Merge pull request #1027 from Nekotekina/master

Event and SPU refactoring
This commit is contained in:
B1ackDaemon 2015-03-05 02:36:20 +02:00
commit 8c046429cc
79 changed files with 2836 additions and 2621 deletions

View file

@ -2,7 +2,9 @@
#include "Log.h"
#include "rpcs3/Ini.h"
#include "Emu/System.h"
#include "Emu/CPU/CPUThreadManager.h"
#include "Emu/CPU/CPUThread.h"
#include "Emu/Cell/RawSPUThread.h"
#include "Emu/SysCalls/SysCalls.h"
#include "Thread.h"
@ -105,8 +107,8 @@ enum x64_reg_t : u32
enum x64_op_t : u32
{
X64OP_NONE,
X64OP_LOAD, // obtain and put the value into x64 register (from Memory.ReadMMIO32, for example)
X64OP_STORE, // take the value from x64 register or an immediate and use it (pass in Memory.WriteMMIO32, for example)
X64OP_LOAD, // obtain and put the value into x64 register
X64OP_STORE, // take the value from x64 register or an immediate and use it
// example: add eax,[rax] -> X64OP_LOAD_ADD (add the value to x64 register)
// example: add [rax],eax -> X64OP_LOAD_ADD_STORE (this will probably never happen for MMIO registers)
@ -464,7 +466,7 @@ typedef ucontext_t x64_context;
#ifdef __APPLE__
#define X64REG(context, reg) (darwin_x64reg(context, reg))
#define XMMREG(context, reg) (reinterpret_cast<u128*>(&(context)->uc_mcontext->__fs.__fpu_xmm0[reg]))
#define XMMREG(context, reg) (reinterpret_cast<u128*>(&(context)->uc_mcontext->__fs.__fpu_xmm0.__xmm_reg[reg]))
#define EFLAGS(context) ((context)->uc_mcontext->__ss.__rflags)
uint64_t* darwin_x64reg(x64_context *context, int reg)
@ -768,18 +770,27 @@ bool handle_access_violation(u32 addr, bool is_writing, x64_context* context)
// check if address is RawSPU MMIO register
if (addr - RAW_SPU_BASE_ADDR < (6 * RAW_SPU_OFFSET) && (addr % RAW_SPU_OFFSET) >= RAW_SPU_PROB_OFFSET)
{
auto t = Emu.GetCPU().GetRawSPUThread((addr - RAW_SPU_BASE_ADDR) / RAW_SPU_OFFSET);
if (!t)
{
return false;
}
if (a_size != 4 || !d_size || !i_size)
{
LOG_ERROR(MEMORY, "Invalid or unsupported instruction (op=%d, reg=%d, d_size=%lld, a_size=0x%llx, i_size=%lld)", op, reg, d_size, a_size, i_size);
return false;
}
auto& spu = static_cast<RawSPUThread&>(*t);
switch (op)
{
case X64OP_LOAD:
{
u32 value;
if (is_writing || !Memory.ReadMMIO32(addr, value) || !put_x64_reg_value(context, reg, d_size, re32(value)))
if (is_writing || !spu.ReadReg(addr, value) || !put_x64_reg_value(context, reg, d_size, re32(value)))
{
return false;
}
@ -789,7 +800,7 @@ bool handle_access_violation(u32 addr, bool is_writing, x64_context* context)
case X64OP_STORE:
{
u64 reg_value;
if (!is_writing || !get_x64_reg_value(context, reg, d_size, i_size, reg_value) || !Memory.WriteMMIO32(addr, re32((u32)reg_value)))
if (!is_writing || !get_x64_reg_value(context, reg, d_size, i_size, reg_value) || !spu.WriteReg(addr, re32((u32)reg_value)))
{
return false;
}

View file

@ -1,5 +1,4 @@
#pragma once
#include "Emu/Memory/atomic_type.h"
static std::thread::id main_thread;

View file

@ -34,7 +34,7 @@ if (NOT MSVC)
set(CMAKE_C_FLAGS_MINSIZEREL "${CMAKE_C_FLAGS_MINSIZEREL} -Os -D_NDEBUG")
set(CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE} -O1 -D_NDEBUG")
set(CMAKE_C_FLAGS_RELWITHDEBINFO "${CMAKE_C_FLAGS_RELWITHDEBINFO} -O1 -g -D_NDEBUG")
add_definitions(-msse2)
add_definitions(-msse2 -mcx16)
endif()
if (APPLE)

View file

@ -296,7 +296,7 @@ namespace ARMv7_instrs
context.fmt_debug_str("0x%08x: %s", context.thread.PC, context.debug_str);
LV2_LOCK(0);
LV2_LOCK;
auto found = g_armv7_dump.find(context.thread.PC);
if (found != g_armv7_dump.end())

View file

@ -232,7 +232,7 @@ void ARMv7Thread::FastStop()
armv7_thread::armv7_thread(u32 entry, const std::string& name, u32 stack_size, s32 prio)
{
thread = &Emu.GetCPU().AddThread(CPU_THREAD_ARMv7);
thread = Emu.GetCPU().AddThread(CPU_THREAD_ARMv7);
thread->SetName(name);
thread->SetEntry(entry);
@ -277,11 +277,13 @@ cpu_thread& armv7_thread::args(std::initializer_list<std::string> values)
cpu_thread& armv7_thread::run()
{
thread->Run();
auto& armv7 = static_cast<ARMv7Thread&>(*thread);
armv7.Run();
// set arguments
static_cast<ARMv7Thread*>(thread)->context.GPR[0] = argc;
static_cast<ARMv7Thread*>(thread)->context.GPR[1] = argv;
armv7.context.GPR[0] = argc;
armv7.context.GPR[1] = argv;
return *this;
}

View file

@ -6,19 +6,10 @@ struct psv_cond_t
u32 attr;
s32 mutexId;
private:
psv_cond_t() = delete;
psv_cond_t(const psv_cond_t&) = delete;
psv_cond_t(psv_cond_t&&) = delete;
psv_cond_t& operator =(const psv_cond_t&) = delete;
psv_cond_t& operator =(psv_cond_t&&) = delete;
public:
psv_cond_t(const char* name, u32 attr, s32 mutexId);
void on_init(s32 id) {}
void on_stop() {}
};
extern psv_object_list_t<psv_cond_t, SCE_KERNEL_THREADMGR_UID_CLASS_COND> g_psv_cond_list;
typedef psv_object_list_t<psv_cond_t, SCE_KERNEL_THREADMGR_UID_CLASS_COND> psv_cond_list_t;
extern psv_cond_list_t g_psv_cond_list;

View file

@ -6,19 +6,10 @@ struct psv_event_flag_t
u32 attr;
u32 pattern;
private:
psv_event_flag_t() = delete;
psv_event_flag_t(const psv_event_flag_t&) = delete;
psv_event_flag_t(psv_event_flag_t&&) = delete;
psv_event_flag_t& operator =(const psv_event_flag_t&) = delete;
psv_event_flag_t& operator =(psv_event_flag_t&&) = delete;
public:
psv_event_flag_t(const char* name, u32 attr, u32 pattern);
void on_init(s32 id) {}
void on_stop() {}
};
extern psv_object_list_t<psv_event_flag_t, SCE_KERNEL_THREADMGR_UID_CLASS_EVENT_FLAG> g_psv_ef_list;
typedef psv_object_list_t<psv_event_flag_t, SCE_KERNEL_THREADMGR_UID_CLASS_EVENT_FLAG> psv_ef_list_t;
extern psv_ef_list_t g_psv_ef_list;

View file

@ -6,19 +6,10 @@ struct psv_mutex_t
u32 attr;
s32 count;
private:
psv_mutex_t() = delete;
psv_mutex_t(const psv_mutex_t&) = delete;
psv_mutex_t(psv_mutex_t&&) = delete;
psv_mutex_t& operator =(const psv_mutex_t&) = delete;
psv_mutex_t& operator =(psv_mutex_t&&) = delete;
public:
psv_mutex_t(const char* name, u32 attr, s32 count);
void on_init(s32 id) {}
void on_stop() {}
};
extern psv_object_list_t<psv_mutex_t, SCE_KERNEL_THREADMGR_UID_CLASS_MUTEX> g_psv_mutex_list;
typedef psv_object_list_t<psv_mutex_t, SCE_KERNEL_THREADMGR_UID_CLASS_MUTEX> psv_mutex_list_t;
extern psv_mutex_list_t g_psv_mutex_list;

View file

@ -7,19 +7,10 @@ struct psv_sema_t
s32 value;
s32 max;
private:
psv_sema_t() = delete;
psv_sema_t(const psv_sema_t&) = delete;
psv_sema_t(psv_sema_t&&) = delete;
psv_sema_t& operator =(const psv_sema_t&) = delete;
psv_sema_t& operator =(psv_sema_t&&) = delete;
public:
psv_sema_t(const char* name, u32 attr, s32 init_value, s32 max_value);
void on_init(s32 id) {}
void on_stop() {}
};
extern psv_object_list_t<psv_sema_t, SCE_KERNEL_THREADMGR_UID_CLASS_SEMA> g_psv_sema_list;
typedef psv_object_list_t<psv_sema_t, SCE_KERNEL_THREADMGR_UID_CLASS_SEMA> psv_sema_list_t;
extern psv_sema_list_t g_psv_sema_list;

View file

@ -47,18 +47,17 @@ s32 sceKernelCreateThread(
sceLibKernel.Warning("sceKernelCreateThread(pName=0x%x, entry=0x%x, initPriority=%d, stackSize=0x%x, attr=0x%x, cpuAffinityMask=0x%x, pOptParam=0x%x)",
pName, entry, initPriority, stackSize, attr, cpuAffinityMask, pOptParam);
ARMv7Thread& new_thread = static_cast<ARMv7Thread&>(Emu.GetCPU().AddThread(CPU_THREAD_ARMv7));
auto t = Emu.GetCPU().AddThread(CPU_THREAD_ARMv7);
const auto id = new_thread.GetId();
new_thread.SetEntry(entry.addr());
new_thread.SetPrio(initPriority);
new_thread.SetStackSize(stackSize);
new_thread.SetName(pName.get_ptr());
auto& armv7 = static_cast<ARMv7Thread&>(*t);
sceLibKernel.Warning("*** New ARMv7 Thread [%s] (entry=0x%x): id -> 0x%x", pName.get_ptr(), entry, id);
armv7.SetEntry(entry.addr());
armv7.SetPrio(initPriority);
armv7.SetStackSize(stackSize);
armv7.SetName(pName.get_ptr());
armv7.Run();
new_thread.Run();
return id;
return armv7.GetId();
}
s32 sceKernelStartThread(s32 threadId, u32 argSize, vm::psv::ptr<const void> pArgBlock)
@ -398,11 +397,12 @@ s32 sceKernelCreateEventFlag(vm::psv::ptr<const char> pName, u32 attr, u32 initP
{
sceLibKernel.Error("sceKernelCreateEventFlag(pName=0x%x, attr=0x%x, initPattern=0x%x, pOptParam=0x%x)", pName, attr, initPattern, pOptParam);
std::shared_ptr<psv_event_flag_t> ef(new psv_event_flag_t(pName.get_ptr(), attr, initPattern));
if (s32 id = g_psv_ef_list.add(new psv_event_flag_t(pName.get_ptr(), attr, initPattern), 0))
{
return id;
}
const s32 id = g_psv_ef_list.add(ef);
return id;
RETURN_ERROR(SCE_KERNEL_ERROR_ERROR);
}
s32 sceKernelDeleteEventFlag(s32 evfId)
@ -461,23 +461,31 @@ s32 sceKernelCreateSema(vm::psv::ptr<const char> pName, u32 attr, s32 initCount,
{
sceLibKernel.Error("sceKernelCreateSema(pName=0x%x, attr=0x%x, initCount=%d, maxCount=%d, pOptParam=0x%x)", pName, attr, initCount, maxCount, pOptParam);
std::shared_ptr<psv_sema_t> sema(new psv_sema_t(pName.get_ptr(), attr, initCount, maxCount));
if (s32 id = g_psv_sema_list.add(new psv_sema_t(pName.get_ptr(), attr, initCount, maxCount), 0))
{
return id;
}
const s32 id = g_psv_sema_list.add(sema);
return id;
RETURN_ERROR(SCE_KERNEL_ERROR_ERROR);
}
s32 sceKernelDeleteSema(s32 semaId)
{
sceLibKernel.Error("sceKernelDeleteSema(semaId=0x%x)", semaId);
ref_t<psv_sema_t> sema = g_psv_sema_list.get(semaId);
if (!sema)
{
RETURN_ERROR(SCE_KERNEL_ERROR_INVALID_UID);
}
if (!g_psv_sema_list.remove(semaId))
{
RETURN_ERROR(SCE_KERNEL_ERROR_INVALID_UID);
}
throw SCE_OK;
return SCE_OK;
}
s32 sceKernelOpenSema(vm::psv::ptr<const char> pName)
@ -492,7 +500,18 @@ s32 sceKernelCloseSema(s32 semaId)
s32 sceKernelWaitSema(s32 semaId, s32 needCount, vm::psv::ptr<u32> pTimeout)
{
throw __FUNCTION__;
sceLibKernel.Error("sceKernelWaitSema(semaId=0x%x, needCount=%d, pTimeout=0x%x)", semaId, needCount, pTimeout);
ref_t<psv_sema_t> sema = g_psv_sema_list.get(semaId);
if (!sema)
{
RETURN_ERROR(SCE_KERNEL_ERROR_INVALID_UID);
}
sceLibKernel.Error("*** name = %s", sema->name);
Emu.Pause();
return SCE_OK;
}
s32 sceKernelWaitSemaCB(s32 semaId, s32 needCount, vm::psv::ptr<u32> pTimeout)
@ -526,11 +545,12 @@ s32 sceKernelCreateMutex(vm::psv::ptr<const char> pName, u32 attr, s32 initCount
{
sceLibKernel.Error("sceKernelCreateMutex(pName=0x%x, attr=0x%x, initCount=%d, pOptParam=0x%x)", pName, attr, initCount, pOptParam);
std::shared_ptr<psv_mutex_t> mutex(new psv_mutex_t(pName.get_ptr(), attr, initCount));
if (s32 id = g_psv_mutex_list.add(new psv_mutex_t(pName.get_ptr(), attr, initCount), 0))
{
return id;
}
const s32 id = g_psv_mutex_list.add(mutex);
return id;
RETURN_ERROR(SCE_KERNEL_ERROR_ERROR);
}
s32 sceKernelDeleteMutex(s32 mutexId)
@ -626,11 +646,12 @@ s32 sceKernelCreateCond(vm::psv::ptr<const char> pName, u32 attr, s32 mutexId, v
{
sceLibKernel.Error("sceKernelCreateCond(pName=0x%x, attr=0x%x, mutexId=0x%x, pOptParam=0x%x)", pName, attr, mutexId, pOptParam);
std::shared_ptr<psv_cond_t> cond(new psv_cond_t(pName.get_ptr(), attr, mutexId));
if (s32 id = g_psv_cond_list.add(new psv_cond_t(pName.get_ptr(), attr, mutexId), 0))
{
return id;
}
const s32 id = g_psv_cond_list.add(cond);
return id;
RETURN_ERROR(SCE_KERNEL_ERROR_ERROR);
}
s32 sceKernelDeleteCond(s32 condId)

View file

@ -152,7 +152,7 @@ namespace sce_libc_func
{
sceLibc.Warning("__cxa_atexit(func=0x%x, arg=0x%x, dso=0x%x)", func, arg, dso);
LV2_LOCK(0);
LV2_LOCK;
g_atexit.insert(g_atexit.begin(), [func, arg, dso](ARMv7Context& context)
{
@ -164,7 +164,7 @@ namespace sce_libc_func
{
sceLibc.Warning("__aeabi_atexit(arg=0x%x, func=0x%x, dso=0x%x)", arg, func, dso);
LV2_LOCK(0);
LV2_LOCK;
g_atexit.insert(g_atexit.begin(), [func, arg, dso](ARMv7Context& context)
{
@ -176,7 +176,7 @@ namespace sce_libc_func
{
sceLibc.Warning("exit()");
LV2_LOCK(0);
LV2_LOCK;
for (auto func : g_atexit)
{

View file

@ -8,10 +8,10 @@
#include "Modules/psv_mutex.h"
#include "Modules/psv_cond.h"
psv_object_list_t<psv_sema_t, SCE_KERNEL_THREADMGR_UID_CLASS_SEMA> g_psv_sema_list;
psv_object_list_t<psv_event_flag_t, SCE_KERNEL_THREADMGR_UID_CLASS_EVENT_FLAG> g_psv_ef_list;
psv_object_list_t<psv_mutex_t, SCE_KERNEL_THREADMGR_UID_CLASS_MUTEX> g_psv_mutex_list;
psv_object_list_t<psv_cond_t, SCE_KERNEL_THREADMGR_UID_CLASS_COND> g_psv_cond_list;
psv_sema_list_t g_psv_sema_list;
psv_ef_list_t g_psv_ef_list;
psv_mutex_list_t g_psv_mutex_list;
psv_cond_list_t g_psv_cond_list;
void clear_all_psv_objects()
{

View file

@ -24,12 +24,26 @@ union psv_uid_t
template<typename T, u32 type>
class psv_object_list_t // Class for managing object data
{
std::array<std::shared_ptr<T>, 0x8000> m_data;
public:
typedef refcounter_t<T> rc_type;
typedef ref_t<T> ref_type;
static const u32 max = 0x8000;
private:
std::array<rc_type, max> m_data;
std::atomic<u32> m_hint; // guessing next free position
std::mutex m_mutex; // TODO: remove it when shared_ptr atomic ops are fully available
void error(s32 uid)
{
throw fmt::format("Invalid UID requested (type=0x%x, uid=0x%x)", type, uid);
}
public:
psv_object_list_t() : m_hint(0) {}
psv_object_list_t()
: m_hint(0)
{
}
psv_object_list_t(const psv_object_list_t&) = delete;
psv_object_list_t(psv_object_list_t&&) = delete;
@ -40,7 +54,7 @@ public:
public:
static const u32 uid_class = type;
// check if UID is potentially valid (will return true if the object doesn't exist)
// check if UID is potentially valid (will return true even if the object doesn't exist)
bool check(s32 uid)
{
const psv_uid_t id = psv_uid_t::make(uid);
@ -49,76 +63,65 @@ public:
return !id.sign && id.type == uid_class && id.oddness == 1;
}
// share object with UID specified (will return empty pointer if the object doesn't exist or the UID is invalid)
std::shared_ptr<T> find(s32 uid)
// share object with UID specified
ref_type get(s32 uid)
{
if (!check(uid))
{
return nullptr;
return ref_type();
}
return m_data[psv_uid_t::make(uid).number];
return &m_data[psv_uid_t::make(uid).number];
}
std::shared_ptr<T> operator [](s32 uid)
ref_type operator [](s32 uid)
{
return find(uid);
return get(uid);
}
// generate UID for newly created object (will return zero if the limit exceeded)
s32 add(std::shared_ptr<T>& data)
s32 add(T* data, s32 error_code)
{
std::lock_guard<std::mutex> lock(m_mutex);
for (u32 i = 0, j = m_hint % m_data.size(); i < m_data.size(); i++, j = (j + 1) % m_data.size())
for (u32 i = 0, j = m_hint; i < m_data.size(); i++, j = (j + 1) % m_data.size())
{
// find an empty position and copy the pointer
if (!m_data[j])
if (m_data[j].try_set(data))
{
m_data[j] = data;
m_hint = j + 1; // guess next position
psv_uid_t id = psv_uid_t::make(1); // odd number
id.type = uid_class; // set type
id.number = j; // set position
data->on_init(id.uid); // save UID
m_hint = (j + 1) % m_data.size(); // guess next position
psv_uid_t id = psv_uid_t::make(1); // make UID
id.type = uid_class;
id.number = j;
return id.uid; // return UID
}
}
return 0;
delete data;
return error_code;
}
// remove object with UID specified and share it for the last time (will return empty pointer if the object doesn't exists or the UID is invalid)
std::shared_ptr<T> remove(s32 uid)
// remove object with specified UID
bool remove(s32 uid)
{
if (!check(uid))
{
return nullptr;
return false;
}
const u32 pos = psv_uid_t::make(uid).number;
std::lock_guard<std::mutex> lock(m_mutex);
m_hint = std::min<u32>(pos, m_hint);
std::shared_ptr<T> old_ptr = nullptr;
m_data[pos].swap(old_ptr);
m_hint = pos;
return old_ptr;
return m_data[pos].try_remove();
}
// remove all objects
void clear()
{
std::lock_guard<std::mutex> lock(m_mutex);
for (auto& object : m_data)
for (auto& v : m_data)
{
if (object)
{
object->on_stop();
}
object = nullptr;
v.try_remove();
}
m_hint = 0;

View file

@ -20,7 +20,6 @@ CPUThread::CPUThread(CPUThreadType type)
, m_type(type)
, m_stack_size(0)
, m_stack_addr(0)
, m_offset(0)
, m_prio(0)
, m_dec(nullptr)
, m_is_step(false)
@ -30,6 +29,7 @@ CPUThread::CPUThread(CPUThreadType type)
, m_trace_enabled(false)
, m_trace_call_stack(true)
{
offset = 0;
}
CPUThread::~CPUThread()
@ -125,11 +125,9 @@ void CPUThread::Reset()
CloseStack();
SetPc(0);
cycle = 0;
m_is_branch = false;
m_status = Stopped;
m_error = 0;
DoReset();
}
@ -202,29 +200,6 @@ void CPUThread::SetPc(const u32 pc)
PC = pc;
}
void CPUThread::SetError(const u32 error)
{
if(error == 0)
{
m_error = 0;
}
else
{
m_error |= error;
}
}
std::vector<std::string> CPUThread::ErrorToString(const u32 error)
{
std::vector<std::string> earr;
if(error == 0) return earr;
earr.push_back("Unknown error");
return earr;
}
void CPUThread::Run()
{
if(!IsStopped())
@ -322,7 +297,7 @@ void CPUThread::Task()
for (uint i = 0; i<bp.size(); ++i)
{
if (bp[i] == m_offset + PC)
if (bp[i] == offset + PC)
{
Emu.Pause();
break;
@ -349,7 +324,7 @@ void CPUThread::Task()
Step();
//if (m_trace_enabled)
//trace.push_back(PC);
NextPc(m_dec->DecodeMemory(PC + m_offset));
NextPc(m_dec->DecodeMemory(PC + offset));
if (status == CPUThread_Step)
{

View file

@ -26,10 +26,8 @@ class CPUThread : public ThreadBase
{
protected:
u32 m_status;
u32 m_error;
u32 m_id;
u64 m_prio;
u32 m_offset;
CPUThreadType m_type;
bool m_joinable;
bool m_joining;
@ -61,12 +59,10 @@ public:
void SetId(const u32 id);
void SetName(const std::string& name);
void SetPrio(const u64 prio) { m_prio = prio; }
void SetOffset(const u32 offset) { m_offset = offset; }
void SetExitStatus(const u64 status) { m_exit_status = status; }
u32 GetOffset() const { return m_offset; }
u64 GetExitStatus() const { return m_exit_status; }
u64 GetPrio() const { return m_prio; }
u64 GetExitStatus() const { return m_exit_status; }
std::string GetName() const { return NamedThreadBase::GetThreadName(); }
std::string GetFName() const
@ -116,13 +112,10 @@ public:
u32 entry;
u32 PC;
u32 nPC;
u64 cycle;
u32 index;
u32 offset;
bool m_is_branch;
bool m_trace_enabled;
bool m_is_interrupt;
bool m_has_interrupt;
u64 m_interrupt_arg;
u64 m_last_syscall;
protected:
@ -138,12 +131,6 @@ public:
void SetPc(const u32 pc);
void SetEntry(const u32 entry);
void SetError(const u32 error);
static std::vector<std::string> ErrorToString(const u32 error);
std::vector<std::string> ErrorToString() { return ErrorToString(m_error); }
bool IsOk() const { return m_error == 0; }
bool IsRunning() const;
bool IsPaused() const;
bool IsStopped() const;
@ -153,7 +140,6 @@ public:
void SetJoinable(bool joinable) { m_joinable = joinable; }
void SetJoining(bool joining) { m_joining = joining; }
u32 GetError() const { return m_error; }
u32 GetId() const { return m_id; }
CPUThreadType GetType() const { return m_type; }
@ -238,7 +224,7 @@ CPUThread* GetCurrentCPUThread();
class cpu_thread
{
protected:
CPUThread* thread;
std::shared_ptr<CPUThread> thread;
public:
u32 get_entry() const

View file

@ -24,9 +24,9 @@ void CPUThreadManager::Close()
while(m_threads.size()) RemoveThread(m_threads[0]->GetId());
}
CPUThread& CPUThreadManager::AddThread(CPUThreadType type)
std::shared_ptr<CPUThread> CPUThreadManager::AddThread(CPUThreadType type)
{
std::lock_guard<std::mutex> lock(m_mtx_thread);
std::lock_guard<std::mutex> lock(m_mutex);
std::shared_ptr<CPUThread> new_thread;
@ -44,7 +44,17 @@ CPUThread& CPUThreadManager::AddThread(CPUThreadType type)
}
case CPU_THREAD_RAW_SPU:
{
new_thread.reset(new RawSPUThread());
for (u32 i = 0; i < m_raw_spu.size(); i++)
{
if (!m_raw_spu[i])
{
new_thread.reset(new RawSPUThread());
new_thread->index = i;
m_raw_spu[i] = new_thread;
break;
}
}
break;
}
case CPU_THREAD_ARMv7:
@ -54,18 +64,21 @@ CPUThread& CPUThreadManager::AddThread(CPUThreadType type)
}
default: assert(0);
}
new_thread->SetId(Emu.GetIdManager().GetNewID(new_thread->GetTypeString() + " Thread", new_thread));
m_threads.push_back(new_thread);
SendDbgCommand(DID_CREATE_THREAD, new_thread.get());
if (new_thread)
{
new_thread->SetId(Emu.GetIdManager().GetNewID(new_thread->GetTypeString() + " Thread", new_thread));
return *new_thread;
m_threads.push_back(new_thread);
SendDbgCommand(DID_CREATE_THREAD, new_thread.get());
}
return new_thread;
}
void CPUThreadManager::RemoveThread(const u32 id)
void CPUThreadManager::RemoveThread(u32 id)
{
std::lock_guard<std::mutex> lock(m_mtx_thread);
std::lock_guard<std::mutex> lock(m_mutex);
std::shared_ptr<CPUThread> thr;
u32 thread_index = 0;
@ -84,6 +97,12 @@ void CPUThreadManager::RemoveThread(const u32 id)
thr->Close();
m_threads.erase(m_threads.begin() + thread_index);
if (thr->GetType() == CPU_THREAD_RAW_SPU)
{
assert(thr->index < m_raw_spu.size());
m_raw_spu[thr->index] = nullptr;
}
}
// Removing the ID should trigger the actual deletion of the thread
@ -91,21 +110,6 @@ void CPUThreadManager::RemoveThread(const u32 id)
Emu.CheckStatus();
}
s32 CPUThreadManager::GetThreadNumById(CPUThreadType type, u32 id)
{
std::lock_guard<std::mutex> lock(m_mtx_thread);
s32 num = 0;
for(u32 i=0; i<m_threads.size(); ++i)
{
if(m_threads[i]->GetId() == id) return num;
if(m_threads[i]->GetType() == type) num++;
}
return -1;
}
std::shared_ptr<CPUThread> CPUThreadManager::GetThread(u32 id)
{
std::shared_ptr<CPUThread> res;
@ -130,21 +134,19 @@ std::shared_ptr<CPUThread> CPUThreadManager::GetThread(u32 id, CPUThreadType typ
return res;
}
RawSPUThread* CPUThreadManager::GetRawSPUThread(u32 num)
std::shared_ptr<CPUThread> CPUThreadManager::GetRawSPUThread(u32 index)
{
if (num < sizeof(Memory.RawSPUMem) / sizeof(Memory.RawSPUMem[0]))
{
return (RawSPUThread*)Memory.RawSPUMem[num];
}
else
if (index >= m_raw_spu.size())
{
return nullptr;
}
return m_raw_spu[index];
}
void CPUThreadManager::Exec()
{
std::lock_guard<std::mutex> lock(m_mtx_thread);
std::lock_guard<std::mutex> lock(m_mutex);
for(u32 i = 0; i < m_threads.size(); ++i)
{

View file

@ -6,8 +6,10 @@ enum CPUThreadType : unsigned char;
class CPUThreadManager
{
std::mutex m_mutex;
std::vector<std::shared_ptr<CPUThread>> m_threads;
std::mutex m_mtx_thread;
std::array<std::shared_ptr<CPUThread>, 5> m_raw_spu;
public:
CPUThreadManager();
@ -15,14 +17,15 @@ public:
void Close();
CPUThread& AddThread(CPUThreadType type);
void RemoveThread(const u32 id);
std::shared_ptr<CPUThread> AddThread(CPUThreadType type);
void RemoveThread(u32 id);
std::vector<std::shared_ptr<CPUThread>> GetThreads() { std::lock_guard<std::mutex> lock(m_mutex); return m_threads; }
std::vector<std::shared_ptr<CPUThread>> GetThreads() { std::lock_guard<std::mutex> lock(m_mtx_thread); return m_threads; }
s32 GetThreadNumById(CPUThreadType type, u32 id);
std::shared_ptr<CPUThread> GetThread(u32 id);
std::shared_ptr<CPUThread> GetThread(u32 id, CPUThreadType type);
RawSPUThread* GetRawSPUThread(u32 num);
std::shared_ptr<CPUThread> GetRawSPUThread(u32 index);
void Exec();
void Task();

View file

@ -1,2 +1,47 @@
#include "stdafx.h"
#include "MFC.h"
const char* get_mfc_cmd_name(u32 cmd)
{
switch (cmd)
{
case MFC_PUT_CMD: return "PUT";
case MFC_PUTB_CMD: return "PUTB";
case MFC_PUTF_CMD: return "PUTF";
case MFC_PUTS_CMD: return "PUTS";
case MFC_PUTBS_CMD: return "PUTBS";
case MFC_PUTFS_CMD: return "PUTFS";
case MFC_PUTR_CMD: return "PUTR";
case MFC_PUTRB_CMD: return "PUTRB";
case MFC_PUTRF_CMD: return "PUTRF";
case MFC_GET_CMD: return "GET";
case MFC_GETB_CMD: return "GETB";
case MFC_GETF_CMD: return "GETF";
case MFC_GETS_CMD: return "GETS";
case MFC_GETBS_CMD: return "GETBS";
case MFC_GETFS_CMD: return "GETFS";
case MFC_PUTL_CMD: return "PUTL";
case MFC_PUTLB_CMD: return "PUTLB";
case MFC_PUTLF_CMD: return "PUTLF";
case MFC_PUTRL_CMD: return "PUTRL";
case MFC_PUTRLB_CMD: return "PUTRLB";
case MFC_PUTRLF_CMD: return "PUTRLF";
case MFC_GETL_CMD: return "GETL";
case MFC_GETLB_CMD: return "GETLB";
case MFC_GETLF_CMD: return "GETLF";
case MFC_GETLLAR_CMD: return "GETLLAR";
case MFC_PUTLLC_CMD: return "PUTLLC";
case MFC_PUTLLUC_CMD: return "PUTLLUC";
case MFC_PUTQLLUC_CMD: return "PUTQLLUC";
case MFC_SNDSIG_CMD: return "SNDSIG";
case MFC_SNDSIGB_CMD: return "SNDSIGB";
case MFC_SNDSIGF_CMD: return "SNDSIGF";
case MFC_BARRIER_CMD: return "BARRIER";
case MFC_EIEIO_CMD: return "EIEIO";
case MFC_SYNC_CMD: return "SYNC";
}
return "UNKNOWN";
}

View file

@ -1,10 +1,14 @@
#pragma once
enum
const char* get_mfc_cmd_name(u32 cmd);
enum : u32
{
MFC_PUT_CMD = 0x20, MFC_PUTB_CMD = 0x21, MFC_PUTF_CMD = 0x22,
MFC_PUTS_CMD = 0x28, MFC_PUTBS_CMD = 0x29, MFC_PUTFS_CMD = 0x2a,
MFC_PUTR_CMD = 0x30, MFC_PUTRB_CMD = 0x31, MFC_PUTRF_CMD = 0x32,
MFC_GET_CMD = 0x40, MFC_GETB_CMD = 0x41, MFC_GETF_CMD = 0x42,
MFC_GETS_CMD = 0x48, MFC_GETBS_CMD = 0x49, MFC_GETFS_CMD = 0x4a,
MFC_PUTL_CMD = 0x24, MFC_PUTLB_CMD = 0x25, MFC_PUTLF_CMD = 0x26,
MFC_PUTRL_CMD = 0x34, MFC_PUTRLB_CMD = 0x35, MFC_PUTRLF_CMD = 0x36,
MFC_GETL_CMD = 0x44, MFC_GETLB_CMD = 0x45, MFC_GETLF_CMD = 0x46,
@ -21,52 +25,68 @@ enum
MFC_BARRIER_MASK = 0x01,
MFC_FENCE_MASK = 0x02,
MFC_LIST_MASK = 0x04,
MFC_START_MASK = 0x08, // ???
MFC_START_MASK = 0x08,
MFC_RESULT_MASK = 0x10, // ???
MFC_MASK_CMD = 0xffff,
};
// Atomic Status Update
enum
enum : u32
{
MFC_PUTLLC_SUCCESS = 0,
MFC_PUTLLC_FAILURE = 1, //reservation was lost
MFC_PUTLLC_FAILURE = 1, // reservation was lost
MFC_PUTLLUC_SUCCESS = 2,
MFC_GETLLAR_SUCCESS = 4,
};
// MFC Write Tag Status Update Request Channel (ch23) operations
enum
enum : u32
{
MFC_TAG_UPDATE_IMMEDIATE = 0,
MFC_TAG_UPDATE_ANY = 1,
MFC_TAG_UPDATE_ALL = 2,
};
enum
{
MFC_SPU_TO_PPU_MAILBOX_STATUS_MASK = 0x000000FF,
MFC_SPU_TO_PPU_MAILBOX_STATUS_SHIFT = 0x0,
MFC_PPU_TO_SPU_MAILBOX_STATUS_MASK = 0x0000FF00,
MFC_PPU_TO_SPU_MAILBOX_STATUS_SHIFT = 0x8,
MFC_PPU_TO_SPU_MAILBOX_MAX = 0x4,
MFC_SPU_TO_PPU_INT_MAILBOX_STATUS_MASK = 0x00FF0000,
MFC_SPU_TO_PPU_INT_MAILBOX_STATUS_SHIFT = 0x10,
};
enum
enum : u32
{
MFC_PPU_DMA_CMD_ENQUEUE_SUCCESSFUL = 0x00,
MFC_PPU_DMA_CMD_SEQUENCE_ERROR = 0x01,
MFC_PPU_DMA_QUEUE_FULL = 0x02,
};
enum
enum : u32
{
MFC_PROXY_COMMAND_QUEUE_EMPTY_FLAG = 0x80000000,
};
enum : u32
{
MFC_PPU_MAX_QUEUE_SPACE = 0x08,
MFC_SPU_MAX_QUEUE_SPACE = 0x10,
};
struct DMAC
struct spu_mfc_arg_t
{
union
{
u64 ea;
struct
{
u32 eal;
u32 eah;
};
};
u32 lsa;
union
{
struct
{
u16 tag;
u16 size;
};
u32 size_tag;
};
};

View file

@ -53,8 +53,6 @@ void PPUThread::DoReset()
FPSCR.FPSCR = 0;
VSCR.VSCR = 0;
VRSAVE = 0;
cycle = 0;
}
void PPUThread::InitRegs()
@ -230,7 +228,7 @@ void PPUThread::Task()
ppu_thread::ppu_thread(u32 entry, const std::string& name, u32 stack_size, u32 prio)
{
thread = &Emu.GetCPU().AddThread(CPU_THREAD_PPU);
thread = Emu.GetCPU().AddThread(CPU_THREAD_PPU);
thread->SetName(name);
thread->SetEntry(entry);
@ -279,7 +277,7 @@ ppu_thread& ppu_thread::gpr(uint index, u64 value)
{
assert(index < 32);
static_cast<PPUThread*>(thread)->GPR[index] = value;
static_cast<PPUThread&>(*thread).GPR[index] = value;
return *this;
}

View file

@ -6,212 +6,207 @@
#include "Emu/Cell/RawSPUThread.h"
thread_local spu_mfc_arg_t raw_spu_mfc[8] = {};
RawSPUThread::RawSPUThread(CPUThreadType type)
: SPUThread(type)
, MemoryBlock()
{
m_index = Memory.InitRawSPU(this);
Reset();
}
RawSPUThread::~RawSPUThread()
{
Memory.CloseRawSPU(this, m_index);
}
bool RawSPUThread::Read32(const u32 addr, u32* value)
void RawSPUThread::start()
{
const u32 offset = addr - GetStartAddr() - RAW_SPU_PROB_OFFSET;
status.write_relaxed(SPU_STATUS_RUNNING);
// calling Exec() directly in SIGSEGV handler may cause problems
// (probably because Exec() creates new thread, faults of this thread aren't handled by this handler anymore)
Emu.GetCallbackManager().Async([this](PPUThread& PPU)
{
FastRun();
});
}
bool RawSPUThread::ReadReg(const u32 addr, u32& value)
{
const u32 offset = addr - RAW_SPU_BASE_ADDR - index * RAW_SPU_OFFSET - RAW_SPU_PROB_OFFSET;
switch (offset)
{
case MFC_CMDStatus_offs:
{
*value = MFC2.CMDStatus.GetValue();
break;
value = MFC_PPU_DMA_CMD_ENQUEUE_SUCCESSFUL;
return true;
}
case MFC_QStatus_offs:
{
// TagStatus is not used: mask is written directly
*value = MFC2.QueryMask.GetValue();
break;
value = MFC_PROXY_COMMAND_QUEUE_EMPTY_FLAG | MFC_PPU_MAX_QUEUE_SPACE;
return true;
}
case SPU_Out_MBox_offs:
{
// if Out_MBox is empty, the result is undefined
SPU.Out_MBox.PopUncond(*value);
break;
value = ch_out_mbox.pop_uncond();
return true;
}
case SPU_MBox_Status_offs:
{
*value = (SPU.Out_MBox.GetCount() & 0xff) | (SPU.In_MBox.GetFreeCount() << 8) | (SPU.Out_IntrMBox.GetCount() << 16);
break;
value = (ch_out_mbox.get_count() & 0xff) | ((4 - ch_in_mbox.get_count()) << 8 & 0xff) | (ch_out_intr_mbox.get_count() << 16 & 0xff);
return true;
}
case SPU_Status_offs:
{
*value = SPU.Status.GetValue();
break;
}
default:
{
// TODO: read value from LS if necessary (not important)
LOG_ERROR(Log::SPU, "RawSPUThread[%d]: Read32(0x%llx)", m_index, offset);
return false;
value = status.read_relaxed();
return true;
}
}
return true;
LOG_ERROR(Log::SPU, "RawSPUThread[%d]: Read32(0x%x): unknown/illegal offset (0x%x)", index, addr, offset);
return false;
}
bool RawSPUThread::Write32(const u32 addr, const u32 value)
bool RawSPUThread::WriteReg(const u32 addr, const u32 value)
{
const u32 offset = addr - GetStartAddr() - RAW_SPU_PROB_OFFSET;
const u32 offset = addr - RAW_SPU_BASE_ADDR - index * RAW_SPU_OFFSET - RAW_SPU_PROB_OFFSET;
switch (offset)
{
case MFC_LSA_offs:
{
MFC2.LSA.SetValue(value);
break;
if (value >= 0x40000)
{
break;
}
raw_spu_mfc[index].lsa = value;
return true;
}
case MFC_EAH_offs:
{
MFC2.EAH.SetValue(value);
break;
raw_spu_mfc[index].eah = value;
return true;
}
case MFC_EAL_offs:
{
MFC2.EAL.SetValue(value);
break;
raw_spu_mfc[index].eal = value;
return true;
}
case MFC_Size_Tag_offs:
{
MFC2.Size_Tag.SetValue(value);
break;
if (value >> 16 > 16 * 1024 || (u16)value >= 32)
{
break;
}
raw_spu_mfc[index].size_tag = value;
return true;
}
case MFC_CMDStatus_offs:
case MFC_Class_CMD_offs:
{
MFC2.CMDStatus.SetValue(value);
EnqMfcCmd(MFC2);
break;
do_dma_transfer(value & ~MFC_START_MASK, raw_spu_mfc[index]);
raw_spu_mfc[index] = {}; // clear non-persistent data
if (value & MFC_START_MASK)
{
start();
}
return true;
}
case Prxy_QueryType_offs:
{
switch(value)
{
case 2: break;
// 0 - no query requested; cancel previous request
// 1 - set (interrupt) status upon completion of any enabled tag groups
// 2 - set (interrupt) status upon completion of all enabled tag groups
default:
if (value > 2)
{
LOG_ERROR(Log::SPU, "RawSPUThread[%d]: Unknown Prxy Query Type. (prxy_query=0x%x)", m_index, value);
return false;
}
break;
}
MFC2.QueryType.SetValue(value); // not used
break;
if (value)
{
int2.set(SPU_INT2_STAT_DMA_TAG_GROUP_COMPLETION_INT); // TODO
}
return true;
}
case Prxy_QueryMask_offs:
{
MFC2.QueryMask.SetValue(value); // TagStatus is not used
break;
//proxy_tag_mask = value;
return true;
}
case SPU_In_MBox_offs:
{
// if In_MBox is already full, the last message is overwritten
SPU.In_MBox.PushUncond(value);
break;
ch_in_mbox.push_uncond(value);
return true;
}
case SPU_RunCntl_offs:
{
if (value == SPU_RUNCNTL_RUNNABLE)
if (value == SPU_RUNCNTL_RUN_REQUEST)
{
// calling Exec() directly in SIGSEGV handler may cause problems
// (probably because Exec() creates new thread, faults of this thread aren't handled by this handler anymore)
Emu.GetCallbackManager().Async([this](PPUThread& PPU)
{
SPU.Status.SetValue(SPU_STATUS_RUNNING);
Exec();
});
start();
}
else if (value == SPU_RUNCNTL_STOP)
else if (value == SPU_RUNCNTL_STOP_REQUEST)
{
SPU.Status.SetValue(SPU_STATUS_STOPPED);
Stop();
status &= ~SPU_STATUS_RUNNING;
FastStop();
}
else
{
LOG_ERROR(Log::SPU, "RawSPUThread[%d]: Write32(SPU_RunCtrl, 0x%x): unknown value", m_index, value);
return false;
break;
}
break;
run_ctrl.write_relaxed(value);
return true;
}
case SPU_NPC_offs:
{
if (value & 3)
if ((value & 2) || value >= 0x40000)
{
// least significant bit contains some interrupt flag
LOG_ERROR(Log::SPU, "RawSPUThread[%d]: Write32(SPU_NPC_offs, 0x%x): lowest bits set", m_index, value);
return false;
break;
}
SPU.NPC.SetValue(value);
break;
npc.write_relaxed(value);
return true;
}
case SPU_RdSigNotify1_offs:
{
WriteSNR(0, value);
break;
write_snr(0, value);
return true;
}
case SPU_RdSigNotify2_offs:
{
WriteSNR(1, value);
break;
}
default:
{
// TODO: write value to LS if necessary (not important)
LOG_ERROR(Log::SPU, "RawSPUThread[%d]: Write32(0x%llx, 0x%x)", m_index, offset, value);
return false;
write_snr(1, value);
return true;
}
}
return true;
}
void RawSPUThread::InitRegs()
{
ls_offset = m_offset = GetStartAddr() + RAW_SPU_LS_OFFSET;
SPUThread::InitRegs();
}
u32 RawSPUThread::GetIndex() const
{
return m_index;
LOG_ERROR(SPU, "RawSPUThread[%d]: Write32(0x%x, value=0x%x): unknown/illegal offset (0x%x)", index, addr, value, offset);
return false;
}
void RawSPUThread::Task()
{
PC = SPU.NPC.GetValue();
PC = npc.exchange(0) & ~3;
SPUThread::Task();
SPU.NPC.SetValue(PC);
npc.write_relaxed(PC | 1);
}

View file

@ -6,25 +6,19 @@ __forceinline static u32 GetRawSPURegAddrByNum(int num, int offset)
return RAW_SPU_OFFSET * num + RAW_SPU_BASE_ADDR + RAW_SPU_PROB_OFFSET + offset;
}
class RawSPUThread
: public SPUThread
, public MemoryBlock
class RawSPUThread : public SPUThread
{
u32 m_index;
public:
RawSPUThread(CPUThreadType type = CPU_THREAD_RAW_SPU);
virtual ~RawSPUThread();
bool Read32(const u32 addr, u32* value);
bool Write32(const u32 addr, const u32 value);
void start();
public:
virtual void InitRegs();
u32 GetIndex() const;
bool ReadReg(const u32 addr, u32& value);
bool WriteReg(const u32 addr, const u32 value);
private:
virtual void Task();
};
SPUThread& GetCurrentSPUThread();
SPUThread& GetCurrentSPUThread();

View file

@ -0,0 +1,10 @@
#pragma once
class SPUThread;
struct SPUContext
{
u128 gpr[128];
SPUThread& thread;
};

View file

@ -94,7 +94,7 @@ private:
//0 - 10
void STOP(u32 code)
{
CPU.StopAndSignal(code);
CPU.stop_and_signal(code);
LOG2_OPCODE();
}
void LNOP()
@ -116,12 +116,11 @@ private:
}
void RDCH(u32 rt, u32 ra)
{
CPU.ReadChannel(CPU.GPR[rt], ra);
CPU.GPR[rt] = u128::from32r(CPU.get_ch_value(ra));
}
void RCHCNT(u32 rt, u32 ra)
{
CPU.GPR[rt].clear();
CPU.GPR[rt]._u32[3] = CPU.GetChannelCount(ra);
CPU.GPR[rt] = u128::from32r(CPU.get_ch_count(ra));
}
void SF(u32 rt, u32 ra, u32 rb)
{
@ -312,7 +311,7 @@ private:
}
void WRCH(u32 ra, u32 rt)
{
CPU.WriteChannel(ra, CPU.GPR[rt]);
CPU.set_ch_value(ra, CPU.GPR[rt]._u32[3]);
}
void BIZ(u32 intr, u32 rt, u32 ra)
{
@ -406,7 +405,7 @@ private:
{
u32 lsa = (CPU.GPR[ra]._u32[3] + CPU.GPR[rb]._u32[3]) & 0x3fff0;
CPU.WriteLS128(lsa, CPU.GPR[rt]);
CPU.write128(lsa, CPU.GPR[rt]);
}
void BI(u32 intr, u32 ra)
{
@ -433,8 +432,7 @@ private:
}
u32 target = branchTarget(CPU.GPR[ra]._u32[3], 0);
CPU.GPR[rt].clear();
CPU.GPR[rt]._u32[3] = CPU.PC + 4;
CPU.GPR[rt] = u128::from32r(CPU.PC + 4);
LOG5_OPCODE("branch (0x%x)", target);
CPU.SetBranch(target);
}
@ -536,7 +534,7 @@ private:
{
u32 lsa = (CPU.GPR[ra]._u32[3] + CPU.GPR[rb]._u32[3]) & 0x3fff0;
CPU.GPR[rt] = CPU.ReadLS128(lsa);
CPU.GPR[rt] = CPU.read128(lsa);
}
void ROTQBYBI(u32 rt, u32 ra, u32 rb)
{
@ -864,8 +862,7 @@ private:
{
if (CPU.GPR[ra]._s32[3] > CPU.GPR[rb]._s32[3])
{
CPU.SPU.Status.SetValue(SPU_STATUS_STOPPED_BY_HALT);
CPU.Stop();
CPU.halt();
}
}
void CLZ(u32 rt, u32 ra)
@ -1199,8 +1196,7 @@ private:
{
if (CPU.GPR[ra]._u32[3] > CPU.GPR[rb]._u32[3])
{
CPU.SPU.Status.SetValue(SPU_STATUS_STOPPED_BY_HALT);
CPU.Stop();
CPU.halt();
}
}
void DFMA(u32 rt, u32 ra, u32 rb, bool neg, bool sub)
@ -1453,8 +1449,7 @@ private:
{
if (CPU.GPR[ra]._s32[3] == CPU.GPR[rb]._s32[3])
{
CPU.SPU.Status.SetValue(SPU_STATUS_STOPPED_BY_HALT);
CPU.Stop();
CPU.halt();
}
}
@ -1564,7 +1559,7 @@ private:
{
u32 lsa = (i16 << 2) & 0x3fff0;
CPU.WriteLS128(lsa, CPU.GPR[rt]);
CPU.write128(lsa, CPU.GPR[rt]);
}
void BRNZ(u32 rt, s32 i16)
{
@ -1609,7 +1604,7 @@ private:
{
u32 lsa = branchTarget(CPU.PC, i16) & 0x3fff0;
CPU.WriteLS128(lsa, CPU.GPR[rt]);
CPU.write128(lsa, CPU.GPR[rt]);
}
void BRA(s32 i16)
{
@ -1621,13 +1616,12 @@ private:
{
u32 lsa = (i16 << 2) & 0x3fff0;
CPU.GPR[rt] = CPU.ReadLS128(lsa);
CPU.GPR[rt] = CPU.read128(lsa);
}
void BRASL(u32 rt, s32 i16)
{
u32 target = branchTarget(0, i16);
CPU.GPR[rt].clear();
CPU.GPR[rt]._u32[3] = CPU.PC + 4;
CPU.GPR[rt] = u128::from32r(CPU.PC + 4);
LOG5_OPCODE("branch (0x%x)", target);
CPU.SetBranch(target);
}
@ -1656,8 +1650,7 @@ private:
void BRSL(u32 rt, s32 i16)
{
u32 target = branchTarget(CPU.PC, i16);
CPU.GPR[rt].clear();
CPU.GPR[rt]._u32[3] = CPU.PC + 4;
CPU.GPR[rt] = u128::from32r(CPU.PC + 4);
LOG5_OPCODE("branch (0x%x)", target);
CPU.SetBranch(target);
}
@ -1665,7 +1658,7 @@ private:
{
u32 lsa = branchTarget(CPU.PC, i16) & 0x3fff0;
CPU.GPR[rt] = CPU.ReadLS128(lsa);
CPU.GPR[rt] = CPU.read128(lsa);
}
void IL(u32 rt, s32 i16)
{
@ -1748,13 +1741,13 @@ private:
{
const u32 lsa = (CPU.GPR[ra]._s32[3] + i10) & 0x3fff0;
CPU.WriteLS128(lsa, CPU.GPR[rt]);
CPU.write128(lsa, CPU.GPR[rt]);
}
void LQD(u32 rt, s32 i10, u32 ra) //i10 is shifted left by 4 while decoding
{
const u32 lsa = (CPU.GPR[ra]._s32[3] + i10) & 0x3fff0;
CPU.GPR[rt] = CPU.ReadLS128(lsa);
CPU.GPR[rt] = CPU.read128(lsa);
}
void XORI(u32 rt, u32 ra, s32 i10)
{
@ -1790,8 +1783,7 @@ private:
{
if (CPU.GPR[ra]._s32[3] > i10)
{
CPU.SPU.Status.SetValue(SPU_STATUS_STOPPED_BY_HALT);
CPU.Stop();
CPU.halt();
}
}
void CLGTI(u32 rt, u32 ra, s32 i10)
@ -1817,8 +1809,7 @@ private:
{
if (CPU.GPR[ra]._u32[3] > (u32)i10)
{
CPU.SPU.Status.SetValue(SPU_STATUS_STOPPED_BY_HALT);
CPU.Stop();
CPU.halt();
}
}
void MPYI(u32 rt, u32 ra, s32 i10)
@ -1850,8 +1841,7 @@ private:
{
if (CPU.GPR[ra]._s32[3] == i10)
{
CPU.SPU.Status.SetValue(SPU_STATUS_STOPPED_BY_HALT);
CPU.Stop();
CPU.halt();
}
}

View file

@ -380,7 +380,7 @@ private:
static void STOP(u32 code)
{
SPUThread& CPU = *(SPUThread*)GetCurrentNamedThread();
CPU.StopAndSignal(code);
CPU.stop_and_signal(code);
LOG2_OPCODE();
}
};
@ -418,7 +418,7 @@ private:
{
c.mov(cpu_dword(PC), CPU.PC);
WRAPPER_BEGIN(rt, ra, yy, zz);
CPU.ReadChannel(CPU.GPR[rt], ra);
CPU.GPR[rt] = u128::from32r(CPU.get_ch_value(ra));
WRAPPER_END(rt, ra, 0, 0);
// TODO
}
@ -426,8 +426,7 @@ private:
{
c.mov(cpu_dword(PC), CPU.PC);
WRAPPER_BEGIN(rt, ra, yy, zz);
CPU.GPR[rt].clear();
CPU.GPR[rt]._u32[3] = CPU.GetChannelCount(ra);
CPU.GPR[rt] = u128::from32r(CPU.get_ch_count(ra));
WRAPPER_END(rt, ra, 0, 0);
// TODO
}
@ -1034,7 +1033,7 @@ private:
{
c.mov(cpu_dword(PC), CPU.PC);
WRAPPER_BEGIN(ra, rt, yy, zz);
CPU.WriteChannel(ra, CPU.GPR[rt]);
CPU.set_ch_value(ra, CPU.GPR[rt]._u32[3]);
WRAPPER_END(ra, rt, 0, 0);
// TODO

View file

@ -49,7 +49,7 @@ void SPURecompilerCore::Compile(u16 pos)
u64 time0 = 0;
SPUDisAsm dis_asm(CPUDisAsm_InterpreterMode);
dis_asm.offset = vm::get_ptr<u8>(CPU.ls_offset);
dis_asm.offset = vm::get_ptr<u8>(CPU.offset);
StringLogger stringLogger;
stringLogger.setOption(kLoggerOptionBinaryForm, true);
@ -103,7 +103,7 @@ void SPURecompilerCore::Compile(u16 pos)
while (true)
{
const u32 opcode = vm::read32(CPU.ls_offset + pos * 4);
const u32 opcode = vm::read32(CPU.offset + pos * 4);
m_enc->do_finalize = false;
if (opcode)
{
@ -182,8 +182,8 @@ void SPURecompilerCore::Compile(u16 pos)
u32 SPURecompilerCore::DecodeMemory(const u32 address)
{
assert(CPU.ls_offset == address - CPU.PC);
const u32 m_offset = CPU.ls_offset;
assert(CPU.offset == address - CPU.PC);
const u32 m_offset = CPU.offset;
const u16 pos = (u16)(CPU.PC >> 2);
//ConLog.Write("DecodeMemory: pos=%d", pos);
@ -268,8 +268,7 @@ u32 SPURecompilerCore::DecodeMemory(const u32 address)
if (res & 0x1000000)
{
CPU.SPU.Status.SetValue(SPU_STATUS_STOPPED_BY_HALT);
CPU.Stop();
CPU.halt();
res &= ~0x1000000;
}

File diff suppressed because it is too large Load diff

View file

@ -1,13 +1,14 @@
#pragma once
#include "Emu/Cell/Common.h"
#include "Emu/CPU/CPUThread.h"
#include "Emu/Memory/atomic_type.h"
#include "Emu/SysCalls/lv2/sleep_queue_type.h"
#include "Emu/SysCalls/lv2/sys_event.h"
#include "Emu/Event.h"
#include "Emu/Cell/SPUContext.h"
#include "MFC.h"
enum SPUchannels
struct event_queue_t;
struct spu_group_t;
// SPU Channels
enum : u32
{
SPU_RdEventStat = 0, //Read event status with mask applied
SPU_WrEventMask = 1, //Write event mask
@ -25,7 +26,8 @@ enum SPUchannels
SPU_WrOutIntrMbox = 30, //Write outbound interrupt mailbox contents (interrupting PPU)
};
enum MFCchannels
// MFC Channels
enum : u32
{
MFC_WrMSSyncReq = 9, //Write multisource synchronization request
MFC_RdTagMask = 12, //Read tag mask
@ -43,7 +45,8 @@ enum MFCchannels
MFC_RdAtomicStat = 27, //Read completion status of last completed immediate MFC atomic update command
};
enum SPUEvents
// SPU Events
enum : u32
{
SPU_EVENT_MS = 0x1000, // multisource synchronization event
SPU_EVENT_A = 0x800, // privileged attention event
@ -61,12 +64,31 @@ enum SPUEvents
SPU_EVENT_IMPLEMENTED = SPU_EVENT_LR,
};
enum
// SPU Class 0 Interrupts
enum : u64
{
SPU_RUNCNTL_STOP = 0,
SPU_RUNCNTL_RUNNABLE = 1,
SPU_INT0_STAT_DMA_ALIGNMENT_INT = (1ull << 0),
SPU_INT0_STAT_INVALID_DMA_CMD_INT = (1ull << 1),
SPU_INT0_STAT_SPU_ERROR_INT = (1ull << 2),
};
// SPU Class 2 Interrupts
enum : u64
{
SPU_INT2_STAT_MAILBOX_INT = (1ull << 0),
SPU_INT2_STAT_SPU_STOP_AND_SIGNAL_INT = (1ull << 1),
SPU_INT2_STAT_SPU_HALT_OR_STEP_INT = (1ull << 2),
SPU_INT2_STAT_DMA_TAG_GROUP_COMPLETION_INT = (1ull << 3),
SPU_INT2_STAT_SPU_MAILBOX_THRESHOLD_INT = (1ull << 4),
};
enum
{
SPU_RUNCNTL_STOP_REQUEST = 0,
SPU_RUNCNTL_RUN_REQUEST = 1,
};
// SPU Status Register bits (not accurate)
enum
{
SPU_STATUS_STOPPED = 0x0,
@ -80,10 +102,9 @@ enum
enum : u32
{
SYS_SPU_THREAD_BASE_LOW = 0xf0000000,
SYS_SPU_THREAD_BASE_MASK = 0xfffffff,
SYS_SPU_THREAD_OFFSET = 0x00100000,
SYS_SPU_THREAD_SNR1 = 0x05400c,
SYS_SPU_THREAD_SNR2 = 0x05C00c,
SYS_SPU_THREAD_OFFSET = 0x100000,
SYS_SPU_THREAD_SNR1 = 0x5400c,
SYS_SPU_THREAD_SNR2 = 0x5C00c,
};
enum
@ -108,6 +129,195 @@ enum
SPU_RdSigNotify2_offs = 0x1C00C,
};
union spu_channel_t
{
struct sync_var_t
{
u32 count;
u32 value;
};
atomic_t<sync_var_t> sync_var; // atomic variable
sync_var_t data; // unsafe direct access
public:
bool push(u32 value)
{
bool out_result;
sync_var.atomic_op([&out_result, value](sync_var_t& data)
{
if ((out_result = data.count == 0))
{
data.count = 1;
data.value = value;
}
});
return out_result;
}
void push_logical_or(u32 value)
{
sync_var._or({ 1, value });
}
void push_uncond(u32 value)
{
sync_var.exchange({ 1, value });
}
bool pop(u32& out_value)
{
bool out_result;
sync_var.atomic_op([&out_result, &out_value](sync_var_t& data)
{
if ((out_result = data.count != 0))
{
out_value = data.value;
data.count = 0;
data.value = 0;
}
});
return out_result;
}
u32 pop_uncond()
{
u32 out_value;
sync_var.atomic_op([&out_value](sync_var_t& data)
{
out_value = data.value;
data.count = 0;
// value is not cleared and may be read again
});
return out_value;
}
void set_value(u32 value, u32 count = 1)
{
sync_var.write_relaxed({ count, value });
}
u32 get_value()
{
return sync_var.read_relaxed().value;
}
u32 get_count()
{
return sync_var.read_relaxed().count;
}
};
struct spu_channel_4_t
{
struct sync_var_t
{
u32 count;
u32 value0;
u32 value1;
u32 value2;
};
atomic_le_t<sync_var_t> sync_var;
atomic_le_t<u32> value3;
public:
void clear()
{
sync_var.write_relaxed({});
value3.write_relaxed({});
}
void push_uncond(u32 value)
{
value3.exchange(value);
sync_var.atomic_op([value](sync_var_t& data)
{
switch (data.count++)
{
case 0: data.value0 = value; break;
case 1: data.value1 = value; break;
case 2: data.value2 = value; break;
default: data.count = 4;
}
});
}
// out_count: count after removing first element
bool pop(u32& out_value, u32& out_count)
{
bool out_result;
const u32 last_value = value3.read_sync();
sync_var.atomic_op([&out_result, &out_value, &out_count, last_value](sync_var_t& data)
{
if ((out_result = data.count != 0))
{
out_value = data.value0;
out_count = --data.count;
data.value0 = data.value1;
data.value1 = data.value2;
data.value2 = last_value;
}
});
return out_result;
}
u32 get_count()
{
return sync_var.read_relaxed().count;
}
};
struct spu_interrupt_tag_t
{
atomic_le_t<u64> mask;
atomic_le_t<u64> stat;
atomic_le_t<s32> assigned;
std::mutex handler_mutex;
std::condition_variable cond;
public:
void set(u64 ints)
{
// leave only enabled interrupts
ints &= mask.read_relaxed();
if (ints && ~stat._or(ints) & ints)
{
// notify if at least 1 bit was set
cond.notify_all();
}
}
void clear(u64 ints)
{
stat &= ~ints;
}
void clear()
{
mask.write_relaxed(0);
stat.write_relaxed(0);
assigned.write_relaxed(-1);
}
};
#define mmToU64Ptr(x) ((u64*)(&x))
#define mmToU32Ptr(x) ((u32*)(&x))
#define mmToU16Ptr(x) ((u16*)(&x))
@ -254,273 +464,113 @@ public:
}
};
union SPU_SNRConfig_hdr
{
u64 value;
SPU_SNRConfig_hdr() {}
std::string ToString() const
{
return fmt::Format("%01x", value);
}
void Reset()
{
memset(this, 0, sizeof(*this));
}
};
struct SpuGroupInfo;
class SPUThread : public CPUThread
{
public:
u128 GPR[128]; // General-Purpose Registers
SPU_FPSCR FPSCR;
u32 SRR0;
SPU_SNRConfig_hdr cfg; // Signal Notification Registers Configuration (OR-mode enabled: 0x1 for SNR1, 0x2 for SNR2)
std::shared_ptr<EventPort> SPUPs[64]; // SPU Thread Event Ports
EventManager SPUQs; // SPU Queue Mapping
std::shared_ptr<SpuGroupInfo> group; // associated SPU Thread Group (null for raw spu)
u64 m_dec_start; // timestamp of writing decrementer value
u32 m_dec_value; // written decrementer value
u32 m_event_mask;
u32 m_events;
std::unordered_map<u32, std::function<bool(SPUThread& SPU)>> m_addr_to_hle_function_map;
struct IntrTag
spu_mfc_arg_t ch_mfc_args;
std::vector<std::pair<u32, spu_mfc_arg_t>> mfc_queue; // Only used for stalled list transfers
u32 ch_tag_mask;
spu_channel_t ch_tag_stat;
spu_channel_t ch_stall_stat;
spu_channel_t ch_atomic_stat;
spu_channel_4_t ch_in_mbox;
spu_channel_t ch_out_mbox;
spu_channel_t ch_out_intr_mbox;
u64 snr_config; // SPU SNR Config Register
spu_channel_t ch_snr1; // SPU Signal Notification Register 1
spu_channel_t ch_snr2; // SPU Signal Notification Register 2
u32 ch_event_mask;
atomic_le_t<u32> ch_event_stat;
u64 ch_dec_start_timestamp; // timestamp of writing decrementer value
u32 ch_dec_value; // written decrementer value
atomic_le_t<u32> run_ctrl; // SPU Run Control register (only provided to get latest data written)
atomic_le_t<u32> status; // SPU Status register
atomic_le_t<u32> npc; // SPU Next Program Counter register
spu_interrupt_tag_t int0; // SPU Class 0 Interrupt Management
spu_interrupt_tag_t int2; // SPU Class 2 Interrupt Management
std::weak_ptr<spu_group_t> tg; // SPU Thread Group Id
std::unordered_map<u32, std::shared_ptr<event_queue_t>> spuq; // Event Queue Keys for SPU Thread
std::weak_ptr<event_queue_t> spup[64]; // SPU Ports
void write_snr(bool number, u32 value)
{
u32 enabled; // 1 == true
u32 thread; // established interrupt PPU thread
u64 mask;
u64 stat;
IntrTag()
: enabled(0)
, thread(0)
, mask(0)
, stat(0)
if (!number)
{
}
} m_intrtag[3];
// limited lock-free queue, most functions are barrier-free
template<size_t max_count>
class Channel
{
static_assert(max_count >= 1, "Invalid channel count");
struct ChannelData
{
u32 value;
u32 is_set;
};
atomic_t<ChannelData> m_data[max_count];
size_t m_push;
size_t m_pop;
public:
__noinline Channel()
{
for (size_t i = 0; i < max_count; i++)
if (snr_config & 1)
{
m_data[i].write_relaxed({});
}
m_push = 0;
m_pop = 0;
}
__forceinline void PopUncond(u32& res)
{
res = m_data[m_pop].read_relaxed().value;
m_data[m_pop].write_relaxed({});
m_pop = (m_pop + 1) % max_count;
}
__forceinline bool Pop(u32& res)
{
const auto data = m_data[m_pop].read_relaxed();
if (data.is_set)
{
res = data.value;
m_data[m_pop].write_relaxed({});
m_pop = (m_pop + 1) % max_count;
return true;
ch_snr1.push_logical_or(value);
}
else
{
return false;
ch_snr1.push_uncond(value);
}
}
__forceinline bool Pop_XCHG(u32& res) // not barrier-free, not tested
else
{
const auto data = m_data[m_pop].exchange({});
if (data.is_set)
if (snr_config & 2)
{
res = data.value;
m_pop = (m_pop + 1) % max_count;
return true;
ch_snr2.push_logical_or(value);
}
else
{
return false;
ch_snr2.push_uncond(value);
}
}
}
__forceinline void PushUncond_OR(const u32 value) // not barrier-free, not tested
{
m_data[m_push]._or({ value, 1 });
m_push = (m_push + 1) % max_count;
}
void do_dma_transfer(u32 cmd, spu_mfc_arg_t args);
void do_dma_list_cmd(u32 cmd, spu_mfc_arg_t args);
void process_mfc_cmd(u32 cmd);
__forceinline void PushUncond(const u32 value)
{
m_data[m_push].write_relaxed({ value, 1 });
m_push = (m_push + 1) % max_count;
}
u32 get_ch_count(u32 ch);
u32 get_ch_value(u32 ch);
void set_ch_value(u32 ch, u32 value);
__forceinline bool Push(const u32 value)
{
if (m_data[m_push].read_relaxed().is_set)
{
return false;
}
else
{
PushUncond(value);
return true;
}
}
void stop_and_signal(u32 code);
void halt();
__forceinline u32 GetCount() const
{
u32 res = 0;
for (size_t i = 0; i < max_count; i++)
{
res += m_data[i].read_relaxed().is_set ? 1 : 0;
}
return res;
}
u8 read8(u32 lsa) const { return vm::read8(lsa + offset); }
u16 read16(u32 lsa) const { return vm::read16(lsa + offset); }
u32 read32(u32 lsa) const { return vm::read32(lsa + offset); }
u64 read64(u32 lsa) const { return vm::read64(lsa + offset); }
u128 read128(u32 lsa) const { return vm::read128(lsa + offset); }
__forceinline u32 GetFreeCount() const
{
u32 res = 0;
for (size_t i = 0; i < max_count; i++)
{
res += m_data[i].read_relaxed().is_set ? 0 : 1;
}
return res;
}
void write8(u32 lsa, u8 data) const { vm::write8(lsa + offset, data); }
void write16(u32 lsa, u16 data) const { vm::write16(lsa + offset, data); }
void write32(u32 lsa, u32 data) const { vm::write32(lsa + offset, data); }
void write64(u32 lsa, u64 data) const { vm::write64(lsa + offset, data); }
void write128(u32 lsa, u128 data) const { vm::write128(lsa + offset, data); }
__forceinline void SetValue(const u32 value)
{
m_data[m_push].direct_op([value](ChannelData& v)
{
v.value = value;
});
}
__forceinline u32 GetValue() const
{
return m_data[m_pop].read_relaxed().value;
}
};
struct MFCReg
{
Channel<1> LSA;
Channel<1> EAH;
Channel<1> EAL;
Channel<1> Size_Tag;
Channel<1> CMDStatus;
Channel<1> QueryType; // only for prxy
Channel<1> QueryMask;
Channel<1> TagStatus;
Channel<1> AtomicStat;
} MFC1, MFC2;
struct StalledList
{
u32 lsa;
u64 ea;
u16 tag;
u16 size;
u32 cmd;
MFCReg* MFCArgs;
StalledList()
: MFCArgs(nullptr)
{
}
} StallList[32];
Channel<1> StallStat;
struct
{
Channel<1> Out_MBox;
Channel<1> Out_IntrMBox;
Channel<4> In_MBox;
Channel<1> Status;
Channel<1> NPC;
Channel<1> SNR[2];
} SPU;
void WriteSNR(bool number, u32 value);
u32 LSA;
union
{
u64 EA;
struct { u32 EAH, EAL; };
};
u32 ls_offset;
void ProcessCmd(u32 cmd, u32 tag, u32 lsa, u64 ea, u32 size);
void ListCmd(u32 lsa, u64 ea, u16 tag, u16 size, u32 cmd, MFCReg& MFCArgs);
void EnqMfcCmd(MFCReg& MFCArgs);
bool CheckEvents();
u32 GetChannelCount(u32 ch);
void WriteChannel(u32 ch, const u128& r);
void ReadChannel(u128& r, u32 ch);
void StopAndSignal(u32 code);
u8 ReadLS8 (const u32 lsa) const { return vm::read8 (lsa + m_offset); }
u16 ReadLS16 (const u32 lsa) const { return vm::read16 (lsa + m_offset); }
u32 ReadLS32 (const u32 lsa) const { return vm::read32 (lsa + m_offset); }
u64 ReadLS64 (const u32 lsa) const { return vm::read64 (lsa + m_offset); }
u128 ReadLS128(const u32 lsa) const { return vm::read128(lsa + m_offset); }
void WriteLS8 (const u32 lsa, const u8& data) const { vm::write8 (lsa + m_offset, data); }
void WriteLS16 (const u32 lsa, const u16& data) const { vm::write16 (lsa + m_offset, data); }
void WriteLS32 (const u32 lsa, const u32& data) const { vm::write32 (lsa + m_offset, data); }
void WriteLS64 (const u32 lsa, const u64& data) const { vm::write64 (lsa + m_offset, data); }
void WriteLS128(const u32 lsa, const u128& data) const { vm::write128(lsa + m_offset, data); }
void write16(u32 lsa, be_t<u16> data) const { vm::write16(lsa + offset, data); }
void write32(u32 lsa, be_t<u32> data) const { vm::write32(lsa + offset, data); }
void write64(u32 lsa, be_t<u64> data) const { vm::write64(lsa + offset, data); }
void write128(u32 lsa, be_t<u128> data) const { vm::write128(lsa + offset, data); }
void RegisterHleFunction(u32 addr, std::function<bool(SPUThread & SPU)> function)
{
m_addr_to_hle_function_map[addr] = function;
WriteLS32(addr, 0x00000003); // STOP 3
write32(addr, 0x00000003); // STOP 3
}
void UnregisterHleFunction(u32 addr)
{
WriteLS32(addr, 0x00200000); // NOP
m_addr_to_hle_function_map.erase(addr);
}
@ -530,7 +580,6 @@ public:
{
if (iter->first >= start_addr && iter->first <= end_addr)
{
WriteLS32(iter->first, 0x00200000); // NOP
m_addr_to_hle_function_map.erase(iter++);
}
else
@ -603,6 +652,7 @@ public:
virtual void Task();
void FastCall(u32 ls_addr);
void FastStop();
void FastRun();
protected:
virtual void DoReset();
@ -651,11 +701,13 @@ public:
cpu_thread& run() override
{
thread->Run();
auto& spu = static_cast<SPUThread&>(*thread);
static_cast<SPUThread*>(thread)->GPR[3].from64(argc);
static_cast<SPUThread*>(thread)->GPR[4].from64(argv.addr());
static_cast<SPUThread*>(thread)->GPR[5].from64(envp.addr());
spu.Run();
spu.GPR[3].from64(argc);
spu.GPR[4].from64(argv.addr());
spu.GPR[5].from64(envp.addr());
return *this;
}

View file

@ -1,8 +1,7 @@
#include "stdafx.h"
#include "Emu/Memory/Memory.h"
#include "Emu/Memory/atomic_type.h"
#include "Emu/SysCalls/lv2/sleep_queue_type.h"
#include "Emu/SysCalls/lv2/sleep_queue.h"
#include "Emu/SysCalls/lv2/sys_event.h"
#include "Event.h"
@ -12,74 +11,77 @@ void EventManager::Init()
void EventManager::Clear()
{
key_map.clear();
eq_map.clear();
}
bool EventManager::CheckKey(u64 key)
{
if (!key) return true;
std::lock_guard<std::mutex> lock(m_lock);
return key_map.find(key) != key_map.end();
}
bool EventManager::RegisterKey(std::shared_ptr<EventQueue>& data, u64 key)
{
if (!key) return true;
std::lock_guard<std::mutex> lock(m_lock);
if (key_map.find(key) != key_map.end()) return false;
for (auto& v : key_map)
if (!key)
{
if (v.second == data) return false;
// never exists
return false;
}
key_map[key] = data;
return true;
}
bool EventManager::GetEventQueue(u64 key, std::shared_ptr<EventQueue>& data)
{
data = nullptr;
if (!key) return false;
std::lock_guard<std::mutex> lock(m_lock);
auto f = key_map.find(key);
if (f != key_map.end())
return eq_map.find(key) != eq_map.end();
}
bool EventManager::RegisterKey(std::shared_ptr<event_queue_t>& data, u64 key)
{
if (!key)
{
data = f->second;
// always ok
return true;
}
return false;
std::lock_guard<std::mutex> lock(m_lock);
if (eq_map.find(key) != eq_map.end())
{
return false;
}
eq_map[key] = data;
return true;
}
bool EventManager::UnregisterKey(u64 key)
{
if (!key) return false;
std::lock_guard<std::mutex> lock(m_lock);
auto f = key_map.find(key);
if (f != key_map.end())
if (!key)
{
key_map.erase(f);
// always ok
return true;
}
std::lock_guard<std::mutex> lock(m_lock);
auto f = eq_map.find(key);
if (f != eq_map.end())
{
eq_map.erase(f);
return true;
}
return false;
}
bool EventManager::SendEvent(u64 key, u64 source, u64 d1, u64 d2, u64 d3)
std::shared_ptr<event_queue_t> EventManager::GetEventQueue(u64 key)
{
if (!key) return false;
if (!key)
{
// never exists
return nullptr;
}
std::lock_guard<std::mutex> lock(m_lock);
auto f = key_map.find(key);
if (f == key_map.end())
auto f = eq_map.find(key);
if (f != eq_map.end())
{
return false;
return f->second;
}
f->second->events.push(source, d1, d2, d3);
return true;
return nullptr;
}

View file

@ -1,19 +1,19 @@
#pragma once
#include <unordered_map>
struct EventQueue;
struct event_queue_t;
class EventManager
{
std::mutex m_lock;
std::unordered_map<u64, std::shared_ptr<EventQueue>> key_map;
std::unordered_map<u64, std::shared_ptr<event_queue_t>> eq_map;
public:
void Init();
void Clear();
bool CheckKey(u64 key);
bool RegisterKey(std::shared_ptr<EventQueue>& data, u64 key);
bool GetEventQueue(u64 key, std::shared_ptr<EventQueue>& data);
bool RegisterKey(std::shared_ptr<event_queue_t>& data, u64 key);
bool UnregisterKey(u64 key);
bool SendEvent(u64 key, u64 source, u64 d1, u64 d2, u64 d3);
std::shared_ptr<event_queue_t> GetEventQueue(u64 key);
};

View file

@ -1,53 +1,16 @@
#include "stdafx.h"
#include "Utilities/Log.h"
#include "Emu/System.h"
#include "Memory.h"
#include "Emu/Cell/RawSPUThread.h"
MemoryBase Memory;
u32 MemoryBase::InitRawSPU(MemoryBlock* raw_spu)
{
LV2_LOCK(0);
u32 index;
for (index = 0; index < sizeof(RawSPUMem) / sizeof(RawSPUMem[0]); index++)
{
if (!RawSPUMem[index])
{
RawSPUMem[index] = raw_spu;
break;
}
}
MemoryBlocks.push_back(raw_spu->SetRange(RAW_SPU_BASE_ADDR + RAW_SPU_OFFSET * index, RAW_SPU_PROB_OFFSET));
return index;
}
void MemoryBase::CloseRawSPU(MemoryBlock* raw_spu, const u32 num)
{
LV2_LOCK(0);
for (int i = 0; i < MemoryBlocks.size(); ++i)
{
if (MemoryBlocks[i] == raw_spu)
{
MemoryBlocks.erase(MemoryBlocks.begin() + i);
break;
}
}
if (num < sizeof(RawSPUMem) / sizeof(RawSPUMem[0])) RawSPUMem[num] = nullptr;
}
std::mutex g_memory_mutex;
void MemoryBase::Init(MemoryType type)
{
LV2_LOCK(0);
if (m_inited) return;
m_inited = true;
memset(RawSPUMem, 0, sizeof(RawSPUMem));
LOG_NOTICE(MEMORY, "Initializing memory: g_base_addr = 0x%llx, g_priv_addr = 0x%llx", (u64)vm::g_base_addr, (u64)vm::g_priv_addr);
#ifdef _WIN32
@ -88,8 +51,6 @@ void MemoryBase::Init(MemoryType type)
void MemoryBase::Close()
{
LV2_LOCK(0);
if (!m_inited) return;
m_inited = false;
@ -105,35 +66,11 @@ void MemoryBase::Close()
MemoryBlocks.clear();
}
bool MemoryBase::WriteMMIO32(u32 addr, const u32 data)
{
LV2_LOCK(0);
if (RawSPUMem[(addr - RAW_SPU_BASE_ADDR) / RAW_SPU_OFFSET] && ((RawSPUThread*)RawSPUMem[(addr - RAW_SPU_BASE_ADDR) / RAW_SPU_OFFSET])->Write32(addr, data))
{
return true;
}
return false;
}
bool MemoryBase::ReadMMIO32(u32 addr, u32& result)
{
LV2_LOCK(0);
if (RawSPUMem[(addr - RAW_SPU_BASE_ADDR) / RAW_SPU_OFFSET] && ((RawSPUThread*)RawSPUMem[(addr - RAW_SPU_BASE_ADDR) / RAW_SPU_OFFSET])->Read32(addr, &result))
{
return true;
}
return false;
}
bool MemoryBase::Map(const u32 addr, const u32 size)
{
assert(size && (size | addr) % 4096 == 0);
LV2_LOCK(0);
std::lock_guard<std::mutex> lock(g_memory_mutex);
for (u32 i = addr / 4096; i < addr / 4096 + size / 4096; i++)
{
@ -151,7 +88,7 @@ bool MemoryBase::Map(const u32 addr, const u32 size)
bool MemoryBase::Unmap(const u32 addr)
{
LV2_LOCK(0);
std::lock_guard<std::mutex> lock(g_memory_mutex);
for (u32 i = 0; i < MemoryBlocks.size(); i++)
{
@ -238,7 +175,7 @@ DynamicMemoryBlockBase::DynamicMemoryBlockBase()
const u32 DynamicMemoryBlockBase::GetUsedSize() const
{
LV2_LOCK(0);
std::lock_guard<std::mutex> lock(g_memory_mutex);
u32 size = 0;
@ -257,7 +194,7 @@ bool DynamicMemoryBlockBase::IsInMyRange(const u32 addr, const u32 size)
MemoryBlock* DynamicMemoryBlockBase::SetRange(const u32 start, const u32 size)
{
LV2_LOCK(0);
std::lock_guard<std::mutex> lock(g_memory_mutex);
m_max_size = PAGE_4K(size);
if (!MemoryBlock::SetRange(start, 0))
@ -271,7 +208,7 @@ MemoryBlock* DynamicMemoryBlockBase::SetRange(const u32 start, const u32 size)
void DynamicMemoryBlockBase::Delete()
{
LV2_LOCK(0);
std::lock_guard<std::mutex> lock(g_memory_mutex);
m_allocated.clear();
m_max_size = 0;
@ -293,7 +230,7 @@ bool DynamicMemoryBlockBase::AllocFixed(u32 addr, u32 size)
return false;
}
LV2_LOCK(0);
std::lock_guard<std::mutex> lock(g_memory_mutex);
for (u32 i = 0; i<m_allocated.size(); ++i)
{
@ -334,7 +271,7 @@ u32 DynamicMemoryBlockBase::AllocAlign(u32 size, u32 align)
exsize = size + align - 1;
}
LV2_LOCK(0);
std::lock_guard<std::mutex> lock(g_memory_mutex);
for (u32 addr = MemoryBlock::GetStartAddr(); addr <= MemoryBlock::GetEndAddr() - exsize;)
{
@ -375,7 +312,7 @@ bool DynamicMemoryBlockBase::Alloc()
bool DynamicMemoryBlockBase::Free(u32 addr)
{
LV2_LOCK(0);
std::lock_guard<std::mutex> lock(g_memory_mutex);
for (u32 num = 0; num < m_allocated.size(); num++)
{

View file

@ -33,7 +33,6 @@ public:
DynamicMemoryBlock Userspace;
DynamicMemoryBlock RSXFBMem;
DynamicMemoryBlock StackMem;
MemoryBlock* RawSPUMem[(0x100000000 - RAW_SPU_BASE_ADDR) / RAW_SPU_OFFSET];
VirtualMemoryBlock RSXIOMem;
struct
@ -67,18 +66,10 @@ public:
void UnregisterPages(u32 addr, u32 size);
u32 InitRawSPU(MemoryBlock* raw_spu);
void CloseRawSPU(MemoryBlock* raw_spu, const u32 num);
void Init(MemoryType type);
void Close();
bool WriteMMIO32(u32 addr, const u32 data);
bool ReadMMIO32(u32 addr, u32& result);
u32 GetUserMemTotalSize()
{
return UserMemory->GetSize();

View file

@ -9,7 +9,7 @@
template<typename T, size_t size = sizeof(T)>
struct _to_atomic
{
static_assert(size == 1 || size == 2 || size == 4 || size == 8, "Invalid atomic type");
static_assert(size == 1 || size == 2 || size == 4 || size == 8 || size == 16, "Invalid atomic type");
typedef T type;
};
@ -38,6 +38,12 @@ struct _to_atomic<T, 8>
typedef uint64_t type;
};
template<typename T>
struct _to_atomic<T, 16>
{
typedef u128 type;
};
template<typename T>
class _atomic_base
{
@ -79,7 +85,7 @@ public:
}
// write data without memory barrier
__forceinline void write_relaxed(const T& value) volatile
__forceinline void write_relaxed(const T& value)
{
data = (atomic_type&)(value);
}

196
rpcs3/Emu/Memory/refcnt.h Normal file
View file

@ -0,0 +1,196 @@
#pragma once
#include "atomic.h"
// run endless loop for debugging
__forceinline static void deadlock()
{
while (true)
{
std::this_thread::yield();
}
}
template<typename T>
class ref_t;
template<typename T>
class refcounter_t // non-relocateable "smart" pointer with ref counter
{
public:
typedef T type, * p_type;
typedef refcounter_t<T> rc_type;
// counter > 0, ptr != nullptr : object exists and shared
// counter > 0, ptr == nullptr : object exists and shared, but not owned by refcounter_t
// counter == 0, ptr != nullptr : object exists and not shared
// counter == 0, ptr == nullptr : object doesn't exist
// counter < 0 : bad state, used to provoke error for debugging
struct sync_var_t
{
s64 counter;
p_type ptr;
};
private:
atomic_le_t<sync_var_t> m_var;
friend class ref_t<T>;
// try to share object (increment counter), returns nullptr if doesn't exist or cannot be shared
__forceinline p_type ref_inc()
{
p_type out_ptr;
m_var.atomic_op([&out_ptr](sync_var_t& v)
{
assert(v.counter >= 0);
if ((out_ptr = v.ptr))
{
v.counter++;
}
});
return out_ptr;
}
// try to release previously shared object (decrement counter), returns true if should be deleted
__forceinline bool ref_dec()
{
bool do_delete;
m_var.atomic_op([&do_delete](sync_var_t& v)
{
assert(v.counter > 0);
do_delete = !--v.counter && !v.ptr;
});
return do_delete;
}
public:
refcounter_t()
{
// initialize ref counter
m_var.write_relaxed({ 0, nullptr });
}
~refcounter_t()
{
// set bad state
auto ref = m_var.exchange({ -1, nullptr });
// finalize
if (ref.counter)
{
deadlock();
}
else if (ref.ptr)
{
delete ref.ptr;
}
}
refcounter_t(const rc_type& right) = delete;
refcounter_t(rc_type&& right_rv) = delete;
rc_type& operator =(const rc_type& right) = delete;
rc_type& operator =(rc_type&& right_rv) = delete;
public:
// try to set new object (if it doesn't exist)
bool try_set(p_type ptr)
{
return m_var.compare_and_swap_test({ 0, nullptr }, { 0, ptr });
}
// try to remove object (if exists)
bool try_remove()
{
bool out_res;
p_type out_ptr;
m_var.atomic_op([&out_res, &out_ptr](sync_var_t& v)
{
out_res = (out_ptr = v.ptr);
if (v.counter)
{
out_ptr = nullptr;
}
v.ptr = nullptr;
});
if (out_ptr)
{
delete out_ptr;
}
return out_res;
}
};
template<typename T>
class ref_t
{
public:
typedef T type, * p_type;
typedef refcounter_t<T> * rc_type;
private:
rc_type m_rc;
p_type m_ptr;
public:
ref_t()
: m_rc(nullptr)
, m_ptr(nullptr)
{
}
ref_t(rc_type rc)
: m_rc(rc)
, m_ptr(rc->ref_inc())
{
}
~ref_t()
{
if (m_ptr && m_rc->ref_dec())
{
delete m_ptr;
}
}
ref_t(const ref_t& right) = delete;
ref_t(ref_t&& right_rv)
: m_rc(right_rv.m_rc)
, m_ptr(right_rv.m_ptr)
{
right_rv.m_rc = nullptr;
right_rv.m_ptr = nullptr;
}
ref_t& operator =(const ref_t& right) = delete;
ref_t& operator =(ref_t&& right_rv) = delete;
public:
T& operator *() const
{
return *m_ptr;
}
T* operator ->() const
{
return m_ptr;
}
explicit operator bool() const
{
return m_ptr;
}
};

View file

@ -37,7 +37,7 @@ namespace vm
return base_addr;
#else
int memory_handle = shm_open("/rpcs3_vm", O_RDWR | O_CREAT | O_EXCL, 0);
int memory_handle = shm_open("/rpcs3_vm", O_RDWR | O_CREAT | O_EXCL, S_IRUSR | S_IWUSR);
if (memory_handle == -1)
{

View file

@ -1,7 +1,5 @@
#pragma once
#include "Emu/Memory/atomic_type.h"
enum
{
CELL_GCM_DISPLAY_HSYNC = 1,

View file

@ -61,30 +61,30 @@ void CallbackManager::Init()
if (Memory.PSV.RAM.GetStartAddr())
{
m_cb_thread = &Emu.GetCPU().AddThread(CPU_THREAD_ARMv7);
m_cb_thread = Emu.GetCPU().AddThread(CPU_THREAD_ARMv7);
m_cb_thread->SetName("Callback Thread");
m_cb_thread->SetEntry(0);
m_cb_thread->SetPrio(1001);
m_cb_thread->SetStackSize(0x10000);
m_cb_thread->InitStack();
m_cb_thread->InitRegs();
static_cast<ARMv7Thread*>(m_cb_thread)->DoRun();
static_cast<ARMv7Thread&>(*m_cb_thread).DoRun();
}
else
{
m_cb_thread = &Emu.GetCPU().AddThread(CPU_THREAD_PPU);
m_cb_thread = Emu.GetCPU().AddThread(CPU_THREAD_PPU);
m_cb_thread->SetName("Callback Thread");
m_cb_thread->SetEntry(0);
m_cb_thread->SetPrio(1001);
m_cb_thread->SetStackSize(0x10000);
m_cb_thread->InitStack();
m_cb_thread->InitRegs();
static_cast<PPUThread*>(m_cb_thread)->DoRun();
static_cast<PPUThread&>(*m_cb_thread).DoRun();
}
thread_t cb_async_thread("CallbackManager thread", [this]()
{
SetCurrentNamedThread(m_cb_thread);
SetCurrentNamedThread(&*m_cb_thread);
while (!Emu.IsStopped())
{

View file

@ -10,7 +10,7 @@ class CallbackManager
std::mutex m_mutex;
std::vector<std::function<s32(CPUThread&)>> m_cb_list;
std::vector<std::function<void(CPUThread&)>> m_async_list;
CPUThread* m_cb_thread;
std::shared_ptr<CPUThread> m_cb_thread;
struct PauseResumeCBS
{

View file

@ -490,6 +490,27 @@ bool patch_ppu_import(u32 addr, u32 index)
return true;
}
if (vm::check_addr(addr, 64) &&
data[0x0] == MFLR(r0) &&
data[0x1] == STD(r0, r1, 0x10) &&
data[0x2] == STDU(r1, r1, -0x80) &&
data[0x3] == STD(r2, r1, 0x70) &&
(data[0x4] & 0xffff0000) == LIS(r12, 0) &&
(data[0x5] & 0xffff0000) == LWZ(r12, r12, 0) &&
data[0x6] == LWZ(r0, r12, 0) &&
data[0x7] == LWZ(r2, r12, 4) &&
data[0x8] == MTCTR(r0) &&
data[0x9] == BCTRL() &&
data[0xa] == LD(r2, r1, 0x70) &&
data[0xb] == ADDI(r1, r1, 0x80) &&
data[0xc] == LD(r0, r1, 0x10) &&
data[0xd] == MTLR(r0) &&
data[0xe] == BLR())
{
vm::write32(addr, HACK(index | EIF_PERFORM_BLR));
return true;
}
if (vm::check_addr(addr, 56) &&
(data[0x0] & 0xffff0000) == LI_(r12, 0) &&
(data[0x1] & 0xffff0000) == ORIS(r12, r12, 0) &&

View file

@ -223,7 +223,7 @@ u32 adecOpen(AudioDecoder* adec_ptr)
adec.id = adec_id;
adec.adecCb = (PPUThread*)&Emu.GetCPU().AddThread(CPU_THREAD_PPU);
adec.adecCb = static_cast<PPUThread*>(Emu.GetCPU().AddThread(CPU_THREAD_PPU).get());
adec.adecCb->SetName(fmt::format("AudioDecoder[%d] Callback", adec_id));
adec.adecCb->SetEntry(0);
adec.adecCb->SetPrio(1001);

View file

@ -3,10 +3,9 @@
#include "Emu/System.h"
#include "Emu/SysCalls/Modules.h"
#include "Emu/SysCalls/Callback.h"
#include "Emu/Memory/atomic_type.h"
#include "rpcs3/Ini.h"
#include "Emu/SysCalls/lv2/sleep_queue_type.h"
#include "Emu/SysCalls/lv2/sleep_queue.h"
#include "Emu/SysCalls/lv2/sys_time.h"
#include "Emu/SysCalls/lv2/sys_event.h"
#include "Emu/Event.h"
@ -396,8 +395,16 @@ s32 cellAudioInit()
}
for (u32 i = 0; i < keys.size(); i++)
{
// TODO: check event source
Emu.GetEventManager().SendEvent(keys[i], 0x10103000e010e07, 0, 0, 0);
auto eq = Emu.GetEventManager().GetEventQueue(keys[i]);
if (eq)
{
LV2_LOCK;
// TODO: check event source
eq->events.emplace_back(0x10103000e010e07, 0, 0, 0);
eq->cv.notify_one();
}
}
//const u64 stamp3 = get_system_time();
@ -777,7 +784,7 @@ int cellAudioCreateNotifyEventQueue(vm::ptr<u32> id, vm::ptr<u64> key)
}
event_key = (event_key << 48) | 0x80004d494f323221; // left part: 0x8000, 0x8001, 0x8002 ...
std::shared_ptr<EventQueue> eq(new EventQueue(SYS_SYNC_FIFO, SYS_PPU_QUEUE, event_key, event_key, 32));
std::shared_ptr<event_queue_t> eq(new event_queue_t(SYS_SYNC_FIFO, SYS_PPU_QUEUE, event_key, event_key, 32));
if (!Emu.GetEventManager().RegisterKey(eq, event_key))
{

View file

@ -305,7 +305,7 @@ u32 dmuxOpen(Demuxer* dmux_ptr)
dmux.id = dmux_id;
dmux.dmuxCb = (PPUThread*)&Emu.GetCPU().AddThread(CPU_THREAD_PPU);
dmux.dmuxCb = static_cast<PPUThread*>(Emu.GetCPU().AddThread(CPU_THREAD_PPU).get());
dmux.dmuxCb->SetName(fmt::format("Demuxer[%d] Callback", dmux_id));
dmux.dmuxCb->SetEntry(0);
dmux.dmuxCb->SetPrio(1001);

View file

@ -3,10 +3,10 @@
#include "Emu/System.h"
#include "Emu/SysCalls/Modules.h"
#include "Emu/SysCalls/CB_FUNC.h"
#include "Emu/Memory/atomic_type.h"
#include "Emu/CPU/CPUThreadManager.h"
#include "Emu/Cell/SPUThread.h"
#include "Emu/SysCalls/lv2/sleep_queue_type.h"
#include "Emu/SysCalls/lv2/sleep_queue.h"
#include "Emu/SysCalls/lv2/sys_lwmutex.h"
#include "Emu/SysCalls/lv2/sys_lwcond.h"
#include "Emu/SysCalls/lv2/sys_spu.h"
@ -144,24 +144,23 @@ s32 spursInit(
if (flags & SAF_UNKNOWN_FLAG_7) tgt |= 0x102;
if (flags & SAF_UNKNOWN_FLAG_8) tgt |= 0xC02;
if (flags & SAF_UNKNOWN_FLAG_9) tgt |= 0x800;
auto tg = spu_thread_group_create(name + "CellSpursKernelGroup", nSpus, spuPriority, tgt, container);
assert(tg);
spurs->m.spuTG = tg->m_id;
spurs->m.spuTG = spu_thread_group_create(name + "CellSpursKernelGroup", nSpus, spuPriority, tgt, container);
assert(spurs->m.spuTG.data());
name += "CellSpursKernel0";
for (s32 num = 0; num < nSpus; num++, name[name.size() - 1]++)
{
auto spu = spu_thread_initialize(tg, num, spurs->m.spuImg, name, SYS_SPU_THREAD_OPTION_DEC_SYNC_TB_ENABLE, (u64)num << 32, spurs.addr(), 0, 0);
const u32 id = spu_thread_initialize(spurs->m.spuTG, num, vm::ptr<sys_spu_image>::make(spurs.addr() + offsetof(CellSpurs, m.spuImg)), name, SYS_SPU_THREAD_OPTION_DEC_SYNC_TB_ENABLE, (u64)num << 32, spurs.addr(), 0, 0);
spu->RegisterHleFunction(spurs->m.spuImg.entry_point, spursKernelEntry);
static_cast<SPUThread&>(*Emu.GetCPU().GetThread(id).get()).RegisterHleFunction(spurs->m.spuImg.entry_point, spursKernelEntry);
spurs->m.spus[num] = spu->GetId();
spurs->m.spus[num] = id;
}
if (flags & SAF_SPU_PRINTF_ENABLED)
{
// spu_printf: attach group
if (!spu_printf_agcb || spu_printf_agcb(tg->m_id) != CELL_OK)
if (!spu_printf_agcb || spu_printf_agcb(spurs->m.spuTG) != CELL_OK)
{
// remove flag if failed
spurs->m.flags &= ~SAF_SPU_PRINTF_ENABLED;
@ -329,13 +328,13 @@ s32 spursInit(
return;
}
}
})->GetId();
});
spurs->m.ppu1 = ppu_thread_create(0, 0, ppuPriority, 0x8000, true, false, name + "SpursHdlr1", [spurs](PPUThread& CPU)
{
// TODO
})->GetId();
});
// enable exception event handler
if (spurs->m.enableEH.compare_and_swap_test(be_t<u32>::make(0), be_t<u32>::make(1)))
@ -1771,8 +1770,8 @@ s32 _cellSpursEventFlagWait(vm::ptr<CellSpursEventFlag> eventFlag, vm::ptr<u16>
u16 receivedEventFlag;
if (recv) {
// Block till something happens
vm::var<sys_event_data> data;
auto rc = sys_event_queue_receive(eventFlag->m.eventQueueId, data, 0);
vm::var<sys_event_t> data;
auto rc = sys_event_queue_receive(GetCurrentPPUThread(), eventFlag->m.eventQueueId, data, 0);
if (rc != CELL_OK)
{
assert(0);
@ -2968,7 +2967,7 @@ bool spursIsLibProfLoaded()
void spursTraceStatusUpdate(vm::ptr<CellSpurs> spurs)
{
LV2_LOCK(0);
LV2_LOCK;
if (spurs->m.xCC != 0)
{

View file

@ -2,9 +2,8 @@
#include "Emu/Memory/Memory.h"
#include "Emu/System.h"
#include "Emu/SysCalls/Modules.h"
#include "Emu/Memory/atomic_type.h"
#include "Emu/SysCalls/lv2/sleep_queue_type.h"
#include "Emu/SysCalls/lv2/sleep_queue.h"
#include "Emu/SysCalls/lv2/sys_lwmutex.h"
#include "Emu/SysCalls/lv2/sys_lwcond.h"
#include "Emu/SysCalls/lv2/sys_spu.h"

View file

@ -3,6 +3,7 @@
#include "Emu/System.h"
#include "Emu/Cell/SPUThread.h"
#include "Emu/SysCalls/Modules.h"
#include "Emu/SysCalls/lv2/sleep_queue.h"
#include "Emu/SysCalls/lv2/sys_lwmutex.h"
#include "Emu/SysCalls/lv2/sys_lwcond.h"
#include "Emu/SysCalls/lv2/sys_spu.h"
@ -79,7 +80,7 @@ void cellSpursModulePutTrace(CellSpursTracePacket * packet, u32 dmaTagId) {
/// Check for execution right requests
u32 cellSpursModulePollStatus(SPUThread & spu, u32 * status) {
auto ctxt = vm::get_ptr<SpursKernelContext>(spu.ls_offset + 0x100);
auto ctxt = vm::get_ptr<SpursKernelContext>(spu.offset + 0x100);
spu.GPR[3]._u32[3] = 1;
if (ctxt->spurs->m.flags1 & SF1_32_WORKLOADS) {
@ -99,24 +100,24 @@ u32 cellSpursModulePollStatus(SPUThread & spu, u32 * status) {
/// Exit current workload
void cellSpursModuleExit(SPUThread & spu) {
auto ctxt = vm::get_ptr<SpursKernelContext>(spu.ls_offset + 0x100);
auto ctxt = vm::get_ptr<SpursKernelContext>(spu.offset + 0x100);
spu.SetBranch(ctxt->exitToKernelAddr);
}
/// Execute a DMA operation
bool spursDma(SPUThread & spu, u32 cmd, u64 ea, u32 lsa, u32 size, u32 tag) {
spu.WriteChannel(MFC_LSA, u128::from32r(lsa));
spu.WriteChannel(MFC_EAH, u128::from32r((u32)(ea >> 32)));
spu.WriteChannel(MFC_EAL, u128::from32r((u32)ea));
spu.WriteChannel(MFC_Size, u128::from32r(size));
spu.WriteChannel(MFC_TagID, u128::from32r(tag));
spu.WriteChannel(MFC_Cmd, u128::from32r(cmd));
spu.set_ch_value(MFC_LSA, lsa);
spu.set_ch_value(MFC_EAH, (u32)(ea >> 32));
spu.set_ch_value(MFC_EAL, (u32)(ea));
spu.set_ch_value(MFC_Size, size);
spu.set_ch_value(MFC_TagID, tag);
spu.set_ch_value(MFC_Cmd, cmd);
if (cmd == MFC_GETLLAR_CMD || cmd == MFC_PUTLLC_CMD || cmd == MFC_PUTLLUC_CMD) {
u128 rv;
u32 rv;
spu.ReadChannel(rv, MFC_RdAtomicStat);
auto success = rv._u32[3] ? true : false;
rv = spu.get_ch_value(MFC_RdAtomicStat);
auto success = rv ? true : false;
success = cmd == MFC_PUTLLC_CMD ? !success : success;
return success;
}
@ -126,28 +127,21 @@ bool spursDma(SPUThread & spu, u32 cmd, u64 ea, u32 lsa, u32 size, u32 tag) {
/// Get the status of DMA operations
u32 spursDmaGetCompletionStatus(SPUThread & spu, u32 tagMask) {
u128 rv;
spu.WriteChannel(MFC_WrTagMask, u128::from32r(tagMask));
spu.WriteChannel(MFC_WrTagUpdate, u128::from32r(MFC_TAG_UPDATE_IMMEDIATE));
spu.ReadChannel(rv, MFC_RdTagStat);
return rv._u32[3];
spu.set_ch_value(MFC_WrTagMask, tagMask);
spu.set_ch_value(MFC_WrTagUpdate, MFC_TAG_UPDATE_IMMEDIATE);
return spu.get_ch_value(MFC_RdTagStat);
}
/// Wait for DMA operations to complete
u32 spursDmaWaitForCompletion(SPUThread & spu, u32 tagMask, bool waitForAll) {
u128 rv;
spu.WriteChannel(MFC_WrTagMask, u128::from32r(tagMask));
spu.WriteChannel(MFC_WrTagUpdate, u128::from32r(waitForAll ? MFC_TAG_UPDATE_ALL : MFC_TAG_UPDATE_ANY));
spu.ReadChannel(rv, MFC_RdTagStat);
return rv._u32[3];
spu.set_ch_value(MFC_WrTagMask, tagMask);
spu.set_ch_value(MFC_WrTagUpdate, waitForAll ? MFC_TAG_UPDATE_ALL : MFC_TAG_UPDATE_ANY);
return spu.get_ch_value(MFC_RdTagStat);
}
/// Halt the SPU
void spursHalt(SPUThread & spu) {
spu.SPU.Status.SetValue(SPU_STATUS_STOPPED_BY_HALT);
spu.Stop();
spu.halt();
}
//////////////////////////////////////////////////////////////////////////////
@ -156,7 +150,7 @@ void spursHalt(SPUThread & spu) {
/// Select a workload to run
bool spursKernel1SelectWorkload(SPUThread & spu) {
auto ctxt = vm::get_ptr<SpursKernelContext>(spu.ls_offset + 0x100);
auto ctxt = vm::get_ptr<SpursKernelContext>(spu.offset + 0x100);
// The first and only argument to this function is a boolean that is set to false if the function
// is called by the SPURS kernel and set to true if called by cellSpursModulePollStatus.
@ -302,7 +296,7 @@ bool spursKernel1SelectWorkload(SPUThread & spu) {
}
}
memcpy(vm::get_ptr(spu.ls_offset + 0x100), spurs, 128);
memcpy(vm::get_ptr(spu.offset + 0x100), spurs, 128);
});
u64 result = (u64)wklSelectedId << 32;
@ -313,7 +307,7 @@ bool spursKernel1SelectWorkload(SPUThread & spu) {
/// Select a workload to run
bool spursKernel2SelectWorkload(SPUThread & spu) {
auto ctxt = vm::get_ptr<SpursKernelContext>(spu.ls_offset + 0x100);
auto ctxt = vm::get_ptr<SpursKernelContext>(spu.offset + 0x100);
// The first and only argument to this function is a boolean that is set to false if the function
// is called by the SPURS kernel and set to true if called by cellSpursModulePollStatus.
@ -449,7 +443,7 @@ bool spursKernel2SelectWorkload(SPUThread & spu) {
}
}
memcpy(vm::get_ptr(spu.ls_offset + 0x100), spurs, 128);
memcpy(vm::get_ptr(spu.offset + 0x100), spurs, 128);
});
u64 result = (u64)wklSelectedId << 32;
@ -460,7 +454,7 @@ bool spursKernel2SelectWorkload(SPUThread & spu) {
/// SPURS kernel dispatch workload
void spursKernelDispatchWorkload(SPUThread & spu, u64 widAndPollStatus) {
auto ctxt = vm::get_ptr<SpursKernelContext>(spu.ls_offset + 0x100);
auto ctxt = vm::get_ptr<SpursKernelContext>(spu.offset + 0x100);
auto isKernel2 = ctxt->spurs->m.flags1 & SF1_32_WORKLOADS ? true : false;
auto pollStatus = (u32)widAndPollStatus;
@ -471,10 +465,10 @@ void spursKernelDispatchWorkload(SPUThread & spu, u64 widAndPollStatus) {
wid < CELL_SPURS_MAX_WORKLOAD2 && isKernel2 ? &ctxt->spurs->m.wklInfo2[wid & 0xf] :
&ctxt->spurs->m.wklInfoSysSrv;
memcpy(vm::get_ptr(spu.ls_offset + 0x3FFE0), wklInfoOffset, 0x20);
memcpy(vm::get_ptr(spu.offset + 0x3FFE0), wklInfoOffset, 0x20);
// Load the workload to LS
auto wklInfo = vm::get_ptr<CellSpurs::WorkloadInfo>(spu.ls_offset + 0x3FFE0);
auto wklInfo = vm::get_ptr<CellSpurs::WorkloadInfo>(spu.offset + 0x3FFE0);
if (ctxt->wklCurrentAddr != wklInfo->addr) {
switch (wklInfo->addr.addr().value()) {
case SPURS_IMG_ADDR_SYS_SRV_WORKLOAD:
@ -484,7 +478,7 @@ void spursKernelDispatchWorkload(SPUThread & spu, u64 widAndPollStatus) {
spu.RegisterHleFunction(0xA00, spursTasksetEntry);
break;
default:
memcpy(vm::get_ptr(spu.ls_offset + 0xA00), wklInfo->addr.get_ptr(), wklInfo->size);
memcpy(vm::get_ptr(spu.offset + 0xA00), wklInfo->addr.get_ptr(), wklInfo->size);
break;
}
@ -508,7 +502,7 @@ void spursKernelDispatchWorkload(SPUThread & spu, u64 widAndPollStatus) {
/// SPURS kernel workload exit
bool spursKernelWorkloadExit(SPUThread & spu) {
auto ctxt = vm::get_ptr<SpursKernelContext>(spu.ls_offset + 0x100);
auto ctxt = vm::get_ptr<SpursKernelContext>(spu.offset + 0x100);
auto isKernel2 = ctxt->spurs->m.flags1 & SF1_32_WORKLOADS ? true : false;
// Select next workload to run
@ -532,7 +526,7 @@ bool spursKernelEntry(SPUThread & spu) {
}
}
auto ctxt = vm::get_ptr<SpursKernelContext>(spu.ls_offset + 0x100);
auto ctxt = vm::get_ptr<SpursKernelContext>(spu.offset + 0x100);
memset(ctxt, 0, sizeof(SpursKernelContext));
// Save arguments
@ -578,7 +572,7 @@ bool spursKernelEntry(SPUThread & spu) {
/// Entry point of the system service
bool spursSysServiceEntry(SPUThread & spu) {
auto ctxt = vm::get_ptr<SpursKernelContext>(spu.ls_offset + spu.GPR[3]._u32[3]);
auto ctxt = vm::get_ptr<SpursKernelContext>(spu.offset + spu.GPR[3]._u32[3]);
auto arg = spu.GPR[4]._u64[1];
auto pollStatus = spu.GPR[5]._u32[3];
@ -598,8 +592,8 @@ void spursSysServiceIdleHandler(SPUThread & spu, SpursKernelContext * ctxt) {
bool shouldExit;
while (true) {
vm::reservation_acquire(vm::get_ptr(spu.ls_offset + 0x100), vm::cast(ctxt->spurs.addr()), 128, [&spu](){ spu.Notify(); });
auto spurs = vm::get_ptr<CellSpurs>(spu.ls_offset + 0x100);
vm::reservation_acquire(vm::get_ptr(spu.offset + 0x100), vm::cast(ctxt->spurs.addr()), 128, [&spu](){ spu.Notify(); });
auto spurs = vm::get_ptr<CellSpurs>(spu.offset + 0x100);
// Find the number of SPUs that are idling in this SPURS instance
u32 nIdlingSpus = 0;
@ -669,7 +663,7 @@ void spursSysServiceIdleHandler(SPUThread & spu, SpursKernelContext * ctxt) {
if (Emu.IsStopped()) return;
}
if (vm::reservation_update(vm::cast(ctxt->spurs.addr()), vm::get_ptr(spu.ls_offset + 0x100), 128) && (shouldExit || foundReadyWorkload)) {
if (vm::reservation_update(vm::cast(ctxt->spurs.addr()), vm::get_ptr(spu.offset + 0x100), 128) && (shouldExit || foundReadyWorkload)) {
break;
}
}
@ -681,7 +675,7 @@ void spursSysServiceIdleHandler(SPUThread & spu, SpursKernelContext * ctxt) {
/// Main function for the system service
void spursSysServiceMain(SPUThread & spu, u32 pollStatus) {
auto ctxt = vm::get_ptr<SpursKernelContext>(spu.ls_offset + 0x100);
auto ctxt = vm::get_ptr<SpursKernelContext>(spu.offset + 0x100);
if (ctxt->spurs.addr() % CellSpurs::align) {
assert(!"spursSysServiceMain(): invalid spurs alignment");
@ -693,7 +687,7 @@ void spursSysServiceMain(SPUThread & spu, u32 pollStatus) {
if (ctxt->sysSrvInitialised == 0) {
ctxt->sysSrvInitialised = 1;
vm::reservation_acquire(vm::get_ptr(spu.ls_offset + 0x100), vm::cast(ctxt->spurs.addr()), 128);
vm::reservation_acquire(vm::get_ptr(spu.offset + 0x100), vm::cast(ctxt->spurs.addr()), 128);
vm::reservation_op(vm::cast(ctxt->spurs.addr() + offsetof(CellSpurs, m.wklState1)), 128, [&]() {
auto spurs = ctxt->spurs.priv_ptr();
@ -707,7 +701,7 @@ void spursSysServiceMain(SPUThread & spu, u32 pollStatus) {
spurs->m.sysSrvOnSpu |= 1 << ctxt->spuNum;
memcpy(vm::get_ptr(spu.ls_offset + 0x2D80), spurs->m.wklState1, 128);
memcpy(vm::get_ptr(spu.offset + 0x2D80), spurs->m.wklState1, 128);
});
ctxt->traceBuffer = 0;
@ -805,7 +799,7 @@ void spursSysServiceProcessRequests(SPUThread & spu, SpursKernelContext * ctxt)
updateTrace = true;
}
memcpy(vm::get_ptr(spu.ls_offset + 0x2D80), spurs->m.wklState1, 128);
memcpy(vm::get_ptr(spu.offset + 0x2D80), spurs->m.wklState1, 128);
});
// Process update workload message
@ -826,24 +820,24 @@ void spursSysServiceProcessRequests(SPUThread & spu, SpursKernelContext * ctxt)
/// Activate a workload
void spursSysServiceActivateWorkload(SPUThread & spu, SpursKernelContext * ctxt) {
auto spurs = vm::get_ptr<CellSpurs>(spu.ls_offset + 0x100);
memcpy(vm::get_ptr(spu.ls_offset + 0x30000), vm::get_ptr(vm::cast(ctxt->spurs.addr() + offsetof(CellSpurs, m.wklInfo1))), 0x200);
auto spurs = vm::get_ptr<CellSpurs>(spu.offset + 0x100);
memcpy(vm::get_ptr(spu.offset + 0x30000), vm::get_ptr(vm::cast(ctxt->spurs.addr() + offsetof(CellSpurs, m.wklInfo1))), 0x200);
if (spurs->m.flags1 & SF1_32_WORKLOADS) {
memcpy(vm::get_ptr(spu.ls_offset + 0x30200), vm::get_ptr(vm::cast(ctxt->spurs.addr() + offsetof(CellSpurs, m.wklInfo2))), 0x200);
memcpy(vm::get_ptr(spu.offset + 0x30200), vm::get_ptr(vm::cast(ctxt->spurs.addr() + offsetof(CellSpurs, m.wklInfo2))), 0x200);
}
u32 wklShutdownBitSet = 0;
ctxt->wklRunnable1 = 0;
ctxt->wklRunnable2 = 0;
for (u32 i = 0; i < CELL_SPURS_MAX_WORKLOAD; i++) {
auto wklInfo1 = vm::get_ptr<CellSpurs::WorkloadInfo>(spu.ls_offset + 0x30000);
auto wklInfo1 = vm::get_ptr<CellSpurs::WorkloadInfo>(spu.offset + 0x30000);
// Copy the priority of the workload for this SPU and its unique id to the LS
ctxt->priority[i] = wklInfo1[i].priority[ctxt->spuNum] == 0 ? 0 : 0x10 - wklInfo1[i].priority[ctxt->spuNum];
ctxt->wklUniqueId[i] = wklInfo1[i].uniqueId.read_relaxed();
if (spurs->m.flags1 & SF1_32_WORKLOADS) {
auto wklInfo2 = vm::get_ptr<CellSpurs::WorkloadInfo>(spu.ls_offset + 0x30200);
auto wklInfo2 = vm::get_ptr<CellSpurs::WorkloadInfo>(spu.offset + 0x30200);
// Copy the priority of the workload for this SPU to the LS
if (wklInfo2[i].priority[ctxt->spuNum]) {
@ -895,7 +889,7 @@ void spursSysServiceActivateWorkload(SPUThread & spu, SpursKernelContext * ctxt)
}
}
memcpy(vm::get_ptr(spu.ls_offset + 0x2D80), spurs->m.wklState1, 128);
memcpy(vm::get_ptr(spu.offset + 0x2D80), spurs->m.wklState1, 128);
});
if (wklShutdownBitSet) {
@ -930,7 +924,7 @@ void spursSysServiceUpdateShutdownCompletionEvents(SPUThread & spu, SpursKernelC
}
}
memcpy(vm::get_ptr(spu.ls_offset + 0x2D80), spurs->m.wklState1, 128);
memcpy(vm::get_ptr(spu.offset + 0x2D80), spurs->m.wklState1, 128);
});
if (wklNotifyBitSet) {
@ -970,19 +964,19 @@ void spursSysServiceTraceUpdate(SPUThread & spu, SpursKernelContext * ctxt, u32
notify = true;
}
memcpy(vm::get_ptr(spu.ls_offset + 0x2D80), spurs->m.wklState1, 128);
memcpy(vm::get_ptr(spu.offset + 0x2D80), spurs->m.wklState1, 128);
});
// Get trace parameters from CellSpurs and store them in the LS
if (((sysSrvMsgUpdateTrace & (1 << ctxt->spuNum)) != 0) || (arg3 != 0)) {
vm::reservation_acquire(vm::get_ptr(spu.ls_offset + 0x80), vm::cast(ctxt->spurs.addr() + offsetof(CellSpurs, m.traceBuffer)), 128);
auto spurs = vm::get_ptr<CellSpurs>(spu.ls_offset + 0x80 - offsetof(CellSpurs, m.traceBuffer));
vm::reservation_acquire(vm::get_ptr(spu.offset + 0x80), vm::cast(ctxt->spurs.addr() + offsetof(CellSpurs, m.traceBuffer)), 128);
auto spurs = vm::get_ptr<CellSpurs>(spu.offset + 0x80 - offsetof(CellSpurs, m.traceBuffer));
if (ctxt->traceMsgCount != 0xFF || spurs->m.traceBuffer.addr() == 0) {
spursSysServiceTraceSaveCount(spu, ctxt);
} else {
memcpy(vm::get_ptr(spu.ls_offset + 0x2C00), vm::get_ptr(spurs->m.traceBuffer.addr() & -0x4), 0x80);
auto traceBuffer = vm::get_ptr<CellSpursTraceInfo>(spu.ls_offset + 0x2C00);
memcpy(vm::get_ptr(spu.offset + 0x2C00), vm::get_ptr(spurs->m.traceBuffer.addr() & -0x4), 0x80);
auto traceBuffer = vm::get_ptr<CellSpursTraceInfo>(spu.offset + 0x2C00);
ctxt->traceMsgCount = traceBuffer->count[ctxt->spuNum];
}
@ -994,7 +988,7 @@ void spursSysServiceTraceUpdate(SPUThread & spu, SpursKernelContext * ctxt, u32
}
if (notify) {
auto spurs = vm::get_ptr<CellSpurs>(spu.ls_offset + 0x2D80 - offsetof(CellSpurs, m.wklState1));
auto spurs = vm::get_ptr<CellSpurs>(spu.offset + 0x2D80 - offsetof(CellSpurs, m.wklState1));
sys_spu_thread_send_event(spu, spurs->m.spuPort, 2, 0);
}
}
@ -1016,7 +1010,7 @@ void spursSysServiceCleanupAfterSystemWorkload(SPUThread & spu, SpursKernelConte
wklId = spurs->m.sysSrvWorkload[ctxt->spuNum];
spurs->m.sysSrvWorkload[ctxt->spuNum] = 0xFF;
memcpy(vm::get_ptr(spu.ls_offset + 0x2D80), spurs->m.wklState1, 128);
memcpy(vm::get_ptr(spu.offset + 0x2D80), spurs->m.wklState1, 128);
});
if (do_return) return;
@ -1034,7 +1028,7 @@ void spursSysServiceCleanupAfterSystemWorkload(SPUThread & spu, SpursKernelConte
spurs->m.wklIdleSpuCountOrReadyCount2[wklId & 0x0F].write_relaxed(spurs->m.wklIdleSpuCountOrReadyCount2[wklId & 0x0F].read_relaxed() - 1);
}
memcpy(vm::get_ptr(spu.ls_offset + 0x100), spurs, 128);
memcpy(vm::get_ptr(spu.offset + 0x100), spurs, 128);
});
// Set the current workload id to the id of the pre-empted workload since cellSpursModulePutTrace
@ -1069,8 +1063,8 @@ enum SpursTasksetRequest {
/// Taskset PM entry point
bool spursTasksetEntry(SPUThread & spu) {
auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.ls_offset + 0x2700);
auto kernelCtxt = vm::get_ptr<SpursKernelContext>(spu.ls_offset + spu.GPR[3]._u32[3]);
auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.offset + 0x2700);
auto kernelCtxt = vm::get_ptr<SpursKernelContext>(spu.offset + spu.GPR[3]._u32[3]);
auto arg = spu.GPR[4]._u64[1];
auto pollStatus = spu.GPR[5]._u32[3];
@ -1100,7 +1094,7 @@ bool spursTasksetEntry(SPUThread & spu) {
/// Entry point into the Taskset PM for task syscalls
bool spursTasksetSyscallEntry(SPUThread & spu) {
auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.ls_offset + 0x2700);
auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.offset + 0x2700);
// Save task context
ctxt->savedContextLr = spu.GPR[0];
@ -1122,7 +1116,7 @@ bool spursTasksetSyscallEntry(SPUThread & spu) {
/// Resume a task
void spursTasksetResumeTask(SPUThread & spu) {
auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.ls_offset + 0x2700);
auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.offset + 0x2700);
// Restore task context
spu.GPR[0] = ctxt->savedContextLr;
@ -1136,8 +1130,8 @@ void spursTasksetResumeTask(SPUThread & spu) {
/// Start a task
void spursTasksetStartTask(SPUThread & spu, CellSpursTaskArgument & taskArgs) {
auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.ls_offset + 0x2700);
auto taskset = vm::get_ptr<CellSpursTaskset>(spu.ls_offset + 0x2700);
auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.offset + 0x2700);
auto taskset = vm::get_ptr<CellSpursTaskset>(spu.offset + 0x2700);
spu.GPR[2].clear();
spu.GPR[3] = u128::from64r(taskArgs._u64[0], taskArgs._u64[1]);
@ -1152,8 +1146,8 @@ void spursTasksetStartTask(SPUThread & spu, CellSpursTaskArgument & taskArgs) {
/// Process a request and update the state of the taskset
s32 spursTasksetProcessRequest(SPUThread & spu, s32 request, u32 * taskId, u32 * isWaiting) {
auto kernelCtxt = vm::get_ptr<SpursKernelContext>(spu.ls_offset + 0x100);
auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.ls_offset + 0x2700);
auto kernelCtxt = vm::get_ptr<SpursKernelContext>(spu.offset + 0x100);
auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.offset + 0x2700);
s32 rc = CELL_OK;
s32 numNewlyReadyTasks;
@ -1294,7 +1288,7 @@ s32 spursTasksetProcessRequest(SPUThread & spu, s32 request, u32 * taskId, u32 *
taskset->m.signalled = signalled;
taskset->m.ready = ready;
memcpy(vm::get_ptr(spu.ls_offset + 0x2700), taskset, 128);
memcpy(vm::get_ptr(spu.offset + 0x2700), taskset, 128);
});
// Increment the ready count of the workload by the number of tasks that have become ready
@ -1311,7 +1305,7 @@ s32 spursTasksetProcessRequest(SPUThread & spu, s32 request, u32 * taskId, u32 *
spurs->m.wklIdleSpuCountOrReadyCount2[kernelCtxt->wklCurrentId & 0x0F].write_relaxed(readyCount);
}
memcpy(vm::get_ptr(spu.ls_offset + 0x100), spurs, 128);
memcpy(vm::get_ptr(spu.offset + 0x100), spurs, 128);
});
return rc;
@ -1338,7 +1332,7 @@ bool spursTasksetPollStatus(SPUThread & spu) {
/// Exit the Taskset PM
void spursTasksetExit(SPUThread & spu) {
auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.ls_offset + 0x2700);
auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.offset + 0x2700);
// Trace - STOP
CellSpursTracePacket pkt;
@ -1358,9 +1352,9 @@ void spursTasksetExit(SPUThread & spu) {
/// Invoked when a task exits
void spursTasksetOnTaskExit(SPUThread & spu, u64 addr, u32 taskId, s32 exitCode, u64 args) {
auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.ls_offset + 0x2700);
auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.offset + 0x2700);
memcpy(vm::get_ptr(spu.ls_offset + 0x10000), vm::get_ptr(addr & -0x80), (addr & 0x7F) << 11);
memcpy(vm::get_ptr(spu.offset + 0x10000), vm::get_ptr(addr & -0x80), (addr & 0x7F) << 11);
spu.GPR[3]._u64[1] = ctxt->taskset.addr();
spu.GPR[4]._u32[3] = taskId;
@ -1371,8 +1365,8 @@ void spursTasksetOnTaskExit(SPUThread & spu, u64 addr, u32 taskId, s32 exitCode,
/// Save the context of a task
s32 spursTasketSaveTaskContext(SPUThread & spu) {
auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.ls_offset + 0x2700);
auto taskInfo = vm::get_ptr<CellSpursTaskset::TaskInfo>(spu.ls_offset + 0x2780);
auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.offset + 0x2700);
auto taskInfo = vm::get_ptr<CellSpursTaskset::TaskInfo>(spu.offset + 0x2780);
//spursDmaWaitForCompletion(spu, 0xFFFFFFFF);
@ -1404,20 +1398,18 @@ s32 spursTasketSaveTaskContext(SPUThread & spu) {
u128 r;
spu.FPSCR.Read(r);
ctxt->savedContextFpscr = r;
spu.ReadChannel(r, SPU_RdEventMask);
ctxt->savedSpuWriteEventMask = r._u32[3];
spu.ReadChannel(r, MFC_RdTagMask);
ctxt->savedWriteTagGroupQueryMask = r._u32[3];
ctxt->savedSpuWriteEventMask = spu.get_ch_value(SPU_RdEventMask);
ctxt->savedWriteTagGroupQueryMask = spu.get_ch_value(MFC_RdTagMask);
// Store the processor context
const u32 contextSaveStorage = vm::cast(taskInfo->context_save_storage_and_alloc_ls_blocks & -0x80);
memcpy(vm::get_ptr(contextSaveStorage), vm::get_ptr(spu.ls_offset + 0x2C80), 0x380);
memcpy(vm::get_ptr(contextSaveStorage), vm::get_ptr(spu.offset + 0x2C80), 0x380);
// Save LS context
for (auto i = 6; i < 128; i++) {
if (ls_pattern._bit[i]) {
// TODO: Combine DMA requests for consecutive blocks into a single request
memcpy(vm::get_ptr(contextSaveStorage + 0x400 + ((i - 6) << 11)), vm::get_ptr(spu.ls_offset + CELL_SPURS_TASK_TOP + ((i - 6) << 11)), 0x800);
memcpy(vm::get_ptr(contextSaveStorage + 0x400 + ((i - 6) << 11)), vm::get_ptr(spu.offset + CELL_SPURS_TASK_TOP + ((i - 6) << 11)), 0x800);
}
}
@ -1427,8 +1419,8 @@ s32 spursTasketSaveTaskContext(SPUThread & spu) {
/// Taskset dispatcher
void spursTasksetDispatch(SPUThread & spu) {
auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.ls_offset + 0x2700);
auto taskset = vm::get_ptr<CellSpursTaskset>(spu.ls_offset + 0x2700);
auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.offset + 0x2700);
auto taskset = vm::get_ptr<CellSpursTaskset>(spu.offset + 0x2700);
u32 taskId;
u32 isWaiting;
@ -1441,8 +1433,8 @@ void spursTasksetDispatch(SPUThread & spu) {
ctxt->taskId = taskId;
// DMA in the task info for the selected task
memcpy(vm::get_ptr(spu.ls_offset + 0x2780), &ctxt->taskset->m.task_info[taskId], sizeof(CellSpursTaskset::TaskInfo));
auto taskInfo = vm::get_ptr<CellSpursTaskset::TaskInfo>(spu.ls_offset + 0x2780);
memcpy(vm::get_ptr(spu.offset + 0x2780), &ctxt->taskset->m.task_info[taskId], sizeof(CellSpursTaskset::TaskInfo));
auto taskInfo = vm::get_ptr<CellSpursTaskset::TaskInfo>(spu.offset + 0x2780);
auto elfAddr = taskInfo->elf_addr.addr().value();
taskInfo->elf_addr.set(taskInfo->elf_addr.addr() & 0xFFFFFFFFFFFFFFF8ull);
@ -1456,7 +1448,7 @@ void spursTasksetDispatch(SPUThread & spu) {
if (isWaiting == 0) {
// If we reach here it means that the task is being started and not being resumed
memset(vm::get_ptr<void>(spu.ls_offset + CELL_SPURS_TASK_TOP), 0, CELL_SPURS_TASK_BOTTOM - CELL_SPURS_TASK_TOP);
memset(vm::get_ptr<void>(spu.offset + CELL_SPURS_TASK_TOP), 0, CELL_SPURS_TASK_BOTTOM - CELL_SPURS_TASK_TOP);
ctxt->guidAddr = CELL_SPURS_TASK_TOP;
u32 entryPoint;
@ -1477,7 +1469,7 @@ void spursTasksetDispatch(SPUThread & spu) {
ctxt->x2FD4 = elfAddr & 5; // TODO: Figure this out
if ((elfAddr & 5) == 1) {
memcpy(vm::get_ptr(spu.ls_offset + 0x2FC0), &((CellSpursTaskset2*)(ctxt->taskset.get_ptr()))->m.task_exit_code[taskId], 0x10);
memcpy(vm::get_ptr(spu.offset + 0x2FC0), &((CellSpursTaskset2*)(ctxt->taskset.get_ptr()))->m.task_exit_code[taskId], 0x10);
}
// Trace - GUID
@ -1487,7 +1479,7 @@ void spursTasksetDispatch(SPUThread & spu) {
cellSpursModulePutTrace(&pkt, 0x1F);
if (elfAddr & 2) { // TODO: Figure this out
spu.SPU.Status.SetValue(SPU_STATUS_STOPPED_BY_STOP);
spu.status |= SPU_STATUS_STOPPED_BY_STOP;
spu.Stop();
return;
}
@ -1495,7 +1487,7 @@ void spursTasksetDispatch(SPUThread & spu) {
spursTasksetStartTask(spu, taskInfo->args);
} else {
if (taskset->m.enable_clear_ls) {
memset(vm::get_ptr<void>(spu.ls_offset + CELL_SPURS_TASK_TOP), 0, CELL_SPURS_TASK_BOTTOM - CELL_SPURS_TASK_TOP);
memset(vm::get_ptr<void>(spu.offset + CELL_SPURS_TASK_TOP), 0, CELL_SPURS_TASK_BOTTOM - CELL_SPURS_TASK_TOP);
}
// If the entire LS is saved then there is no need to load the ELF as it will be be saved in the context save area as well
@ -1512,11 +1504,11 @@ void spursTasksetDispatch(SPUThread & spu) {
// Load saved context from main memory to LS
const u32 contextSaveStorage = vm::cast(taskInfo->context_save_storage_and_alloc_ls_blocks & -0x80);
memcpy(vm::get_ptr(spu.ls_offset + 0x2C80), vm::get_ptr(contextSaveStorage), 0x380);
memcpy(vm::get_ptr(spu.offset + 0x2C80), vm::get_ptr(contextSaveStorage), 0x380);
for (auto i = 6; i < 128; i++) {
if (ls_pattern._bit[i]) {
// TODO: Combine DMA requests for consecutive blocks into a single request
memcpy(vm::get_ptr(spu.ls_offset + CELL_SPURS_TASK_TOP + ((i - 6) << 11)), vm::get_ptr(contextSaveStorage + 0x400 + ((i - 6) << 11)), 0x800);
memcpy(vm::get_ptr(spu.offset + CELL_SPURS_TASK_TOP + ((i - 6) << 11)), vm::get_ptr(contextSaveStorage + 0x400 + ((i - 6) << 11)), 0x800);
}
}
@ -1524,8 +1516,8 @@ void spursTasksetDispatch(SPUThread & spu) {
// Restore saved registers
spu.FPSCR.Write(ctxt->savedContextFpscr.value());
spu.WriteChannel(MFC_WrTagMask, u128::from32r(ctxt->savedWriteTagGroupQueryMask));
spu.WriteChannel(SPU_WrEventMask, u128::from32r(ctxt->savedSpuWriteEventMask));
spu.set_ch_value(MFC_WrTagMask, ctxt->savedWriteTagGroupQueryMask);
spu.set_ch_value(SPU_WrEventMask, ctxt->savedSpuWriteEventMask);
// Trace - GUID
memset(&pkt, 0, sizeof(pkt));
@ -1534,7 +1526,7 @@ void spursTasksetDispatch(SPUThread & spu) {
cellSpursModulePutTrace(&pkt, 0x1F);
if (elfAddr & 2) { // TODO: Figure this out
spu.SPU.Status.SetValue(SPU_STATUS_STOPPED_BY_STOP);
spu.status |= SPU_STATUS_STOPPED_BY_STOP;
spu.Stop();
return;
}
@ -1546,8 +1538,8 @@ void spursTasksetDispatch(SPUThread & spu) {
/// Process a syscall request
s32 spursTasksetProcessSyscall(SPUThread & spu, u32 syscallNum, u32 args) {
auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.ls_offset + 0x2700);
auto taskset = vm::get_ptr<CellSpursTaskset>(spu.ls_offset + 0x2700);
auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.offset + 0x2700);
auto taskset = vm::get_ptr<CellSpursTaskset>(spu.offset + 0x2700);
// If the 0x10 bit is set in syscallNum then its the 2nd version of the
// syscall (e.g. cellSpursYield2 instead of cellSpursYield) and so don't wait
@ -1625,7 +1617,7 @@ s32 spursTasksetProcessSyscall(SPUThread & spu, u32 syscallNum, u32 args) {
cellSpursModulePutTrace(&pkt, ctxt->dmaTagId);
// Clear the GUID of the task
memset(vm::get_ptr<void>(spu.ls_offset + ctxt->guidAddr), 0, 0x10);
memset(vm::get_ptr<void>(spu.offset + ctxt->guidAddr), 0, 0x10);
if (spursTasksetPollStatus(spu)) {
spursTasksetExit(spu);
@ -1639,8 +1631,8 @@ s32 spursTasksetProcessSyscall(SPUThread & spu, u32 syscallNum, u32 args) {
/// Initialise the Taskset PM
void spursTasksetInit(SPUThread & spu, u32 pollStatus) {
auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.ls_offset + 0x2700);
auto kernelCtxt = vm::get_ptr<SpursKernelContext>(spu.ls_offset + 0x100);
auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.offset + 0x2700);
auto kernelCtxt = vm::get_ptr<SpursKernelContext>(spu.offset + 0x100);
kernelCtxt->moduleId[0] = 'T';
kernelCtxt->moduleId[1] = 'K';
@ -1688,7 +1680,7 @@ s32 spursTasksetLoadElf(SPUThread & spu, u32 * entryPoint, u32 * lowestLoadAddr,
}
}
loader.load_data(spu.ls_offset, skipWriteableSegments);
loader.load_data(spu.offset, skipWriteableSegments);
*entryPoint = loader.m_ehdr.data_be.e_entry;
if (*lowestLoadAddr) {
*lowestLoadAddr = _lowestLoadAddr;

View file

@ -3,9 +3,8 @@
#include "Emu/System.h"
#include "Emu/SysCalls/Modules.h"
#include "Emu/SysCalls/CB_FUNC.h"
#include "Emu/Memory/atomic_type.h"
#include "Emu/SysCalls/lv2/sleep_queue_type.h"
#include "Emu/SysCalls/lv2/sleep_queue.h"
#include "Emu/SysCalls/lv2/sys_event.h"
#include "Emu/SysCalls/lv2/sys_process.h"
#include "Emu/Event.h"
@ -1071,7 +1070,7 @@ s32 syncLFQueueGetPushPointer(vm::ptr<CellSyncLFQueue> queue, s32& pointer, u32
}
}
if (s32 res = sys_event_queue_receive(queue->m_eq_id, vm::ptr<sys_event_data>::make(0), 0))
if (s32 res = sys_event_queue_receive(GetCurrentPPUThread(), queue->m_eq_id, vm::ptr<sys_event_t>::make(0), 0))
{
assert(!"sys_event_queue_receive() failed");
}
@ -1422,7 +1421,7 @@ s32 syncLFQueueGetPopPointer(vm::ptr<CellSyncLFQueue> queue, s32& pointer, u32 i
}
}
if (s32 res = sys_event_queue_receive(queue->m_eq_id, vm::ptr<sys_event_data>::make(0), 0))
if (s32 res = sys_event_queue_receive(GetCurrentPPUThread(), queue->m_eq_id, vm::ptr<sys_event_t>::make(0), 0))
{
assert(!"sys_event_queue_receive() failed");
}

View file

@ -213,7 +213,7 @@ u32 vdecOpen(VideoDecoder* vdec_ptr)
vdec.id = vdec_id;
vdec.vdecCb = (PPUThread*)&Emu.GetCPU().AddThread(CPU_THREAD_PPU);
vdec.vdecCb = static_cast<PPUThread*>(Emu.GetCPU().AddThread(CPU_THREAD_PPU).get());
vdec.vdecCb->SetName(fmt::format("VideoDecoder[%d] Callback", vdec_id));
vdec.vdecCb->SetEntry(0);
vdec.vdecCb->SetPrio(1001);

View file

@ -333,14 +333,16 @@ int cellSurMixerCreate(vm::ptr<const CellSurMixerConfig> config)
{
AudioPortConfig& port = g_audio.ports[g_surmx.audio_port];
PPUThread& cb_thread = *(PPUThread*)&Emu.GetCPU().AddThread(CPU_THREAD_PPU);
cb_thread.SetName("Surmixer Callback Thread");
cb_thread.SetEntry(0);
cb_thread.SetPrio(1001);
cb_thread.SetStackSize(0x10000);
cb_thread.InitStack();
cb_thread.InitRegs();
cb_thread.DoRun();
auto cb_thread = Emu.GetCPU().AddThread(CPU_THREAD_PPU);
auto& ppu = static_cast<PPUThread&>(*cb_thread);
ppu.SetName("Surmixer Callback Thread");
ppu.SetEntry(0);
ppu.SetPrio(1001);
ppu.SetStackSize(0x10000);
ppu.InitStack();
ppu.InitRegs();
ppu.DoRun();
while (port.state.read_relaxed() != AUDIO_PORT_STATE_CLOSED && !Emu.IsStopped())
{
@ -357,7 +359,7 @@ int cellSurMixerCreate(vm::ptr<const CellSurMixerConfig> config)
memset(mixdata, 0, sizeof(mixdata));
if (surMixerCb)
{
surMixerCb(cb_thread, surMixerCbArg, (u32)mixcount, 256);
surMixerCb(ppu, surMixerCbArg, (u32)mixcount, 256);
}
//u64 stamp1 = get_system_time();
@ -462,7 +464,7 @@ int cellSurMixerCreate(vm::ptr<const CellSurMixerConfig> config)
ssp.clear();
}
Emu.GetCPU().RemoveThread(cb_thread.GetId());
Emu.GetCPU().RemoveThread(ppu.GetId());
surMixerCb.set(0);
});

View file

@ -4,10 +4,10 @@
#include "Emu/System.h"
#include "Emu/SysCalls/Modules.h"
#include "Emu/SysCalls/CB_FUNC.h"
#include "Emu/Memory/atomic_type.h"
#include "Emu/FS/vfsFile.h"
#include "Emu/SysCalls/lv2/sleep_queue_type.h"
#include "Emu/SysCalls/lv2/sleep_queue.h"
#include "Emu/SysCalls/lv2/sys_interrupt.h"
#include "Emu/SysCalls/lv2/sys_spu.h"
#include "Emu/SysCalls/lv2/sys_lwmutex.h"
#include "Emu/SysCalls/lv2/sys_spinlock.h"
@ -263,6 +263,15 @@ s64 _sys_process_at_Exitspawn()
return CELL_OK;
}
s32 sys_interrupt_thread_disestablish(PPUThread& CPU, u32 ih)
{
sysPrxForUser.Todo("sys_interrupt_thread_disestablish(ih=%d)", ih);
vm::stackvar<u64> r13(CPU);
return _sys_interrupt_thread_disestablish(ih, r13);
}
int sys_process_is_stack(u32 p)
{
sysPrxForUser.Log("sys_process_is_stack(p=0x%x)", p);
@ -329,7 +338,7 @@ int sys_raw_spu_load(s32 id, vm::ptr<const char> path, vm::ptr<u32> entry)
u32 _entry;
LoadSpuImage(f, _entry, RAW_SPU_BASE_ADDR + RAW_SPU_OFFSET * id);
*entry = _entry;
*entry = _entry | 1;
return CELL_OK;
}
@ -340,7 +349,7 @@ int sys_raw_spu_image_load(int id, vm::ptr<sys_spu_image> img)
// TODO: use segment info
memcpy(vm::get_ptr<void>(RAW_SPU_BASE_ADDR + RAW_SPU_OFFSET * id), vm::get_ptr<void>(img->addr), 256 * 1024);
vm::write32(RAW_SPU_BASE_ADDR + RAW_SPU_OFFSET * id + RAW_SPU_PROB_OFFSET + SPU_NPC_offs, (u32)img->entry_point);
vm::write32(RAW_SPU_BASE_ADDR + RAW_SPU_OFFSET * id + RAW_SPU_PROB_OFFSET + SPU_NPC_offs, img->entry_point | be_t<u32>::make(1));
return CELL_OK;
}
@ -598,6 +607,8 @@ Module sysPrxForUser("sysPrxForUser", []()
REG_FUNC(sysPrxForUser, _sys_process_at_Exitspawn);
REG_FUNC(sysPrxForUser, sys_process_is_stack);
REG_FUNC(sysPrxForUser, sys_interrupt_thread_disestablish);
REG_FUNC(sysPrxForUser, sys_ppu_thread_create);
REG_FUNC(sysPrxForUser, sys_ppu_thread_get_id);
REG_FUNC(sysPrxForUser, sys_ppu_thread_exit);

View file

@ -10,7 +10,7 @@ namespace sys_libc_func
{
void memcpy(vm::ptr<void> dst, vm::ptr<const void> src, u32 size)
{
sys_libc.Warning("memcpy(dst=0x%x, src=0x%x, size=0x%x)", dst, src, size);
sys_libc.Log("memcpy(dst=0x%x, src=0x%x, size=0x%x)", dst, src, size);
::memcpy(dst.get_ptr(), src.get_ptr(), size);
}

View file

@ -4,7 +4,7 @@
#include "Emu/IdManager.h"
#include "Utilities/Thread.h"
#include "lv2/sleep_queue_type.h"
#include "lv2/sleep_queue.h"
#include "lv2/sys_lwmutex.h"
#include "lv2/sys_lwcond.h"
#include "lv2/sys_mutex.h"

View file

@ -5,10 +5,9 @@
#include "Emu/Memory/Memory.h"
#include "Emu/System.h"
#include "ModuleManager.h"
#include "Emu/Memory/atomic_type.h"
#include "lv2/cellFs.h"
#include "lv2/sleep_queue_type.h"
#include "lv2/sleep_queue.h"
#include "lv2/sys_lwmutex.h"
#include "lv2/sys_mutex.h"
#include "lv2/sys_cond.h"
@ -133,7 +132,7 @@ const ppu_func_caller sc_table[1024] =
bind_func(sys_event_flag_trywait), //86 (0x056)
bind_func(sys_event_flag_set), //87 (0x057)
bind_func(sys_interrupt_thread_eoi), //88 (0x058)
bind_func(sys_interrupt_thread_disestablish), //89 (0x059)
bind_func(_sys_interrupt_thread_disestablish), //89 (0x059)
bind_func(sys_semaphore_create), //90 (0x05A)
bind_func(sys_semaphore_destroy), //91 (0x05B)
bind_func(sys_semaphore_wait), //92 (0x05C)

View file

@ -525,8 +525,6 @@ s32 cellFsFGetBlockSize(u32 fd, vm::ptr<u64> sector_size, vm::ptr<u64> block_siz
{
sys_fs.Warning("cellFsFGetBlockSize(fd=0x%x, sector_size=0x%x, block_size=0x%x)", fd, sector_size, block_size);
LV2_LOCK(0);
std::shared_ptr<vfsStream> file;
if (!sys_fs.CheckId(fd, file))
return CELL_ESRCH;

View file

@ -3,11 +3,10 @@
#include "Emu/Memory/Memory.h"
#include "Emu/System.h"
#include "Emu/IdManager.h"
#include "Emu/Memory/atomic_type.h"
#include "Emu/CPU/CPUThreadManager.h"
#include "Emu/Cell/PPUThread.h"
#include "sleep_queue_type.h"
#include "sleep_queue.h"
sleep_queue_t::~sleep_queue_t()
{

View file

@ -2,11 +2,10 @@
#include "Emu/Memory/Memory.h"
#include "Emu/System.h"
#include "Emu/SysCalls/SysCalls.h"
#include "Emu/Memory/atomic_type.h"
#include "Emu/CPU/CPUThreadManager.h"
#include "Emu/Cell/PPUThread.h"
#include "sleep_queue_type.h"
#include "sleep_queue.h"
#include "sys_time.h"
#include "sys_mutex.h"
#include "sys_cond.h"

View file

@ -2,11 +2,10 @@
#include "Emu/Memory/Memory.h"
#include "Emu/System.h"
#include "Emu/SysCalls/SysCalls.h"
#include "Emu/Memory/atomic_type.h"
#include "Emu/Cell/PPUThread.h"
#include "Emu/Event.h"
#include "sleep_queue_type.h"
#include "sleep_queue.h"
#include "sys_time.h"
#include "sys_process.h"
#include "sys_event.h"
@ -15,66 +14,68 @@ SysCallBase sys_event("sys_event");
u32 event_queue_create(u32 protocol, s32 type, u64 name_u64, u64 event_queue_key, s32 size)
{
std::shared_ptr<EventQueue> eq(new EventQueue(protocol, type, name_u64, event_queue_key, size));
std::shared_ptr<event_queue_t> queue(new event_queue_t(protocol, type, name_u64, event_queue_key, size));
if (event_queue_key && !Emu.GetEventManager().RegisterKey(eq, event_queue_key))
{
return 0;
}
Emu.GetEventManager().RegisterKey(queue, event_queue_key);
const u32 id = sys_event.GetNewId(eq, TYPE_EVENT_QUEUE);
eq->sq.set_full_name(fmt::Format("EventQueue(%d)", id));
sys_event.Warning("*** event_queue created [%s] (protocol=0x%x, type=0x%x, key=0x%llx, size=0x%x): id = %d",
std::string((const char*)&name_u64, 8).c_str(), protocol, type, event_queue_key, size, id);
return id;
return sys_event.GetNewId(queue, TYPE_EVENT_QUEUE);
}
s32 sys_event_queue_create(vm::ptr<u32> equeue_id, vm::ptr<sys_event_queue_attr> attr, u64 event_queue_key, s32 size)
{
sys_event.Warning("sys_event_queue_create(equeue_id_addr=0x%x, attr_addr=0x%x, event_queue_key=0x%llx, size=%d)",
equeue_id.addr(), attr.addr(), event_queue_key, size);
sys_event.Warning("sys_event_queue_create(equeue_id=*0x%x, attr=*0x%x, event_queue_key=0x%llx, size=%d)", equeue_id, attr, event_queue_key, size);
if(size <= 0 || size > 127)
if (size <= 0 || size > 127)
{
return CELL_EINVAL;
}
switch (attr->protocol.data())
const u32 protocol = attr->protocol;
switch (protocol)
{
case se32(SYS_SYNC_PRIORITY): break;
case se32(SYS_SYNC_RETRY): sys_event.Error("Invalid protocol (SYS_SYNC_RETRY)"); return CELL_EINVAL;
case se32(SYS_SYNC_PRIORITY_INHERIT): sys_event.Error("Invalid protocol (SYS_SYNC_PRIORITY_INHERIT)"); return CELL_EINVAL;
case se32(SYS_SYNC_FIFO): break;
default: sys_event.Error("Unknown protocol (0x%x)", attr->protocol); return CELL_EINVAL;
case SYS_SYNC_PRIORITY: break;
case SYS_SYNC_RETRY: sys_event.Error("Invalid protocol (SYS_SYNC_RETRY)"); return CELL_EINVAL;
case SYS_SYNC_PRIORITY_INHERIT: sys_event.Error("Invalid protocol (SYS_SYNC_PRIORITY_INHERIT)"); return CELL_EINVAL;
case SYS_SYNC_FIFO: break;
default: sys_event.Error("Unknown protocol (0x%x)", protocol); return CELL_EINVAL;
}
switch (attr->type.data())
const u32 type = attr->type;
switch (type)
{
case se32(SYS_PPU_QUEUE): break;
case se32(SYS_SPU_QUEUE): break;
default: sys_event.Error("Unknown event queue type (0x%x)", attr->type); return CELL_EINVAL;
case SYS_PPU_QUEUE: break;
case SYS_SPU_QUEUE: break;
default: sys_event.Error("Unknown event queue type (0x%x)", type); return CELL_EINVAL;
}
if (event_queue_key && Emu.GetEventManager().CheckKey(event_queue_key))
LV2_LOCK;
if (Emu.GetEventManager().CheckKey(event_queue_key))
{
return CELL_EEXIST;
}
if (u32 id = event_queue_create(attr->protocol, attr->type, attr->name_u64, event_queue_key, size))
std::shared_ptr<event_queue_t> queue(new event_queue_t(protocol, type, attr->name_u64, event_queue_key, size));
if (!Emu.GetEventManager().RegisterKey(queue, event_queue_key))
{
*equeue_id = id;
return CELL_OK;
return CELL_EAGAIN;
}
return CELL_EAGAIN;
*equeue_id = sys_event.GetNewId(queue, TYPE_EVENT_QUEUE);
return CELL_OK;
}
s32 sys_event_queue_destroy(u32 equeue_id, int mode)
s32 sys_event_queue_destroy(u32 equeue_id, s32 mode)
{
sys_event.Todo("sys_event_queue_destroy(equeue_id=%d, mode=0x%x)", equeue_id, mode);
sys_event.Warning("sys_event_queue_destroy(equeue_id=%d, mode=%d)", equeue_id, mode);
std::shared_ptr<EventQueue> eq;
if (!Emu.GetIdManager().GetIDData(equeue_id, eq))
LV2_LOCK;
std::shared_ptr<event_queue_t> queue;
if (!Emu.GetIdManager().GetIDData(equeue_id, queue))
{
return CELL_ESRCH;
}
@ -84,204 +85,152 @@ s32 sys_event_queue_destroy(u32 equeue_id, int mode)
return CELL_EINVAL;
}
//u32 tid = GetCurrentPPUThread().GetId();
//eq->sq.m_mutex.lock();
//eq->owner.lock(tid);
// check if some threads are waiting for an event
//if (!mode && eq->sq.list.size())
//{
// eq->owner.unlock(tid);
// eq->sq.m_mutex.unlock();
// return CELL_EBUSY;
//}
//eq->owner.unlock(tid, ~0);
//eq->sq.m_mutex.unlock();
//while (eq->sq.list.size())
//{
// std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack
// if (Emu.IsStopped())
// {
// sys_event.Warning("sys_event_queue_destroy(equeue=%d) aborted", equeue_id);
// break;
// }
//}
if (!mode && queue->waiters)
{
return CELL_EBUSY;
}
else
{
// set special value for waiters
queue->waiters.exchange(-1);
}
Emu.GetEventManager().UnregisterKey(eq->key);
eq->ports.clear();
Emu.GetEventManager().UnregisterKey(queue->key);
Emu.GetIdManager().RemoveID(equeue_id);
return CELL_OK;
}
s32 sys_event_queue_tryreceive(u32 equeue_id, vm::ptr<sys_event_data> event_array, s32 size, vm::ptr<u32> number)
s32 sys_event_queue_tryreceive(u32 equeue_id, vm::ptr<sys_event_t> event_array, s32 size, vm::ptr<u32> number)
{
sys_event.Todo("sys_event_queue_tryreceive(equeue_id=%d, event_array_addr=0x%x, size=%d, number_addr=0x%x)",
equeue_id, event_array.addr(), size, number.addr());
sys_event.Warning("sys_event_queue_tryreceive(equeue_id=%d, event_array=*0x%x, size=%d, number=*0x%x)", equeue_id, event_array, size, number);
std::shared_ptr<EventQueue> eq;
if (!Emu.GetIdManager().GetIDData(equeue_id, eq))
LV2_LOCK;
std::shared_ptr<event_queue_t> queue;
if (!Emu.GetIdManager().GetIDData(equeue_id, queue))
{
return CELL_ESRCH;
}
if (eq->type != SYS_PPU_QUEUE)
if (size < 0)
{
throw __FUNCTION__;
}
if (queue->type != SYS_PPU_QUEUE)
{
return CELL_EINVAL;
}
if (size == 0)
s32 count = 0;
while (count < size && queue->events.size())
{
*number = 0;
return CELL_OK;
auto& event = queue->events.front();
event_array[count++] = { be_t<u64>::make(event.source), be_t<u64>::make(event.data1), be_t<u64>::make(event.data2), be_t<u64>::make(event.data3) };
queue->events.pop_front();
}
//u32 tid = GetCurrentPPUThread().GetId();
//eq->sq.m_mutex.lock();
//eq->owner.lock(tid);
//if (eq->sq.list.size())
//{
// *number = 0;
// eq->owner.unlock(tid);
// eq->sq.m_mutex.unlock();
// return CELL_OK;
//}
*number = eq->events.pop_all(event_array.get_ptr(), size);
//eq->owner.unlock(tid);
//eq->sq.m_mutex.unlock();
*number = count;
return CELL_OK;
}
s32 sys_event_queue_receive(u32 equeue_id, vm::ptr<sys_event_data> dummy_event, u64 timeout)
s32 sys_event_queue_receive(PPUThread& CPU, u32 equeue_id, vm::ptr<sys_event_t> dummy_event, u64 timeout)
{
// dummy_event argument is ignored, data returned in registers
sys_event.Log("sys_event_queue_receive(equeue_id=%d, dummy_event_addr=0x%x, timeout=%lld)",
equeue_id, dummy_event.addr(), timeout);
sys_event.Log("sys_event_queue_receive(equeue_id=%d, event=*0x%x, timeout=0x%llx)", equeue_id, dummy_event, timeout);
const u64 start_time = get_system_time();
std::shared_ptr<EventQueue> eq;
if (!Emu.GetIdManager().GetIDData(equeue_id, eq))
LV2_LOCK;
std::shared_ptr<event_queue_t> queue;
if (!Emu.GetIdManager().GetIDData(equeue_id, queue))
{
return CELL_ESRCH;
}
if (eq->type != SYS_PPU_QUEUE)
if (queue->type != SYS_PPU_QUEUE)
{
return CELL_EINVAL;
}
const u32 tid = GetCurrentPPUThread().GetId();
// protocol is ignored in current implementation
queue->waiters++;
eq->sq.push(tid, eq->protocol); // add thread to sleep queue
while (true)
while (queue->events.empty())
{
const u32 old_owner = eq->owner.compare_and_swap(0, tid);
const s32 res = old_owner ? (old_owner == tid ? 1 : 2) : 0;
switch (res)
if (queue->waiters < 0)
{
case 0:
{
const u32 next = eq->events.count() ? eq->sq.signal(eq->protocol) : 0;
if (next != tid)
{
if (!eq->owner.compare_and_swap_test(tid, next))
{
assert(!"sys_event_queue_receive() failed (I)");
}
break;
}
// fallthrough
}
case 1:
{
sys_event_data event;
eq->events.pop(event);
if (!eq->owner.compare_and_swap_test(tid, 0))
{
assert(!"sys_event_queue_receive() failed (II)");
}
sys_event.Log(" *** event received: source=0x%llx, d1=0x%llx, d2=0x%llx, d3=0x%llx",
(u64)event.source, (u64)event.data1, (u64)event.data2, (u64)event.data3);
/* passing event data in registers */
PPUThread& t = GetCurrentPPUThread();
t.GPR[4] = event.source;
t.GPR[5] = event.data1;
t.GPR[6] = event.data2;
t.GPR[7] = event.data3;
if (!eq->sq.invalidate(tid, eq->protocol) && !eq->sq.pop(tid, eq->protocol))
{
assert(!"sys_event_queue_receive() failed (receiving)");
}
return CELL_OK;
}
}
if (!~old_owner)
{
if (!eq->sq.invalidate(tid, eq->protocol))
{
assert(!"sys_event_queue_receive() failed (cancelling)");
}
queue->waiters--;
return CELL_ECANCELED;
}
std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack
if (timeout && get_system_time() - start_time > timeout)
{
if (!eq->sq.invalidate(tid, eq->protocol))
{
assert(!"sys_event_queue_receive() failed (timeout)");
}
queue->waiters--;
return CELL_ETIMEDOUT;
}
if (Emu.IsStopped())
{
sys_event.Warning("sys_event_queue_receive(equeue=%d) aborted", equeue_id);
sys_event.Warning("sys_event_queue_receive(equeue_id=%d) aborted", equeue_id);
return CELL_OK;
}
queue->cv.wait_for(lv2_lock, std::chrono::milliseconds(1));
}
// event data is returned in registers (second arg is not used)
auto& event = queue->events.front();
CPU.GPR[4] = event.source;
CPU.GPR[5] = event.data1;
CPU.GPR[6] = event.data2;
CPU.GPR[7] = event.data3;
queue->events.pop_front();
queue->waiters--;
return CELL_OK;
}
s32 sys_event_queue_drain(u32 equeue_id)
{
sys_event.Log("sys_event_queue_drain(equeue_id=%d)", equeue_id);
std::shared_ptr<EventQueue> eq;
if (!Emu.GetIdManager().GetIDData(equeue_id, eq))
LV2_LOCK;
std::shared_ptr<event_queue_t> queue;
if (!Emu.GetIdManager().GetIDData(equeue_id, queue))
{
return CELL_ESRCH;
}
eq->events.clear();
queue->events = {};
return CELL_OK;
}
u32 event_port_create(u64 name)
{
std::shared_ptr<EventPort> eport(new EventPort());
u32 id = sys_event.GetNewId(eport, TYPE_EVENT_PORT);
eport->name = name ? name : ((u64)process_getpid() << 32) | (u64)id;
sys_event.Warning("*** sys_event_port created: id = %d, name=0x%llx", id, eport->name);
return id;
std::shared_ptr<event_port_t> eport(new event_port_t(SYS_EVENT_PORT_LOCAL, name));
return sys_event.GetNewId(eport, TYPE_EVENT_PORT);
}
s32 sys_event_port_create(vm::ptr<u32> eport_id, s32 port_type, u64 name)
{
sys_event.Warning("sys_event_port_create(eport_id_addr=0x%x, port_type=0x%x, name=0x%llx)",
eport_id.addr(), port_type, name);
sys_event.Warning("sys_event_port_create(eport_id=*0x%x, port_type=%d, name=0x%llx)", eport_id, port_type, name);
if (port_type != SYS_EVENT_PORT_LOCAL)
{
sys_event.Error("sys_event_port_create: invalid port_type(0x%x)", port_type);
sys_event.Error("sys_event_port_create(): invalid port_type (%d)", port_type);
return CELL_EINVAL;
}
*eport_id = event_port_create(name);
LV2_LOCK;
std::shared_ptr<event_port_t> eport(new event_port_t(port_type, name));
*eport_id = sys_event.GetNewId(eport, TYPE_EVENT_PORT);
return CELL_OK;
}
@ -289,24 +238,19 @@ s32 sys_event_port_destroy(u32 eport_id)
{
sys_event.Warning("sys_event_port_destroy(eport_id=%d)", eport_id);
std::shared_ptr<EventPort> eport;
if (!Emu.GetIdManager().GetIDData(eport_id, eport))
LV2_LOCK;
std::shared_ptr<event_port_t> port;
if (!Emu.GetIdManager().GetIDData(eport_id, port))
{
return CELL_ESRCH;
}
if (!eport->m_mutex.try_lock())
if (!port->queue.expired())
{
return CELL_EISCONN;
}
if (eport->eq)
{
eport->m_mutex.unlock();
return CELL_EISCONN;
}
eport->m_mutex.unlock();
Emu.GetIdManager().RemoveID(eport_id);
return CELL_OK;
}
@ -315,37 +259,26 @@ s32 sys_event_port_connect_local(u32 eport_id, u32 equeue_id)
{
sys_event.Warning("sys_event_port_connect_local(eport_id=%d, equeue_id=%d)", eport_id, equeue_id);
std::shared_ptr<EventPort> eport;
if (!Emu.GetIdManager().GetIDData(eport_id, eport))
LV2_LOCK;
std::shared_ptr<event_port_t> port;
std::shared_ptr<event_queue_t> queue;
if (!Emu.GetIdManager().GetIDData(eport_id, port) || !Emu.GetIdManager().GetIDData(equeue_id, queue))
{
return CELL_ESRCH;
}
if (!eport->m_mutex.try_lock())
if (port->type != SYS_EVENT_PORT_LOCAL)
{
return CELL_EINVAL;
}
if (!port->queue.expired())
{
return CELL_EISCONN;
}
if (eport->eq)
{
eport->m_mutex.unlock();
return CELL_EISCONN;
}
std::shared_ptr<EventQueue> equeue;
if (!Emu.GetIdManager().GetIDData(equeue_id, equeue))
{
sys_event.Error("sys_event_port_connect_local: event_queue(%d) not found!", equeue_id);
eport->m_mutex.unlock();
return CELL_ESRCH;
}
else
{
equeue->ports.add(eport);
}
eport->eq = equeue;
eport->m_mutex.unlock();
port->queue = queue;
return CELL_OK;
}
@ -353,51 +286,64 @@ s32 sys_event_port_disconnect(u32 eport_id)
{
sys_event.Warning("sys_event_port_disconnect(eport_id=%d)", eport_id);
std::shared_ptr<EventPort> eport;
if (!Emu.GetIdManager().GetIDData(eport_id, eport))
LV2_LOCK;
std::shared_ptr<event_port_t> port;
if (!Emu.GetIdManager().GetIDData(eport_id, port))
{
return CELL_ESRCH;
}
if (!eport->eq)
std::shared_ptr<event_queue_t> queue = port->queue.lock();
if (!queue)
{
return CELL_ENOTCONN;
}
if (!eport->m_mutex.try_lock())
{
return CELL_EBUSY;
}
// CELL_EBUSY is not returned
eport->eq->ports.remove(eport);
eport->eq = nullptr;
eport->m_mutex.unlock();
//const u64 source = port->name ? port->name : ((u64)process_getpid() << 32) | (u64)eport_id;
//for (auto& event : queue->events)
//{
// if (event.source == source)
// {
// return CELL_EBUSY; // ???
// }
//}
port->queue.reset();
return CELL_OK;
}
s32 sys_event_port_send(u32 eport_id, u64 data1, u64 data2, u64 data3)
{
sys_event.Log("sys_event_port_send(eport_id=%d, data1=0x%llx, data2=0x%llx, data3=0x%llx)",
eport_id, data1, data2, data3);
sys_event.Log("sys_event_port_send(eport_id=%d, data1=0x%llx, data2=0x%llx, data3=0x%llx)", eport_id, data1, data2, data3);
std::shared_ptr<EventPort> eport;
if (!Emu.GetIdManager().GetIDData(eport_id, eport))
LV2_LOCK;
std::shared_ptr<event_port_t> port;
if (!Emu.GetIdManager().GetIDData(eport_id, port))
{
return CELL_ESRCH;
}
std::lock_guard<std::mutex> lock(eport->m_mutex);
std::shared_ptr<event_queue_t> queue = port->queue.lock();
std::shared_ptr<EventQueue> eq = eport->eq;
if (!eq)
if (!queue)
{
return CELL_ENOTCONN;
}
if (!eq->events.push(eport->name, data1, data2, data3))
if (queue->events.size() >= queue->size)
{
return CELL_EBUSY;
}
const u64 source = port->name ? port->name : ((u64)process_getpid() << 32) | (u64)eport_id;
queue->events.emplace_back(source, data1, data2, data3);
queue->cv.notify_one();
return CELL_OK;
}

View file

@ -1,41 +1,43 @@
#pragma once
#define FIX_SPUQ(x) ((u64)x | 0x5350555100000000ULL)
// arbitrary code to prevent "special" zero value in key argument
enum EventQueueType
// Event Queue Type
enum : u32
{
SYS_PPU_QUEUE = 1,
SYS_SPU_QUEUE = 2,
};
enum EventQueueDestroyMode
// Event Queue Destroy Mode
enum : s32
{
// DEFAULT = 0,
SYS_EVENT_QUEUE_DESTROY_FORCE = 1,
};
enum EventPortType
// Event Port Type
enum : s32
{
SYS_EVENT_PORT_LOCAL = 1,
};
enum EventSourceType
// Event Source Type
enum : u32
{
SYS_SPU_THREAD_EVENT_USER = 1,
/* SYS_SPU_THREAD_EVENT_DMA = 2, */ // not supported
SYS_SPU_THREAD_EVENT_DMA = 2, // not supported
};
enum EventSourceKey : u64
// Event Source Key
enum : u64
{
SYS_SPU_THREAD_EVENT_USER_KEY = 0xFFFFFFFF53505501,
/* SYS_SPU_THREAD_EVENT_DMA_KEY = 0xFFFFFFFF53505502, */
SYS_SPU_THREAD_EVENT_DMA_KEY = 0xFFFFFFFF53505502, // ???
};
struct sys_event_queue_attr
{
be_t<u32> protocol; // SYS_SYNC_PRIORITY or SYS_SYNC_FIFO
be_t<s32> type; // SYS_PPU_QUEUE or SYS_SPU_QUEUE
union
{
char name[8];
@ -43,7 +45,7 @@ struct sys_event_queue_attr
};
};
struct sys_event_data
struct sys_event_t
{
be_t<u64> source;
be_t<u64> data1;
@ -51,168 +53,61 @@ struct sys_event_data
be_t<u64> data3;
};
struct EventQueue;
struct EventPort
struct event_t
{
u64 name; // generated or user-specified code that is passed to sys_event_data struct
std::shared_ptr<EventQueue> eq; // event queue this port has been connected to
std::mutex m_mutex; // may be locked until the event sending is finished
u64 source;
u64 data1;
u64 data2;
u64 data3;
EventPort(u64 name = 0)
: eq(nullptr)
event_t(u64 source, u64 data1, u64 data2, u64 data3)
: source(source)
, data1(data1)
, data2(data2)
, data3(data3)
{
}
};
struct event_queue_t
{
const u32 protocol;
const s32 type;
const u64 name;
const u64 key;
const s32 size;
std::deque<event_t> events;
// TODO: use sleep queue, remove condition variable (use thread's one instead)
std::condition_variable cv;
std::atomic<s32> waiters;
event_queue_t(u32 protocol, s32 type, u64 name, u64 key, s32 size)
: protocol(protocol)
, type(type)
, name(name)
, key(key)
, size(size)
, waiters(0)
{
}
};
struct event_port_t
{
const s32 type; // port type, must be SYS_EVENT_PORT_LOCAL
const u64 name; // passed as event source (generated from id and process id if not set)
std::weak_ptr<event_queue_t> queue; // event queue this port is connected to
event_port_t(s32 type, u64 name)
: type(type)
, name(name)
{
}
};
class EventRingBuffer
{
std::vector<sys_event_data> data;
std::mutex m_mutex;
u32 buf_pos;
u32 buf_count;
public:
const u32 size;
EventRingBuffer(u32 size)
: size(size)
, buf_pos(0)
, buf_count(0)
{
data.resize(size);
}
void clear()
{
std::lock_guard<std::mutex> lock(m_mutex);
buf_count = 0;
buf_pos = 0;
}
bool push(u64 name, u64 d1, u64 d2, u64 d3)
{
std::lock_guard<std::mutex> lock(m_mutex);
if (buf_count >= size) return false;
sys_event_data& ref = data[(buf_pos + buf_count++) % size];
ref.source = name;
ref.data1 = d1;
ref.data2 = d2;
ref.data3 = d3;
return true;
}
bool pop(sys_event_data& ref)
{
std::lock_guard<std::mutex> lock(m_mutex);
if (!buf_count) return false;
sys_event_data& from = data[buf_pos];
buf_pos = (buf_pos + 1) % size;
buf_count--;
ref.source = from.source;
ref.data1 = from.data1;
ref.data2 = from.data2;
ref.data3 = from.data3;
return true;
}
u32 pop_all(sys_event_data* ptr, u32 max)
{
std::lock_guard<std::mutex> lock(m_mutex);
u32 res = 0;
while (buf_count && max)
{
sys_event_data& from = data[buf_pos];
ptr->source = from.source;
ptr->data1 = from.data1;
ptr->data2 = from.data2;
ptr->data3 = from.data3;
buf_pos = (buf_pos + 1) % size;
buf_count--;
max--;
ptr++;
res++;
}
return res;
}
u32 count() const
{
return buf_count;
}
};
class EventPortList
{
std::vector<std::shared_ptr<EventPort>> data;
std::mutex m_mutex;
public:
void clear()
{
std::lock_guard<std::mutex> lock(m_mutex);
for (u32 i = 0; i < data.size(); i++)
{
// TODO: force all ports to disconnect
//std::lock_guard<std::mutex> lock2(data[i]->m_mutex);
//data[i]->eq = nullptr;
}
data.clear();
}
void add(std::shared_ptr<EventPort>& port)
{
std::lock_guard<std::mutex> lock(m_mutex);
data.push_back(port);
}
void remove(std::shared_ptr<EventPort>& port)
{
std::lock_guard<std::mutex> lock(m_mutex);
for (u32 i = 0; i < data.size(); i++)
{
if (data[i].get() == port.get())
{
data.erase(data.begin() + i);
return;
}
}
}
};
struct EventQueue
{
sleep_queue_t sq;
EventPortList ports;
EventRingBuffer events;
atomic_le_t<u32> owner;
const union
{
u64 name_u64;
char name[8];
};
const u32 protocol;
const int type;
const u64 key;
EventQueue(u32 protocol, int type, u64 name, u64 key, int size)
: type(type)
, protocol(protocol)
, name_u64(name)
, key(key)
, events(size) // size: max event count this queue can hold
{
owner.write_relaxed(0);
}
};
class PPUThread;
// Aux
u32 event_port_create(u64 name);
@ -221,8 +116,8 @@ u32 event_queue_create(u32 protocol, s32 type, u64 name_u64, u64 event_queue_key
// SysCalls
s32 sys_event_queue_create(vm::ptr<u32> equeue_id, vm::ptr<sys_event_queue_attr> attr, u64 event_queue_key, s32 size);
s32 sys_event_queue_destroy(u32 equeue_id, s32 mode);
s32 sys_event_queue_receive(u32 equeue_id, vm::ptr<sys_event_data> dummy_event, u64 timeout);
s32 sys_event_queue_tryreceive(u32 equeue_id, vm::ptr<sys_event_data> event_array, s32 size, vm::ptr<u32> number);
s32 sys_event_queue_receive(PPUThread& CPU, u32 equeue_id, vm::ptr<sys_event_t> dummy_event, u64 timeout);
s32 sys_event_queue_tryreceive(u32 equeue_id, vm::ptr<sys_event_t> event_array, s32 size, vm::ptr<u32> number);
s32 sys_event_queue_drain(u32 event_queue_id);
s32 sys_event_port_create(vm::ptr<u32> eport_id, s32 port_type, u64 name);

View file

@ -2,11 +2,10 @@
#include "Emu/Memory/Memory.h"
#include "Emu/System.h"
#include "Emu/SysCalls/SysCalls.h"
#include "Emu/Memory/atomic_type.h"
#include "Emu/CPU/CPUThreadManager.h"
#include "Emu/Cell/PPUThread.h"
#include "sleep_queue_type.h"
#include "sleep_queue.h"
#include "sys_event_flag.h"
SysCallBase sys_event_flag("sys_event_flag");

View file

@ -2,38 +2,47 @@
#include "Emu/Memory/Memory.h"
#include "Emu/System.h"
#include "Emu/SysCalls/SysCalls.h"
#include "Emu/SysCalls/CB_FUNC.h"
#include "Emu/CPU/CPUThreadManager.h"
#include "Emu/Cell/PPUThread.h"
#include "Emu/Cell/RawSPUThread.h"
#include "sys_interrupt.h"
static SysCallBase sys_interrupt("sys_interrupt");
SysCallBase sys_interrupt("sys_interrupt");
s32 sys_interrupt_tag_destroy(u32 intrtag)
{
sys_interrupt.Warning("sys_interrupt_tag_destroy(intrtag=%d)", intrtag);
u32 id = intrtag & 0xff;
u32 class_id = intrtag >> 8;
RawSPUThread* t = Emu.GetCPU().GetRawSPUThread(id);
const u32 class_id = intrtag >> 8;
if (!t || class_id > 2 || class_id == 1)
if (class_id != 0 && class_id != 2)
{
return CELL_ESRCH;
}
if (!t->m_intrtag[class_id].enabled)
std::shared_ptr<CPUThread> t = Emu.GetCPU().GetRawSPUThread(intrtag & 0xff);
if (!t)
{
return CELL_ESRCH;
}
if (t->m_intrtag[class_id].thread)
RawSPUThread& spu = static_cast<RawSPUThread&>(*t);
auto& tag = class_id ? spu.int2 : spu.int0;
if (s32 old = tag.assigned.compare_and_swap(0, -1))
{
return CELL_EBUSY;
if (old > 0)
{
return CELL_EBUSY;
}
return CELL_ESRCH;
}
t->m_intrtag[class_id].enabled = 0;
return CELL_OK;
}
@ -41,58 +50,99 @@ s32 sys_interrupt_thread_establish(vm::ptr<u32> ih, u32 intrtag, u64 intrthread,
{
sys_interrupt.Warning("sys_interrupt_thread_establish(ih_addr=0x%x, intrtag=%d, intrthread=%lld, arg=0x%llx)", ih.addr(), intrtag, intrthread, arg);
u32 id = intrtag & 0xff;
u32 class_id = intrtag >> 8;
RawSPUThread* t = Emu.GetCPU().GetRawSPUThread(id);
const u32 class_id = intrtag >> 8;
if (!t || class_id > 2 || class_id == 1)
if (class_id != 0 && class_id != 2)
{
return CELL_ESRCH;
}
if (!t->m_intrtag[class_id].enabled)
std::shared_ptr<CPUThread> t = Emu.GetCPU().GetRawSPUThread(intrtag & 0xff);
if (!t)
{
return CELL_ESRCH;
}
if (t->m_intrtag[class_id].thread) // ???
{
return CELL_ESTAT;
}
RawSPUThread& spu = static_cast<RawSPUThread&>(*t);
auto& tag = class_id ? spu.int2 : spu.int0;
// CELL_ESTAT is not returned (can't detect exact condition)
std::shared_ptr<CPUThread> it = Emu.GetCPU().GetThread((u32)intrthread);
std::shared_ptr<CPUThread> it = Emu.GetCPU().GetThread(intrthread);
if (!it)
{
return CELL_ESRCH;
}
if (it->m_has_interrupt || !it->m_is_interrupt)
std::shared_ptr<interrupt_handler_t> handler(new interrupt_handler_t{ it });
PPUThread& ppu = static_cast<PPUThread&>(*it);
{
return CELL_EAGAIN;
LV2_LOCK;
if (ppu.custom_task)
{
return CELL_EAGAIN;
}
if (s32 res = tag.assigned.atomic_op<s32>(CELL_OK, [](s32& value) -> s32
{
if (value < 0)
{
return CELL_ESRCH;
}
value++;
return CELL_OK;
}))
{
return res;
}
ppu.custom_task = [t, &tag, arg](PPUThread& CPU)
{
auto func = vm::ptr<void(u64 arg)>::make(CPU.entry);
std::unique_lock<std::mutex> cond_lock(tag.handler_mutex);
while (!Emu.IsStopped())
{
if (tag.stat.read_relaxed())
{
func(CPU, arg); // call interrupt handler until int status is clear
}
tag.cond.wait_for(cond_lock, std::chrono::milliseconds(1));
}
};
}
*ih = (t->m_intrtag[class_id].thread = intrthread);
it->m_interrupt_arg = arg;
*ih = sys_interrupt.GetNewId(handler, TYPE_INTR_SERVICE_HANDLE);
ppu.Exec();
return CELL_OK;
}
s32 sys_interrupt_thread_disestablish(u32 ih)
s32 _sys_interrupt_thread_disestablish(u32 ih, vm::ptr<u64> r13)
{
sys_interrupt.Todo("sys_interrupt_thread_disestablish(ih=%d)", ih);
sys_interrupt.Todo("_sys_interrupt_thread_disestablish(ih=%d)", ih);
std::shared_ptr<CPUThread> it = Emu.GetCPU().GetThread(ih);
if (!it)
std::shared_ptr<interrupt_handler_t> handler;
if (!sys_interrupt.CheckId(ih, handler))
{
return CELL_ESRCH;
}
if (!it->m_has_interrupt || !it->m_is_interrupt)
{
return CELL_ESRCH;
}
PPUThread& ppu = static_cast<PPUThread&>(*handler->handler);
// TODO: wait for sys_interrupt_thread_eoi() and destroy interrupt thread
*r13 = ppu.GPR[13];
return CELL_OK;
}
@ -101,5 +151,4 @@ void sys_interrupt_thread_eoi()
sys_interrupt.Log("sys_interrupt_thread_eoi()");
GetCurrentPPUThread().FastStop();
return;
}

View file

@ -1,7 +1,14 @@
#pragma once
class PPUThread;
struct interrupt_handler_t
{
std::shared_ptr<CPUThread> handler;
};
// SysCalls
s32 sys_interrupt_tag_destroy(u32 intrtag);
s32 sys_interrupt_thread_establish(vm::ptr<u32> ih, u32 intrtag, u64 intrthread, u64 arg);
s32 sys_interrupt_thread_disestablish(u32 ih);
s32 _sys_interrupt_thread_disestablish(u32 ih, vm::ptr<u64> r13);
void sys_interrupt_thread_eoi();

View file

@ -2,10 +2,9 @@
#include "Emu/Memory/Memory.h"
#include "Emu/System.h"
#include "Emu/SysCalls/SysCalls.h"
#include "Emu/Memory/atomic_type.h"
#include "Emu/Cell/PPUThread.h"
#include "sleep_queue_type.h"
#include "sleep_queue.h"
#include "sys_time.h"
#include "sys_lwmutex.h"
#include "sys_lwcond.h"

View file

@ -2,11 +2,10 @@
#include "Emu/Memory/Memory.h"
#include "Emu/System.h"
#include "Emu/SysCalls/SysCalls.h"
#include "Emu/Memory/atomic_type.h"
#include "Emu/CPU/CPUThreadManager.h"
#include "Emu/Cell/PPUThread.h"
#include "sleep_queue_type.h"
#include "sleep_queue.h"
#include "sys_time.h"
#include "sys_lwmutex.h"
@ -56,8 +55,6 @@ s32 sys_lwmutex_destroy(PPUThread& CPU, vm::ptr<sys_lwmutex_t> lwmutex)
{
sys_lwmutex.Warning("sys_lwmutex_destroy(lwmutex_addr=0x%x)", lwmutex.addr());
LV2_LOCK(0);
u32 sq_id = lwmutex->sleep_queue;
if (!Emu.GetIdManager().CheckID(sq_id)) return CELL_ESRCH;

View file

@ -2,11 +2,10 @@
#include "Emu/Memory/Memory.h"
#include "Emu/System.h"
#include "Emu/SysCalls/SysCalls.h"
#include "Emu/Memory/atomic_type.h"
#include "Emu/CPU/CPUThreadManager.h"
#include "Emu/Cell/PPUThread.h"
#include "sleep_queue_type.h"
#include "sleep_queue.h"
#include "sys_time.h"
#include "sys_mutex.h"

View file

@ -3,13 +3,12 @@
#include "Emu/System.h"
#include "Emu/SysCalls/SysCalls.h"
#include "Emu/SysCalls/CB_FUNC.h"
#include "Emu/Memory/atomic_type.h"
#include "Emu/CPU/CPUThreadManager.h"
#include "Emu/Cell/PPUThread.h"
#include "sys_ppu_thread.h"
static SysCallBase sys_ppu_thread("sys_ppu_thread");
SysCallBase sys_ppu_thread("sys_ppu_thread");
static const u32 PPU_THREAD_ID_INVALID = 0xFFFFFFFFU/*UUUUUUUUUUuuuuuuuuuu~~~~~~~~*/;
@ -163,76 +162,47 @@ s32 sys_ppu_thread_restart(u64 thread_id)
return CELL_OK;
}
PPUThread* ppu_thread_create(u32 entry, u64 arg, s32 prio, u32 stacksize, bool is_joinable, bool is_interrupt, const std::string& name, std::function<void(PPUThread&)> task)
u32 ppu_thread_create(u32 entry, u64 arg, s32 prio, u32 stacksize, bool is_joinable, bool is_interrupt, std::string name, std::function<void(PPUThread&)> task)
{
PPUThread& new_thread = *(PPUThread*)&Emu.GetCPU().AddThread(CPU_THREAD_PPU);
auto new_thread = Emu.GetCPU().AddThread(CPU_THREAD_PPU);
// Note: (Syphurith) I haven't figured out the minimum stack size of PPU Thread.
// Maybe it can be done with pthread_attr_getstacksize function.
// And i toke 4096 (PTHREAD_STACK_MIN, and the smallest allocation unit) for this.
if ((stacksize % 4096) || (stacksize == 0)) {
// If not times of smallest allocation unit, round it up to the nearest one.
// And regard zero as a same condition.
sys_ppu_thread.Warning("sys_ppu_thread_create: stacksize increased from 0x%x to 0x%x.",
stacksize, SYS_PPU_THREAD_STACK_MIN * ((u32)(stacksize / SYS_PPU_THREAD_STACK_MIN) + 1));
stacksize = SYS_PPU_THREAD_STACK_MIN * ((u32)(stacksize / SYS_PPU_THREAD_STACK_MIN) + 1);
}
auto& ppu = static_cast<PPUThread&>(*new_thread);
u32 id = new_thread.GetId();
new_thread.SetEntry(entry);
new_thread.SetPrio(prio);
new_thread.SetStackSize(stacksize);
new_thread.SetJoinable(is_joinable);
new_thread.m_has_interrupt = false;
new_thread.m_is_interrupt = is_interrupt;
new_thread.SetName(name);
new_thread.custom_task = task;
sys_ppu_thread.Notice("*** New PPU Thread [%s] (%s, entry=0x%x): id = %d", name.c_str(),
is_interrupt ? "interrupt" :
(is_joinable ? "joinable" : "detached"), entry, id);
ppu.SetEntry(entry);
ppu.SetPrio(prio);
ppu.SetStackSize(stacksize < 0x4000 ? 0x4000 : stacksize); // (hack) adjust minimal stack size
ppu.SetJoinable(is_joinable);
ppu.SetName(name);
ppu.custom_task = task;
ppu.Run();
if (!is_interrupt)
{
new_thread.Run();
new_thread.GPR[3] = arg;
new_thread.Exec();
}
else
{
new_thread.InitStack();
new_thread.InitRegs();
new_thread.DoRun();
ppu.GPR[3] = arg;
ppu.Exec();
}
return &new_thread;
return ppu.GetId();
}
s32 sys_ppu_thread_create(vm::ptr<u64> thread_id, u32 entry, u64 arg, s32 prio, u32 stacksize, u64 flags, vm::ptr<const char> threadname)
{
sys_ppu_thread.Log("sys_ppu_thread_create(thread_id_addr=0x%x, entry=0x%x, arg=0x%llx, prio=%d, stacksize=0x%x, flags=0x%llx, threadname_addr=0x%x('%s'))",
thread_id.addr(), entry, arg, prio, stacksize, flags, threadname.addr(), threadname ? threadname.get_ptr() : "");
sys_ppu_thread.Warning("sys_ppu_thread_create(thread_id=*0x%x, entry=0x%x, arg=0x%llx, prio=%d, stacksize=0x%x, flags=0x%llx, threadname=*0x%x)", thread_id, entry, arg, prio, stacksize, flags, threadname);
bool is_joinable = false;
bool is_interrupt = false;
switch (flags)
if (prio < 0 || prio > 3071)
{
case 0: break;
case SYS_PPU_THREAD_CREATE_JOINABLE:
is_joinable = true;
break;
case SYS_PPU_THREAD_CREATE_INTERRUPT:
is_interrupt = true;
break;
default: sys_ppu_thread.Error("sys_ppu_thread_create(): unknown flags value (0x%llx)", flags); return CELL_EPERM;
return CELL_EINVAL;
}
std::string name = threadname ? threadname.get_ptr() : "";
bool is_joinable = flags & SYS_PPU_THREAD_CREATE_JOINABLE;
bool is_interrupt = flags & SYS_PPU_THREAD_CREATE_INTERRUPT;
*thread_id = ppu_thread_create(entry, arg, prio, stacksize, is_joinable, is_interrupt, name)->GetId();
if (is_joinable && is_interrupt)
{
return CELL_EPERM;
}
*thread_id = ppu_thread_create(entry, arg, prio, stacksize, is_joinable, is_interrupt, threadname ? threadname.get_ptr() : "");
return CELL_OK;
}
@ -240,7 +210,7 @@ void sys_ppu_thread_once(PPUThread& CPU, vm::ptr<atomic_t<u32>> once_ctrl, vm::p
{
sys_ppu_thread.Warning("sys_ppu_thread_once(once_ctrl_addr=0x%x, init_addr=0x%x)", once_ctrl.addr(), init.addr());
LV2_LOCK(0);
LV2_LOCK;
if (once_ctrl->compare_and_swap_test(be_t<u32>::make(SYS_PPU_THREAD_ONCE_INIT), be_t<u32>::make(SYS_PPU_THREAD_DONE_INIT)))
{
@ -258,12 +228,15 @@ s32 sys_ppu_thread_get_id(PPUThread& CPU, vm::ptr<u64> thread_id)
s32 sys_ppu_thread_rename(u64 thread_id, vm::ptr<const char> name)
{
sys_ppu_thread.Log("sys_ppu_thread_rename(thread_id=%d, name_addr=0x%x('%s'))", thread_id, name.addr(), name.get_ptr());
sys_ppu_thread.Log("sys_ppu_thread_rename(thread_id=0x%llx, name=*0x%x)", thread_id, name);
std::shared_ptr<CPUThread> thr = Emu.GetCPU().GetThread(thread_id);
if (!thr)
std::shared_ptr<CPUThread> t = Emu.GetCPU().GetThread(thread_id, CPU_THREAD_PPU);
if (!t)
{
return CELL_ESRCH;
thr->SetThreadName(name.get_ptr());
}
t->SetThreadName(name.get_ptr());
return CELL_OK;
}

View file

@ -20,7 +20,7 @@ enum stackSize
};
// Aux
PPUThread* ppu_thread_create(u32 entry, u64 arg, s32 prio, u32 stacksize, bool is_joinable, bool is_interrupt, const std::string& name, std::function<void(PPUThread&)> task = nullptr);
u32 ppu_thread_create(u32 entry, u64 arg, s32 prio, u32 stacksize, bool is_joinable, bool is_interrupt, std::string name, std::function<void(PPUThread&)> task = nullptr);
// SysCalls
void sys_ppu_thread_exit(PPUThread& CPU, u64 errorcode);

View file

@ -2,10 +2,9 @@
#include "Emu/Memory/Memory.h"
#include "Emu/System.h"
#include "Emu/SysCalls/SysCalls.h"
#include "Emu/Memory/atomic_type.h"
#include "Emu/Cell/PPUThread.h"
#include "sleep_queue_type.h"
#include "sleep_queue.h"
#include "sys_time.h"
#include "sys_rwlock.h"

View file

@ -2,11 +2,10 @@
#include "Emu/Memory/Memory.h"
#include "Emu/System.h"
#include "Emu/SysCalls/SysCalls.h"
#include "Emu/Memory/atomic_type.h"
#include "Emu/CPU/CPUThreadManager.h"
#include "Emu/Cell/PPUThread.h"
#include "sleep_queue_type.h"
#include "sleep_queue.h"
#include "sys_time.h"
#include "sys_semaphore.h"

View file

@ -2,7 +2,6 @@
#include "Emu/Memory/Memory.h"
#include "Emu/System.h"
#include "Emu/SysCalls/SysCalls.h"
#include "Emu/Memory/atomic_type.h"
#include "sys_spinlock.h"

File diff suppressed because it is too large Load diff

View file

@ -32,7 +32,7 @@ enum : u64
SYS_SPU_THREAD_GROUP_EVENT_SYSTEM_MODULE_KEY = 0xFFFFFFFF53505504ull,
};
enum
enum : u32
{
SPU_THREAD_GROUP_STATUS_NOT_INITIALIZED,
SPU_THREAD_GROUP_STATUS_INITIALIZED,
@ -54,7 +54,7 @@ enum : s32
struct sys_spu_thread_group_attribute
{
be_t<u32> nsize;
be_t<u32> nsize; // name length including NULL terminator
vm::bptr<const char> name;
be_t<s32> type;
be_t<u32> ct; // memory container id
@ -121,35 +121,50 @@ enum : u32
SYS_SPU_IMAGE_DIRECT = 1,
};
struct SpuGroupInfo
struct spu_arg_t
{
std::vector<u32> list;
std::atomic<u32> lock;
std::string m_name;
u32 m_id;
s32 m_prio;
s32 m_type;
u32 m_ct;
u32 m_count;
s32 m_state; //SPU Thread Group State.
u32 m_exit_status;
bool m_group_exit;
u64 arg1;
u64 arg2;
u64 arg3;
u64 arg4;
};
SpuGroupInfo(const std::string& name, u32 num, s32 prio, s32 type, u32 ct)
: m_name(name)
, m_prio(prio)
, m_type(type)
, m_ct(ct)
, lock(0)
, m_count(num)
, m_state(0)
, m_exit_status(0)
, m_group_exit(false)
// SPU Thread Group Join State Flag
enum : u32
{
STGJSF_IS_JOINING = (1 << 0),
STGJSF_TERMINATED = (1 << 1), // set if SPU Thread Group is terminated by sys_spu_thread_group_terminate
STGJSF_GROUP_EXIT = (1 << 2), // set if SPU Thread Group is terminated by sys_spu_thread_group_exit
};
struct spu_group_t
{
const std::string name;
const u32 num; // SPU Number
const s32 type; // SPU Thread Group Type
const u32 ct; // Memory Container Id
std::array<std::shared_ptr<CPUThread>, 256> threads;
std::array<spu_arg_t, 256> args; // SPU Thread Arguments
std::array<vm::ptr<sys_spu_image>, 256> images; // SPU Thread Images
s32 prio; // SPU Thread Group Priority
u32 state; // SPU Thread Group State
s32 exit_status; // SPU Thread Group Exit Status
std::atomic<u32> join_state; // flags used to detect exit cause
std::condition_variable join_cv; // used to signal waiting PPU thread
spu_group_t(std::string name, u32 num, s32 prio, s32 type, u32 ct)
: name(name)
, num(num)
, prio(prio)
, type(type)
, ct(ct)
, state(SPU_THREAD_GROUP_STATUS_NOT_INITIALIZED)
, exit_status(0)
, join_state(0)
{
m_state = SPU_THREAD_GROUP_STATUS_NOT_INITIALIZED; //Before all the nums done, it is not initialized.
list.resize(256);
for (auto& v : list) v = 0;
m_state = SPU_THREAD_GROUP_STATUS_INITIALIZED; //Then Ready to Start. Cause Reference use New i can only place this here.
}
};
@ -161,22 +176,21 @@ u32 LoadSpuImage(vfsStream& stream, u32& spu_ep);
// Aux
s32 spu_image_import(sys_spu_image& img, u32 src, u32 type);
std::shared_ptr<SpuGroupInfo> spu_thread_group_create(const std::string& name, u32 num, s32 prio, s32 type, u32 container);
SPUThread* spu_thread_initialize(std::shared_ptr<SpuGroupInfo>& group, u32 spu_num, sys_spu_image& img, const std::string& name, u32 option, u64 a1, u64 a2, u64 a3, u64 a4, std::function<void(SPUThread&)> task = nullptr);
u32 spu_thread_group_create(const std::string& name, u32 num, s32 prio, s32 type, u32 container);
u32 spu_thread_initialize(u32 group, u32 spu_num, vm::ptr<sys_spu_image> img, const std::string& name, u32 option, u64 a1, u64 a2, u64 a3, u64 a4, std::function<void(SPUThread&)> task = nullptr);
// SysCalls
s32 sys_spu_initialize(u32 max_usable_spu, u32 max_raw_spu);
s32 sys_spu_image_open(vm::ptr<sys_spu_image> img, vm::ptr<const char> path);
s32 sys_spu_thread_initialize(vm::ptr<u32> thread, u32 group, u32 spu_num, vm::ptr<sys_spu_image> img, vm::ptr<sys_spu_thread_attribute> attr, vm::ptr<sys_spu_thread_argument> arg);
s32 sys_spu_thread_set_argument(u32 id, vm::ptr<sys_spu_thread_argument> arg);
s32 sys_spu_thread_group_create(vm::ptr<u32> id, u32 num, s32 prio, vm::ptr<sys_spu_thread_group_attribute> attr);
s32 sys_spu_thread_group_destroy(u32 id);
s32 sys_spu_thread_group_start(u32 id);
s32 sys_spu_thread_group_suspend(u32 id);
s32 sys_spu_thread_group_resume(u32 id);
s32 sys_spu_thread_group_yield(u32 id);
s32 sys_spu_thread_group_terminate(u32 id, int value);
s32 sys_spu_thread_group_create(vm::ptr<u32> id, u32 num, int prio, vm::ptr<sys_spu_thread_group_attribute> attr);
s32 sys_spu_thread_create(vm::ptr<u32> thread_id, vm::ptr<u32> entry, u64 arg, int prio, u32 stacksize, u64 flags, u32 threadname_addr);
s32 sys_spu_thread_group_terminate(u32 id, s32 value);
s32 sys_spu_thread_group_join(u32 id, vm::ptr<u32> cause, vm::ptr<u32> status);
s32 sys_spu_thread_group_connect_event(u32 id, u32 eq, u32 et);
s32 sys_spu_thread_group_disconnect_event(u32 id, u32 et);
@ -194,7 +208,7 @@ s32 sys_spu_thread_bind_queue(u32 id, u32 spuq, u32 spuq_num);
s32 sys_spu_thread_unbind_queue(u32 id, u32 spuq_num);
s32 sys_spu_thread_get_exit_status(u32 id, vm::ptr<u32> status);
s32 sys_raw_spu_create(vm::ptr<u32> id, u32 attr_addr);
s32 sys_raw_spu_create(vm::ptr<u32> id, vm::ptr<void> attr);
s32 sys_raw_spu_destroy(u32 id);
s32 sys_raw_spu_create_interrupt_tag(u32 id, u32 class_id, u32 hwthread, vm::ptr<u32> intrtag);
s32 sys_raw_spu_set_int_mask(u32 id, u32 class_id, u64 mask);

View file

@ -2,7 +2,6 @@
#include "Emu/Memory/Memory.h"
#include "Emu/System.h"
#include "Emu/SysCalls/SysCalls.h"
#include "Emu/Memory/atomic_type.h"
#include "Emu/Event.h"
#include "sys_timer.h"
@ -80,7 +79,7 @@ s32 sys_timer_connect_event_queue(u32 timer_id, u32 queue_id, u64 name, u64 data
timer_id, queue_id, name, data1, data2);
std::shared_ptr<timer> timer_data = nullptr;
std::shared_ptr<EventQueue> equeue = nullptr;
std::shared_ptr<event_queue_t> equeue = nullptr;
if(!sys_timer.CheckId(timer_id, timer_data)) return CELL_ESRCH;
if(!sys_timer.CheckId(queue_id, equeue)) return CELL_ESRCH;

View file

@ -25,6 +25,7 @@
#include "Emu/RSX/GSManager.h"
#include "Emu/Audio/AudioManager.h"
#include "Emu/FS/VFS.h"
#include "Emu/Event.h"
#include "Emu/SysCalls/SyncPrimitivesManager.h"
#include "Loader/PSF.h"

View file

@ -79,7 +79,7 @@ class Emulator
std::vector<u64> m_break_points;
std::vector<u64> m_marked_points;
std::recursive_mutex m_core_mutex;
std::mutex m_core_mutex;
CPUThreadManager* m_thread_manager;
PadManager* m_pad_manager;
@ -137,7 +137,7 @@ public:
m_emu_path = path;
}
std::recursive_mutex& GetCoreMutex() { return m_core_mutex; }
std::mutex& GetCoreMutex() { return m_core_mutex; }
CPUThreadManager& GetCPU() { return *m_thread_manager; }
PadManager& GetPadManager() { return *m_pad_manager; }
@ -199,7 +199,7 @@ public:
__forceinline bool IsReady() const { return m_status == Ready; }
};
#define LV2_LOCK(x) std::lock_guard<std::recursive_mutex> core_lock##x(Emu.GetCoreMutex())
#define LV2_LOCK std::unique_lock<std::mutex> lv2_lock(Emu.GetCoreMutex())
extern Emulator Emu;

View file

@ -73,7 +73,7 @@ InstructionEditorDialog::InstructionEditorDialog(wxPanel *parent, u64 _pc, CPUTh
s_panel_margin_x->AddSpacer(12);
this->Connect(wxEVT_COMMAND_TEXT_UPDATED, wxCommandEventHandler(InstructionEditorDialog::updatePreview));
t2_instr->SetValue(wxString::Format("%08x", vm::read32(CPU->GetOffset() + pc)));
t2_instr->SetValue(wxString::Format("%08x", vm::read32(CPU->offset + pc)));
this->SetSizerAndFit(s_panel_margin_x);
@ -83,7 +83,7 @@ InstructionEditorDialog::InstructionEditorDialog(wxPanel *parent, u64 _pc, CPUTh
if (!t2_instr->GetValue().ToULong(&opcode, 16))
wxMessageBox("This instruction could not be parsed.\nNo changes were made.","Error");
else
vm::write32(CPU->GetOffset() + pc, (u32)opcode);
vm::write32(CPU->offset + pc, (u32)opcode);
}
}

View file

@ -248,10 +248,10 @@ void InterpreterDisAsmFrame::ShowAddr(const u64 addr)
}
else
{
disasm->offset = vm::get_ptr<u8>(CPU->GetOffset());
disasm->offset = vm::get_ptr<u8>(CPU->offset);
for(uint i=0, count = 4; i<m_item_count; ++i, PC += count)
{
if(!vm::check_addr(CPU->GetOffset() + PC, 4))
if(!vm::check_addr(CPU->offset + PC, 4))
{
m_list->SetItem(i, 0, wxString(IsBreakPoint(PC) ? ">>> " : " ") + wxString::Format("[%08llx] illegal address", PC));
count = 4;
@ -259,7 +259,7 @@ void InterpreterDisAsmFrame::ShowAddr(const u64 addr)
}
disasm->dump_pc = PC;
count = decoder->DecodeMemory(CPU->GetOffset() + PC);
count = decoder->DecodeMemory(CPU->offset + PC);
if(IsBreakPoint(PC))
{

View file

@ -178,7 +178,7 @@
<ClCompile Include="Emu\SysCalls\FuncList.cpp" />
<ClCompile Include="Emu\SysCalls\LogBase.cpp" />
<ClCompile Include="Emu\SysCalls\lv2\cellFs.cpp" />
<ClCompile Include="Emu\SysCalls\lv2\sleep_queue_type.cpp" />
<ClCompile Include="Emu\SysCalls\lv2\sleep_queue.cpp" />
<ClCompile Include="Emu\SysCalls\lv2\sys_cond.cpp" />
<ClCompile Include="Emu\SysCalls\lv2\sys_event.cpp" />
<ClCompile Include="Emu\SysCalls\lv2\sys_event_flag.cpp" />
@ -369,6 +369,7 @@
<ClInclude Include="Emu\Cell\PPUOpcodes.h" />
<ClInclude Include="Emu\Cell\PPUThread.h" />
<ClInclude Include="Emu\Cell\RawSPUThread.h" />
<ClInclude Include="Emu\Cell\SPUContext.h" />
<ClInclude Include="Emu\Cell\SPUDecoder.h" />
<ClInclude Include="Emu\Cell\SPUDisAsm.h" />
<ClInclude Include="Emu\Cell\SPUInstrTable.h" />
@ -409,7 +410,8 @@
<ClInclude Include="Emu\Io\PadHandler.h" />
<ClInclude Include="Emu\Memory\Memory.h" />
<ClInclude Include="Emu\Memory\MemoryBlock.h" />
<ClInclude Include="Emu\Memory\atomic_type.h" />
<ClInclude Include="Emu\Memory\atomic.h" />
<ClInclude Include="Emu\Memory\refcnt.h" />
<ClInclude Include="Emu\RSX\CgBinaryProgram.h" />
<ClInclude Include="Emu\RSX\GCM.h" />
<ClInclude Include="Emu\RSX\GL\GLBuffers.h" />
@ -439,7 +441,7 @@
<ClInclude Include="Emu\SysCalls\ErrorCodes.h" />
<ClInclude Include="Emu\SysCalls\LogBase.h" />
<ClInclude Include="Emu\SysCalls\lv2\cellFs.h" />
<ClInclude Include="Emu\SysCalls\lv2\sleep_queue_type.h" />
<ClInclude Include="Emu\SysCalls\lv2\sleep_queue.h" />
<ClInclude Include="Emu\SysCalls\lv2\sys_cond.h" />
<ClInclude Include="Emu\SysCalls\lv2\sys_event.h" />
<ClInclude Include="Emu\SysCalls\lv2\sys_event_flag.h" />

View file

@ -650,9 +650,6 @@
<ClCompile Include="Emu\ARMv7\Modules\sceLibm.cpp">
<Filter>Emu\CPU\ARMv7\Modules</Filter>
</ClCompile>
<ClCompile Include="Emu\SysCalls\lv2\sleep_queue_type.cpp">
<Filter>Emu\SysCalls\lv2</Filter>
</ClCompile>
<ClCompile Include="Emu\SysCalls\SyncPrimitivesManager.cpp">
<Filter>Emu\SysCalls</Filter>
</ClCompile>
@ -860,6 +857,9 @@
<ClCompile Include="Emu\SysCalls\Modules\sys_libc.cpp">
<Filter>Emu\SysCalls\Modules</Filter>
</ClCompile>
<ClCompile Include="Emu\SysCalls\lv2\sleep_queue.cpp">
<Filter>Emu\SysCalls\lv2</Filter>
</ClCompile>
</ItemGroup>
<ItemGroup>
<ClInclude Include="Crypto\aes.h">
@ -1447,9 +1447,6 @@
<ClInclude Include="Emu\SysCalls\SyncPrimitivesManager.h">
<Filter>Emu\SysCalls</Filter>
</ClInclude>
<ClInclude Include="Emu\Memory\atomic_type.h">
<Filter>Emu\Memory</Filter>
</ClInclude>
<ClInclude Include="Crypto\ec.h">
<Filter>Crypto</Filter>
</ClInclude>
@ -1459,9 +1456,6 @@
<ClInclude Include="Emu\ARMv7\PSVFuncList.h">
<Filter>Emu\CPU\ARMv7</Filter>
</ClInclude>
<ClInclude Include="Emu\SysCalls\lv2\sleep_queue_type.h">
<Filter>Emu\SysCalls\lv2</Filter>
</ClInclude>
<ClInclude Include="Emu\SysCalls\lv2\cellFs.h">
<Filter>Emu\SysCalls\lv2</Filter>
</ClInclude>
@ -1537,5 +1531,17 @@
<ClInclude Include="Emu\SysCalls\Modules\cellSearch.h">
<Filter>Emu\SysCalls\Modules</Filter>
</ClInclude>
<ClInclude Include="Emu\Cell\SPUContext.h">
<Filter>Emu\CPU\Cell</Filter>
</ClInclude>
<ClInclude Include="Emu\SysCalls\lv2\sleep_queue.h">
<Filter>Emu\SysCalls\lv2</Filter>
</ClInclude>
<ClInclude Include="Emu\Memory\atomic.h">
<Filter>Emu\Memory</Filter>
</ClInclude>
<ClInclude Include="Emu\Memory\refcnt.h">
<Filter>Emu\Memory</Filter>
</ClInclude>
</ItemGroup>
</Project>

View file

@ -27,6 +27,7 @@
#include <condition_variable>
#include <memory>
#include <vector>
#include <queue>
#include <set>
#include <array>
#include <string>
@ -62,5 +63,8 @@ template<typename T> __forceinline T align(const T addr, int align)
#include "Utilities/BEType.h"
#include "Utilities/StrFmt.h"
#include "Emu/Memory/atomic.h"
#include "Emu/Memory/refcnt.h"
#define _PRGNAME_ "RPCS3"
#define _PRGVER_ "0.0.0.5"