(const color4f& color, VkFormat fmt, VkImageAspectFlags aspect) - : format(fmt), aspect(aspect), color_value(color) + : storage_key(0), format(fmt), aspect(aspect), color_value(color) { const auto encoded_color = rsx::encode_color_to_storage_key(color); value = vk::get_border_color(encoded_color);