liverpool: Better sync for CPU flips

This commit is contained in:
IndecisiveTurtle 2024-07-13 17:46:56 +03:00
parent cc81ba6793
commit 2e4f32a840
16 changed files with 206 additions and 162 deletions

View file

@ -20,13 +20,12 @@
extern Frontend::WindowSDL* g_window;
std::unique_ptr<Vulkan::RendererVulkan> renderer;
std::unique_ptr<AmdGpu::Liverpool> liverpool;
namespace Libraries::GnmDriver {
using namespace AmdGpu;
static std::unique_ptr<AmdGpu::Liverpool> liverpool;
enum GnmEventIdents : u64 {
Compute0RelMem = 0x00,
Compute1RelMem = 0x01,

View file

@ -43,8 +43,8 @@ namespace Libraries {
void InitHLELibs(Core::Loader::SymbolsResolver* sym) {
LOG_INFO(Lib_Kernel, "Initializing HLE libraries");
Libraries::Kernel::LibKernel_Register(sym);
Libraries::VideoOut::RegisterLib(sym);
Libraries::GnmDriver::RegisterlibSceGnmDriver(sym);
Libraries::VideoOut::RegisterLib(sym);
if (!Config::isLleLibc()) {
Libraries::LibC::libcSymbolsRegister(sym);
}

View file

@ -7,11 +7,10 @@
#include "core/libraries/error_codes.h"
#include "core/libraries/kernel/time_management.h"
#include "core/libraries/videoout/driver.h"
#include "core/platform.h"
#include "video_core/renderer_vulkan/renderer_vulkan.h"
extern std::unique_ptr<Vulkan::RendererVulkan> renderer;
extern std::unique_ptr<AmdGpu::Liverpool> liverpool;
namespace Libraries::VideoOut {
@ -48,15 +47,12 @@ VideoOutDriver::VideoOutDriver(u32 width, u32 height) {
VideoOutDriver::~VideoOutDriver() = default;
int VideoOutDriver::Open(const ServiceThreadParams* params) {
std::scoped_lock lock{mutex};
if (main_port.is_open) {
return ORBIS_VIDEO_OUT_ERROR_RESOURCE_BUSY;
}
int handle = 1;
main_port.is_open = true;
return handle;
liverpool->SetVoPort(&main_port);
return 1;
}
void VideoOutDriver::Close(s32 handle) {
@ -164,7 +160,8 @@ void VideoOutDriver::Flip(const Request& req) {
std::scoped_lock lock{mutex};
// Update flip status.
auto& flip_status = req.port->flip_status;
auto* port = req.port;
auto& flip_status = port->flip_status;
flip_status.count++;
flip_status.processTime = Libraries::Kernel::sceKernelGetProcessTime();
flip_status.tsc = Libraries::Kernel::sceKernelReadTsc();
@ -174,7 +171,7 @@ void VideoOutDriver::Flip(const Request& req) {
flip_status.flipPendingNum = static_cast<int>(requests.size());
// Trigger flip events for the port.
for (auto& event : req.port->flip_events) {
for (auto& event : port->flip_events) {
if (event != nullptr) {
event->TriggerEvent(SCE_VIDEO_OUT_EVENT_FLIP, Kernel::SceKernelEvent::Filter::VideoOut,
reinterpret_cast<void*>(req.flip_arg));
@ -183,7 +180,8 @@ void VideoOutDriver::Flip(const Request& req) {
// Reset flip label
if (req.index != -1) {
req.port->buffer_labels[req.index] = 0;
port->buffer_labels[req.index] = 0;
port->SignalVoLabel();
}
}
@ -197,7 +195,7 @@ bool VideoOutDriver::SubmitFlip(VideoOutPort* port, s32 index, s64 flip_arg,
} else {
const auto& buffer = port->buffer_slots[index];
const auto& group = port->groups[buffer.group_index];
frame = renderer->PrepareFrame(group, buffer.address_left);
frame = renderer->PrepareFrame(group, buffer.address_left, is_eop);
}
if (index != -1 && requests.size() >= port->NumRegisteredBuffers()) {

View file

@ -26,6 +26,8 @@ struct VideoOutPort {
SceVideoOutVblankStatus vblank_status;
std::vector<Kernel::SceKernelEqueue> flip_events;
std::vector<Kernel::SceKernelEqueue> vblank_events;
std::mutex vo_mutex;
std::condition_variable vo_cv;
int flip_rate = 0;
s32 FindFreeGroup() const {
@ -36,6 +38,22 @@ struct VideoOutPort {
return index;
}
bool IsVoLabel(const u64* address) const {
const u64* start = &buffer_labels[0];
const u64* end = &buffer_labels[MaxDisplayBuffers - 1];
return address >= start && address <= end;
}
void WaitVoLabel(auto&& pred) {
std::unique_lock lk{vo_mutex};
vo_cv.wait(lk, pred);
}
void SignalVoLabel() {
std::scoped_lock lk{vo_mutex};
vo_cv.notify_one();
}
[[nodiscard]] int NumRegisteredBuffers() const {
return std::count_if(buffer_slots.cbegin(), buffer_slots.cend(),
[](auto& buffer) { return buffer.group_index != -1; });

View file

@ -141,12 +141,10 @@ s32 PS4_SYSV_ABI sceVideoOutSubmitFlip(s32 handle, s32 bufferIndex, s32 flipMode
LOG_INFO(Lib_VideoOut, "bufferIndex = {}, flipMode = {}, flipArg = {}", bufferIndex, flipMode,
flipArg);
// Next time the gpu enters idle state, submit the flip
Platform::IrqC::Instance()->RegisterOnce(
Platform::InterruptId::GpuIdle, [=](Platform::InterruptId irq) {
const auto result = driver->SubmitFlip(port, bufferIndex, flipArg);
ASSERT_MSG(result, "Flip submission failed");
});
if (!driver->SubmitFlip(port, bufferIndex, flipArg)) {
LOG_ERROR(Lib_VideoOut, "Flip queue is full");
return ORBIS_VIDEO_OUT_ERROR_FLIP_QUEUE_FULL;
}
return ORBIS_OK;
}

View file

@ -5,6 +5,7 @@
#include "common/debug.h"
#include "common/polyfill_thread.h"
#include "common/thread.h"
#include "core/libraries/videoout/driver.h"
#include "video_core/amdgpu/liverpool.h"
#include "video_core/amdgpu/pm4_cmds.h"
#include "video_core/renderer_vulkan/vk_rasterizer.h"
@ -361,6 +362,11 @@ Liverpool::Task Liverpool::ProcessGraphics(std::span<const u32> dcb, std::span<c
}
case PM4ItOpcode::EventWriteEop: {
const auto* event_eop = reinterpret_cast<const PM4CmdEventWriteEop*>(header);
// Guest can wait for GfxEop event to submit CPU flips.
// Flush command list to ensure order.
if (rasterizer && event_eop->int_sel == InterruptSelect::IrqWhenWriteConfirm) {
rasterizer->Flush();
}
event_eop->SignalFence();
break;
}
@ -372,8 +378,14 @@ Liverpool::Task Liverpool::ProcessGraphics(std::span<const u32> dcb, std::span<c
const auto* write_data = reinterpret_cast<const PM4CmdWriteData*>(header);
ASSERT(write_data->dst_sel.Value() == 2 || write_data->dst_sel.Value() == 5);
const u32 data_size = (header->type3.count.Value() - 2) * 4;
u64* address = write_data->Address<u64*>();
if (!write_data->wr_one_addr.Value()) {
std::memcpy(write_data->Address<void*>(), write_data->data, data_size);
// Guest can poll VO label before submitting CPU flips.
// Flush command list before signalling to ensure order.
if (rasterizer && vo_port->IsVoLabel(address)) {
rasterizer->Flush();
}
std::memcpy(address, write_data->data, data_size);
} else {
UNREACHABLE();
}
@ -386,6 +398,14 @@ Liverpool::Task Liverpool::ProcessGraphics(std::span<const u32> dcb, std::span<c
case PM4ItOpcode::WaitRegMem: {
const auto* wait_reg_mem = reinterpret_cast<const PM4CmdWaitRegMem*>(header);
ASSERT(wait_reg_mem->engine.Value() == PM4CmdWaitRegMem::Engine::Me);
// Optimization: VO label waits are special because the emulator
// will write to the label when presentation is finished. So if
// there are no other submits to yield to we can sleep the thread
// instead and allow other tasks to run.
const u64* wait_addr = wait_reg_mem->Address<u64*>();
if (vo_port->IsVoLabel(wait_addr) && num_submits == 1) {
vo_port->WaitVoLabel([&] { return wait_reg_mem->Test(); });
}
while (!wait_reg_mem->Test()) {
TracyFiberLeave;
co_yield {};

View file

@ -10,6 +10,7 @@
#include <span>
#include <thread>
#include <queue>
#include <functional>
#include "common/assert.h"
#include "common/bit_field.h"
#include "common/polyfill_thread.h"
@ -21,6 +22,10 @@ namespace Vulkan {
class Rasterizer;
}
namespace Libraries::VideoOut {
struct VideoOutPort;
}
namespace AmdGpu {
#define GFX6_3D_REG_INDEX(field_name) (offsetof(AmdGpu::Liverpool::Regs, field_name) / sizeof(u32))
@ -1001,6 +1006,10 @@ public:
return num_submits == 0;
}
void SetVoPort(Libraries::VideoOut::VideoOutPort* port) {
vo_port = port;
}
void BindRasterizer(Vulkan::Rasterizer* rasterizer_) {
rasterizer = rasterizer_;
}
@ -1065,6 +1074,7 @@ private:
} cblock{};
Vulkan::Rasterizer* rasterizer{};
Libraries::VideoOut::VideoOutPort* vo_port{};
std::jthread process_thread{};
std::atomic<u32> num_submits{};
std::atomic<bool> submit_done{};

View file

@ -404,8 +404,9 @@ struct PM4CmdWaitRegMem {
u32 mask;
u32 poll_interval;
u32* Address() const {
return reinterpret_cast<u32*>((uintptr_t(poll_addr_hi) << 32) | poll_addr_lo);
template <typename T = u32*>
T Address() const {
return reinterpret_cast<T>((uintptr_t(poll_addr_hi) << 32) | poll_addr_lo);
}
bool Test() const {
@ -464,8 +465,8 @@ struct PM4CmdWriteData {
}
template <typename T>
T* Address() const {
return reinterpret_cast<T*>(addr64);
T Address() const {
return reinterpret_cast<T>(addr64);
}
};
@ -494,8 +495,9 @@ struct PM4CmdEventWriteEos {
BitField<16, 16, u32> size; ///< Number of DWs to read from the GDS
};
u32* Address() const {
return reinterpret_cast<u32*>(address_lo | u64(address_hi) << 32);
template <typename T = u32*>
T Address() const {
return reinterpret_cast<T>(address_lo | u64(address_hi) << 32);
}
u32 DataDWord() const {

View file

@ -63,44 +63,30 @@ bool CanBlitToSwapchain(const vk::PhysicalDevice physical_device, vk::Format for
};
}
RendererVulkan::RendererVulkan(Frontend::WindowSDL& window_, AmdGpu::Liverpool* liverpool)
: window{window_}, instance{window, Config::getGpuId(), Config::vkValidationEnabled()},
scheduler{instance}, swapchain{instance, window}, texture_cache{instance, scheduler} {
rasterizer = std::make_unique<Rasterizer>(instance, scheduler, texture_cache, liverpool);
RendererVulkan::RendererVulkan(Frontend::WindowSDL& window_, AmdGpu::Liverpool* liverpool_)
: window{window_}, liverpool{liverpool_}, instance{window, Config::getGpuId(), Config::vkValidationEnabled()},
schedulers{Scheduler{instance}, Scheduler{instance}, Scheduler{instance}},
swapchain{instance, window}, texture_cache{instance, schedulers[SchedulerType::Draw]} {
rasterizer = std::make_unique<Rasterizer>(instance, schedulers[SchedulerType::Draw],
texture_cache, liverpool);
const u32 num_images = swapchain.GetImageCount();
const vk::Device device = instance.GetDevice();
const vk::CommandPoolCreateInfo pool_info = {
.flags = vk::CommandPoolCreateFlagBits::eResetCommandBuffer |
vk::CommandPoolCreateFlagBits::eTransient,
.queueFamilyIndex = instance.GetGraphicsQueueFamilyIndex(),
};
command_pool = device.createCommandPoolUnique(pool_info);
const vk::CommandBufferAllocateInfo alloc_info = {
.commandPool = *command_pool,
.level = vk::CommandBufferLevel::ePrimary,
.commandBufferCount = num_images,
};
const auto cmdbuffers = device.allocateCommandBuffers(alloc_info);
// Create presentation frames.
present_frames.resize(num_images);
for (u32 i = 0; i < num_images; i++) {
Frame& frame = present_frames[i];
frame.cmdbuf = cmdbuffers[i];
frame.render_ready = device.createSemaphore({});
frame.present_done = device.createFence({.flags = vk::FenceCreateFlagBits::eSignaled});
free_queue.push(&frame);
}
}
RendererVulkan::~RendererVulkan() {
scheduler.Finish();
schedulers[SchedulerType::Draw].Finish();
const vk::Device device = instance.GetDevice();
for (auto& frame : present_frames) {
vmaDestroyImage(instance.GetAllocator(), frame.image, frame.allocation);
device.destroyImageView(frame.image_view);
device.destroySemaphore(frame.render_ready);
device.destroyFence(frame.present_done);
}
}
@ -184,7 +170,7 @@ bool RendererVulkan::ShowSplash(Frame* frame /*= nullptr*/) {
info.pitch = splash->GetImageInfo().width;
info.guest_address = VAddr(splash->GetImageData().data());
info.guest_size_bytes = splash->GetImageData().size();
splash_img.emplace(instance, scheduler, info);
splash_img.emplace(instance, schedulers[SchedulerType::Present], info);
texture_cache.RefreshImage(*splash_img);
}
frame = PrepareFrameInternal(*splash_img);
@ -193,12 +179,18 @@ bool RendererVulkan::ShowSplash(Frame* frame /*= nullptr*/) {
return true;
}
Frame* RendererVulkan::PrepareFrameInternal(VideoCore::Image& image) {
Frame* RendererVulkan::PrepareFrameInternal(VideoCore::Image& image, bool is_eop) {
// Request a free presentation frame.
Frame* frame = GetRenderFrame();
// Post-processing (Anti-aliasing, FSR etc) goes here. For now just blit to the frame image.
image.Transit(vk::ImageLayout::eTransferSrcOptimal, vk::AccessFlagBits::eTransferRead);
// EOP flips are triggered from GPU thread to use the drawing scheduler to record
// commands. Otherwise we are dealing with a CPU flip which could have arrived
// from any guest thread. Use a separate scheduler for that.
auto& scheduler = schedulers[is_eop ? SchedulerType::Draw : SchedulerType::CpuFlip];
const auto cmdbuf = scheduler.CommandBuffer();
image.Transit(vk::ImageLayout::eTransferSrcOptimal, vk::AccessFlagBits::eTransferRead,
cmdbuf);
const std::array pre_barrier{
vk::ImageMemoryBarrier{
@ -218,12 +210,11 @@ Frame* RendererVulkan::PrepareFrameInternal(VideoCore::Image& image) {
},
},
};
const auto cmdbuf = scheduler.CommandBuffer();
cmdbuf.pipelineBarrier(vk::PipelineStageFlagBits::eTransfer,
vk::PipelineStageFlagBits::eTransfer, vk::DependencyFlagBits::eByRegion,
{}, {}, pre_barrier);
// Post-processing (Anti-aliasing, FSR etc) goes here. For now just blit to the frame image.
cmdbuf.blitImage(
image.image, image.layout, frame->image, vk::ImageLayout::eTransferDstOptimal,
MakeImageBlit(image.info.size.width, image.info.size.height, frame->width, frame->height),
@ -245,13 +236,15 @@ Frame* RendererVulkan::PrepareFrameInternal(VideoCore::Image& image) {
.layerCount = VK_REMAINING_ARRAY_LAYERS,
},
};
cmdbuf.pipelineBarrier(vk::PipelineStageFlagBits::eAllCommands,
vk::PipelineStageFlagBits::eAllCommands,
vk::DependencyFlagBits::eByRegion, {}, {}, post_barrier);
// Flush pending vulkan operations.
scheduler.Flush(frame->render_ready);
// Flush frame creation commands.
frame->ready_semaphore = scheduler.GetMasterSemaphore()->Handle();
frame->ready_tick = scheduler.CurrentTick();
SubmitInfo info{};
scheduler.Flush(info);
return frame;
}
@ -260,11 +253,8 @@ void RendererVulkan::Present(Frame* frame) {
const vk::Image swapchain_image = swapchain.Image();
const vk::CommandBufferBeginInfo begin_info = {
.flags = vk::CommandBufferUsageFlagBits::eOneTimeSubmit,
};
const vk::CommandBuffer cmdbuf = frame->cmdbuf;
cmdbuf.begin(begin_info);
auto& scheduler = schedulers[SchedulerType::Present];
const auto cmdbuf = scheduler.CommandBuffer();
{
auto* profiler_ctx = instance.GetProfilerContext();
TracyVkNamedZoneC(profiler_ctx, renderer_gpu_zone, cmdbuf, "Host frame",
@ -339,35 +329,17 @@ void RendererVulkan::Present(Frame* frame) {
TracyVkCollect(profiler_ctx, cmdbuf);
}
}
cmdbuf.end();
static constexpr std::array<vk::PipelineStageFlags, 2> wait_stage_masks = {
vk::PipelineStageFlagBits::eColorAttachmentOutput,
vk::PipelineStageFlagBits::eAllGraphics,
};
const vk::Semaphore present_ready = swapchain.GetPresentReadySemaphore();
const vk::Semaphore image_acquired = swapchain.GetImageAcquiredSemaphore();
const std::array wait_semaphores = {image_acquired, frame->render_ready};
vk::SubmitInfo submit_info = {
.waitSemaphoreCount = static_cast<u32>(wait_semaphores.size()),
.pWaitSemaphores = wait_semaphores.data(),
.pWaitDstStageMask = wait_stage_masks.data(),
.commandBufferCount = 1u,
.pCommandBuffers = &cmdbuf,
.signalSemaphoreCount = 1,
.pSignalSemaphores = &present_ready,
};
std::scoped_lock submit_lock{scheduler.submit_mutex};
try {
instance.GetGraphicsQueue().submit(submit_info, frame->present_done);
} catch (vk::DeviceLostError& err) {
LOG_CRITICAL(Render_Vulkan, "Device lost during present submit: {}", err.what());
UNREACHABLE();
}
// Flush vulkan commands.
SubmitInfo info{};
info.AddWait(swapchain.GetImageAcquiredSemaphore());
info.AddWait(frame->ready_semaphore, frame->ready_tick);
info.AddSignal(swapchain.GetPresentReadySemaphore());
info.AddSignal(frame->present_done);
scheduler.Flush(info);
// Present to swapchain.
std::scoped_lock submit_lock{Scheduler::submit_mutex};
swapchain.Present();
// Free the frame for reuse

View file

@ -26,9 +26,15 @@ struct Frame {
VmaAllocation allocation;
vk::Image image;
vk::ImageView image_view;
vk::Semaphore render_ready;
vk::Fence present_done;
vk::CommandBuffer cmdbuf;
vk::Semaphore ready_semaphore;
u64 ready_tick;
};
enum SchedulerType {
Draw,
Present,
CpuFlip,
};
class Rasterizer;
@ -39,16 +45,16 @@ public:
~RendererVulkan();
Frame* PrepareFrame(const Libraries::VideoOut::BufferAttributeGroup& attribute,
VAddr cpu_address) {
VAddr cpu_address, bool is_eop) {
const auto info = VideoCore::ImageInfo{attribute, cpu_address};
const auto image_id = texture_cache.FindImage(info, cpu_address);
auto& image = texture_cache.GetImage(image_id);
return PrepareFrameInternal(image);
return PrepareFrameInternal(image, is_eop);
}
Frame* PrepareBlankFrame() {
auto& image = texture_cache.GetImage(VideoCore::NULL_IMAGE_ID);
return PrepareFrameInternal(image);
return PrepareFrameInternal(image, true);
}
VideoCore::Image& RegisterVideoOutSurface(
@ -60,9 +66,9 @@ public:
}
bool IsVideoOutSurface(const AmdGpu::Liverpool::ColorBuffer& color_buffer) {
return std::find_if(vo_buffers_addr.cbegin(), vo_buffers_addr.cend(), [&](VAddr vo_buffer) {
return std::ranges::find_if(vo_buffers_addr, [&](VAddr vo_buffer) {
return vo_buffer == color_buffer.Address();
}) != vo_buffers_addr.cend();
}) != vo_buffers_addr.end();
}
bool ShowSplash(Frame* frame = nullptr);
@ -70,13 +76,14 @@ public:
void RecreateFrame(Frame* frame, u32 width, u32 height);
private:
Frame* PrepareFrameInternal(VideoCore::Image& image);
Frame* PrepareFrameInternal(VideoCore::Image& image, bool is_eop = true);
Frame* GetRenderFrame();
private:
Frontend::WindowSDL& window;
AmdGpu::Liverpool* liverpool;
Instance instance;
Scheduler scheduler;
std::array<Scheduler, 3> schedulers;
Swapchain swapchain;
std::unique_ptr<Rasterizer> rasterizer;
VideoCore::TextureCache texture_cache;

View file

@ -2,8 +2,6 @@
// SPDX-License-Identifier: GPL-2.0-or-later
#include <limits>
#include <mutex>
#include "common/assert.h"
#include "video_core/renderer_vulkan/vk_instance.h"
#include "video_core/renderer_vulkan/vk_master_semaphore.h"
@ -60,46 +58,4 @@ void MasterSemaphore::Wait(u64 tick) {
Refresh();
}
void MasterSemaphore::SubmitWork(vk::CommandBuffer cmdbuf, vk::Semaphore wait, vk::Semaphore signal,
u64 signal_value) {
cmdbuf.end();
const u32 num_signal_semaphores = signal ? 2U : 1U;
const std::array signal_values{signal_value, u64(0)};
const std::array signal_semaphores{Handle(), signal};
const u32 num_wait_semaphores = wait ? 2U : 1U;
const std::array wait_values{signal_value - 1, u64(1)};
const std::array wait_semaphores{Handle(), wait};
static constexpr std::array<vk::PipelineStageFlags, 2> wait_stage_masks = {
vk::PipelineStageFlagBits::eAllCommands,
vk::PipelineStageFlagBits::eColorAttachmentOutput,
};
const vk::TimelineSemaphoreSubmitInfo timeline_si = {
.waitSemaphoreValueCount = num_wait_semaphores,
.pWaitSemaphoreValues = wait_values.data(),
.signalSemaphoreValueCount = num_signal_semaphores,
.pSignalSemaphoreValues = signal_values.data(),
};
const vk::SubmitInfo submit_info = {
.pNext = &timeline_si,
.waitSemaphoreCount = num_wait_semaphores,
.pWaitSemaphores = wait_semaphores.data(),
.pWaitDstStageMask = wait_stage_masks.data(),
.commandBufferCount = 1u,
.pCommandBuffers = &cmdbuf,
.signalSemaphoreCount = num_signal_semaphores,
.pSignalSemaphores = signal_semaphores.data(),
};
try {
instance.GetGraphicsQueue().submit(submit_info);
} catch (vk::DeviceLostError& err) {
UNREACHABLE_MSG("Device lost during submit: {}", err.what());
}
}
} // namespace Vulkan

View file

@ -46,10 +46,6 @@ public:
/// Waits for a tick to be hit on the GPU
void Wait(u64 tick);
/// Submits the provided command buffer for execution
void SubmitWork(vk::CommandBuffer cmdbuf, vk::Semaphore wait, vk::Semaphore signal,
u64 signal_value);
protected:
const Instance& instance;
vk::UniqueSemaphore semaphore; ///< Timeline semaphore.

View file

@ -96,8 +96,11 @@ void Rasterizer::DispatchDirect() {
cmdbuf.dispatch(cs_program.dim_x, cs_program.dim_y, cs_program.dim_z);
}
void Rasterizer::Flush() {
scheduler.Flush();
u64 Rasterizer::Flush() {
const u64 current_tick = scheduler.CurrentTick();
SubmitInfo info{};
scheduler.Flush(info);
return current_tick;
}
void Rasterizer::BeginRendering() {

View file

@ -36,7 +36,7 @@ public:
void ScopeMarkerBegin(const std::string& str);
void ScopeMarkerEnd();
void Flush();
u64 Flush();
private:
u32 SetupIndexBuffer(bool& is_indexed, u32 index_offset);

View file

@ -2,12 +2,15 @@
// SPDX-License-Identifier: GPL-2.0-or-later
#include <mutex>
#include "common/assert.h"
#include "common/debug.h"
#include "video_core/renderer_vulkan/vk_instance.h"
#include "video_core/renderer_vulkan/vk_scheduler.h"
namespace Vulkan {
std::mutex Scheduler::submit_mutex;
Scheduler::Scheduler(const Instance& instance)
: instance{instance}, master_semaphore{instance}, command_pool{instance, &master_semaphore} {
profiler_scope = reinterpret_cast<tracy::VkCtxScope*>(std::malloc(sizeof(tracy::VkCtxScope)));
@ -50,22 +53,24 @@ void Scheduler::EndRendering() {
current_cmdbuf.endRendering();
}
void Scheduler::Flush(vk::Semaphore signal, vk::Semaphore wait) {
// When flushing, we only send data to the worker thread; no waiting is necessary.
SubmitExecution(signal, wait);
void Scheduler::Flush(SubmitInfo& info) {
// When flushing, we only send data to the driver; no waiting is necessary.
SubmitExecution(info);
}
void Scheduler::Finish(vk::Semaphore signal, vk::Semaphore wait) {
void Scheduler::Finish() {
// When finishing, we need to wait for the submission to have executed on the device.
const u64 presubmit_tick = CurrentTick();
SubmitExecution(signal, wait);
SubmitInfo info{};
SubmitExecution(info);
Wait(presubmit_tick);
}
void Scheduler::Wait(u64 tick) {
if (tick >= master_semaphore.CurrentTick()) {
// Make sure we are not waiting for the current tick without signalling
Flush();
SubmitInfo info{};
Flush(info);
}
master_semaphore.Wait(tick);
}
@ -86,7 +91,7 @@ void Scheduler::AllocateWorkerCommandBuffers() {
}
}
void Scheduler::SubmitExecution(vk::Semaphore signal_semaphore, vk::Semaphore wait_semaphore) {
void Scheduler::SubmitExecution(SubmitInfo& info) {
std::scoped_lock lk{submit_mutex};
const u64 signal_value = master_semaphore.NextTick();
@ -97,7 +102,40 @@ void Scheduler::SubmitExecution(vk::Semaphore signal_semaphore, vk::Semaphore wa
}
EndRendering();
master_semaphore.SubmitWork(current_cmdbuf, wait_semaphore, signal_semaphore, signal_value);
current_cmdbuf.end();
const vk::Semaphore timeline = master_semaphore.Handle();
info.AddSignal(timeline, signal_value);
static constexpr std::array<vk::PipelineStageFlags, 2> wait_stage_masks = {
vk::PipelineStageFlagBits::eAllCommands,
vk::PipelineStageFlagBits::eColorAttachmentOutput,
};
const vk::TimelineSemaphoreSubmitInfo timeline_si = {
.waitSemaphoreValueCount = static_cast<u32>(info.wait_ticks.size()),
.pWaitSemaphoreValues = info.wait_ticks.data(),
.signalSemaphoreValueCount = static_cast<u32>(info.signal_ticks.size()),
.pSignalSemaphoreValues = info.signal_ticks.data(),
};
const vk::SubmitInfo submit_info = {
.pNext = &timeline_si,
.waitSemaphoreCount = static_cast<u32>(info.wait_semas.size()),
.pWaitSemaphores = info.wait_semas.data(),
.pWaitDstStageMask = wait_stage_masks.data(),
.commandBufferCount = 1U,
.pCommandBuffers = &current_cmdbuf,
.signalSemaphoreCount = static_cast<u32>(info.signal_semas.size()),
.pSignalSemaphores = info.signal_semas.data(),
};
try {
instance.GetGraphicsQueue().submit(submit_info, info.fence);
} catch (vk::DeviceLostError& err) {
UNREACHABLE_MSG("Device lost during submit: {}", err.what());
}
master_semaphore.Refresh();
AllocateWorkerCommandBuffers();

View file

@ -26,16 +26,39 @@ struct RenderState {
}
};
struct SubmitInfo {
boost::container::static_vector<vk::Semaphore, 3> wait_semas;
boost::container::static_vector<u64, 3> wait_ticks;
boost::container::static_vector<vk::Semaphore, 3> signal_semas;
boost::container::static_vector<u64, 3> signal_ticks;
vk::Fence fence;
void AddWait(vk::Semaphore semaphore, u64 tick = 1) {
wait_semas.emplace_back(semaphore);
wait_ticks.emplace_back(tick);
}
void AddSignal(vk::Semaphore semaphore, u64 tick = 1) {
signal_semas.emplace_back(semaphore);
signal_ticks.emplace_back(tick);
}
void AddSignal(vk::Fence fence) {
this->fence = fence;
}
};
class Scheduler {
public:
explicit Scheduler(const Instance& instance);
~Scheduler();
/// Sends the current execution context to the GPU.
void Flush(vk::Semaphore signal = nullptr, vk::Semaphore wait = nullptr);
/// Sends the current execution context to the GPU
/// and increments the scheduler timeline semaphore.
void Flush(SubmitInfo& info);
/// Sends the current execution context to the GPU and waits for it to complete.
void Finish(vk::Semaphore signal = nullptr, vk::Semaphore wait = nullptr);
void Finish();
/// Waits for the given tick to trigger on the GPU.
void Wait(u64 tick);
@ -71,17 +94,21 @@ public:
return &master_semaphore;
}
<<<<<<< HEAD
/// Defers an operation until the gpu has reached the current cpu tick.
void DeferOperation(auto&& func) {
pending_ops.emplace(func, CurrentTick());
}
std::mutex submit_mutex;
=======
static std::mutex submit_mutex;
>>>>>>> 06b0f04 (liverpool: Better sync for CPU flips)
private:
void AllocateWorkerCommandBuffers();
void SubmitExecution(vk::Semaphore signal_semaphore, vk::Semaphore wait_semaphore);
void SubmitExecution(SubmitInfo& info);
private:
const Instance& instance;