The system can finally idle without burning CPU. :^)
There are some issues with scheduling making the mouse cursor sloppy
and unresponsive that need to be dealt with.
When you open /dev/ptmx, you get a file descriptor pointing to one of the
available MasterPTY's. If none are available, you get an EBUSY.
This makes it possible to open multiple (up to 4) Terminals. :^)
To support this, I also added a CharacterDevice::open() that gets control
when VFS is opening a CharacterDevice. This is useful when we want to return
a custom FileDescriptor like we do here.
Userspace programs can now open /dev/gui_events and read a stream of GUI_Event
structs one at a time.
I was stuck on a stupid problem where we'd reenter Scheduler::yield() due to
having one of the has_data_available_for_reading() implementations using locks.
Process page directories can now actually be freed. This could definitely
be implemented in a nicer, less wasteful way, but this works for now.
The spawn stress test can now run for a lot longer but eventually dies
due to kmalloc running out of memory.
Also use a simple array of { dword, const char* } for the KSyms and put the
whole shebang in kmalloc_eternal() memory. This was a fugly source of
kmalloc perma-frag.
Pass the file name in a stack-allocated buffer instead of using an AK::String
when iterating directories. This dramatically reduces the amount of cycles
spent traversing the filesystem.
- Process::exec() needs to restore the original paging scope when called
on a non-current process.
- Add missing InterruptDisabler guards around g_processes access.
- Only flush the TLB when modifying the active page tables.
sys$fork() now clones all writable regions with per-page COW bits.
The pages are then mapped read-only and we handle a PF by COWing the pages.
This is quite delightful. Obviously there's lots of work to do still,
and it needs better data structures, but the general concept works.