Having an alias function that only wraps another one is silly, and
keeping the more obvious name should flush out more uses of deprecated
strings.
No behavior change.
This allows you to enter TRUE or FALSE in a SQL statement for BOOLEAN
types. Note that this differs from SQLite, which requires entering 1 or
0 for BOOLEANs; having explicit keywords feels a bit more natural.
This partially implements SQLite's bind-parameter expression to support
indicating placeholder values in a SQL statement. For example:
INSERT INTO table VALUES (42, ?);
In the above statement, the '?' identifier is a placeholder. This will
allow clients to compile statements a single time while running those
statements any number of times with different placeholder values.
Further, this will help mitigate SQL injection attacks.
This will make it easier to support both string types at the same time
while we convert code, and tracking down remaining uses.
One big exception is Value::to_string() in LibJS, where the name is
dictated by the ToString AO.
We have a new, improved string type coming up in AK (OOM aware, no null
state), and while it's going to use UTF-8, the name UTF8String is a
mouthful - so let's free up the String name by renaming the existing
class.
Making the old one have an annoying name will hopefully also help with
quick adoption :^)
Each of these strings would previously rely on StringView's char const*
constructor overload, which would call __builtin_strlen on the string.
Since we now have operator ""sv, we can replace these with much simpler
versions. This opens the door to being able to remove
StringView(char const*).
No functional changes.
The evaluation order of method parameters is unspecified in C++, and
so we couldn't rely on parse_statement() being called before
parse_escape() when building a MatchExpression.
With this patch, we explicitly parse what we need in the right order,
before building the MatchExpression object.
SQL was standardized before there was consensus on sane language syntax
constructs had evolved. The language is mostly case-insensitive, with
unquoted text converted to upper case. Identifiers can include lower
case characters and other 'special' characters by enclosing the
identifier with double quotes. A double quote is escaped by doubling it.
Likewise, a single quote in a literal string is escaped by doubling it.
All this means that the strategy used in the lexer, where a token's
value is a StringView 'window' on the source string, does not work,
because the value needs to be massaged before being handed to the
parser. Therefore a token now has a String containing its value. Given
the limited lifetime of a token, this is acceptable overhead.
Not doing this means that for example quote removal and double quote
escaping would need to be done in the parser or in AST node
construction, which would spread lexing basically all over the place.
Which would be suboptimal.
There was some impact on the sql utility and SyntaxHighlighter component
which was addressed by storing the token's end position together with
the start position in order to properly highlight it.
Finally, reviewing the tests for parsing numeric literals revealed an
inconsistency in which tokens we accept or reject: `1a` is accepted but
`1e` is rejected. Related to this is the fate of `0x`. Added a FIXME
reminding us to address this.
According to the definition at https://sqlite.org/lang_expr.html, SQL
expressions could be infinitely deep. For practicality, SQLite enforces
a maxiumum expression tree depth of 1000. Apply the same limit in
LibSQL to avoid stack overflow in the expression parser.
Fixes https://crbug.com/oss-fuzz/34859.