ladybird/Libraries/LibWeb/SVG/Path.cpp
Sam Atkins 8538186ca5 LibWeb/SVG: Add serialization of Paths
CSS users (like the `path()` function) need to be able to serialize
their path data in a canonical form.
2025-07-17 13:59:23 -04:00

306 lines
11 KiB
C++

/*
* Copyright (c) 2020, Matthew Olsson <mattco@serenityos.org>
* Copyright (c) 2022-2025, Sam Atkins <sam@ladybird.org>
* Copyright (c) 2024, Tim Ledbetter <timledbetter@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Debug.h>
#include <AK/Span.h>
#include <AK/String.h>
#include <LibGfx/Path.h>
#include <LibWeb/SVG/Path.h>
namespace Web::SVG {
void PathInstruction::serialize(StringBuilder& builder) const
{
switch (type) {
case PathInstructionType::Move:
builder.append(absolute ? 'M' : 'm');
break;
case PathInstructionType::ClosePath:
// NB: This is always canonicalized as Z, not z.
builder.append('Z');
break;
case PathInstructionType::Line:
builder.append(absolute ? 'L' : 'l');
break;
case PathInstructionType::HorizontalLine:
builder.append(absolute ? 'H' : 'h');
break;
case PathInstructionType::VerticalLine:
builder.append(absolute ? 'V' : 'v');
break;
case PathInstructionType::Curve:
builder.append(absolute ? 'C' : 'c');
break;
case PathInstructionType::SmoothCurve:
builder.append(absolute ? 'S' : 's');
break;
case PathInstructionType::QuadraticBezierCurve:
builder.append(absolute ? 'Q' : 'q');
break;
case PathInstructionType::SmoothQuadraticBezierCurve:
builder.append(absolute ? 'T' : 't');
break;
case PathInstructionType::EllipticalArc:
builder.append(absolute ? 'A' : 'a');
break;
case PathInstructionType::Invalid:
break;
}
for (auto const& value : data)
builder.appendff(" {}", value);
}
void PathInstruction::dump() const
{
switch (type) {
case PathInstructionType::Move:
dbgln("Move (absolute={})", absolute);
for (size_t i = 0; i < data.size(); i += 2)
dbgln(" x={}, y={}", data[i], data[i + 1]);
break;
case PathInstructionType::ClosePath:
dbgln("ClosePath (absolute={})", absolute);
break;
case PathInstructionType::Line:
dbgln("Line (absolute={})", absolute);
for (size_t i = 0; i < data.size(); i += 2)
dbgln(" x={}, y={}", data[i], data[i + 1]);
break;
case PathInstructionType::HorizontalLine:
dbgln("HorizontalLine (absolute={})", absolute);
for (size_t i = 0; i < data.size(); ++i)
dbgln(" x={}", data[i]);
break;
case PathInstructionType::VerticalLine:
dbgln("VerticalLine (absolute={})", absolute);
for (size_t i = 0; i < data.size(); ++i)
dbgln(" y={}", data[i]);
break;
case PathInstructionType::Curve:
dbgln("Curve (absolute={})", absolute);
for (size_t i = 0; i < data.size(); i += 6)
dbgln(" (x1={}, y1={}, x2={}, y2={}), (x={}, y={})", data[i], data[i + 1], data[i + 2], data[i + 3], data[i + 4], data[i + 5]);
break;
case PathInstructionType::SmoothCurve:
dbgln("SmoothCurve (absolute={})", absolute);
for (size_t i = 0; i < data.size(); i += 4)
dbgln(" (x2={}, y2={}), (x={}, y={})", data[i], data[i + 1], data[i + 2], data[i + 3]);
break;
case PathInstructionType::QuadraticBezierCurve:
dbgln("QuadraticBezierCurve (absolute={})", absolute);
for (size_t i = 0; i < data.size(); i += 4)
dbgln(" (x1={}, y1={}), (x={}, y={})", data[i], data[i + 1], data[i + 2], data[i + 3]);
break;
case PathInstructionType::SmoothQuadraticBezierCurve:
dbgln("SmoothQuadraticBezierCurve (absolute={})", absolute);
for (size_t i = 0; i < data.size(); i += 2)
dbgln(" x={}, y={}", data[i], data[i + 1]);
break;
case PathInstructionType::EllipticalArc:
dbgln("EllipticalArc (absolute={})", absolute);
for (size_t i = 0; i < data.size(); i += 7)
dbgln(" (rx={}, ry={}) x-axis-rotation={}, large-arc-flag={}, sweep-flag={}, (x={}, y={})",
data[i],
data[i + 1],
data[i + 2],
data[i + 3],
data[i + 4],
data[i + 5],
data[i + 6]);
break;
case PathInstructionType::Invalid:
dbgln("Invalid");
break;
}
}
Gfx::Path Path::to_gfx_path() const
{
Gfx::Path path;
Optional<Gfx::FloatPoint> previous_control_point;
PathInstructionType last_instruction = PathInstructionType::Invalid;
for (auto& instruction : m_instructions) {
// If the first path element uses relative coordinates, we treat them as absolute by making them relative to (0, 0).
auto last_point = path.last_point();
auto& absolute = instruction.absolute;
auto& data = instruction.data;
if constexpr (PATH_DEBUG) {
instruction.dump();
}
bool clear_last_control_point = true;
switch (instruction.type) {
case PathInstructionType::Move: {
Gfx::FloatPoint point = { data[0], data[1] };
if (absolute) {
path.move_to(point);
} else {
path.move_to(point + last_point);
}
break;
}
case PathInstructionType::ClosePath:
path.close();
break;
case PathInstructionType::Line: {
Gfx::FloatPoint point = { data[0], data[1] };
if (absolute) {
path.line_to(point);
} else {
path.line_to(point + last_point);
}
break;
}
case PathInstructionType::HorizontalLine: {
if (absolute)
path.line_to(Gfx::FloatPoint { data[0], last_point.y() });
else
path.line_to(Gfx::FloatPoint { data[0] + last_point.x(), last_point.y() });
break;
}
case PathInstructionType::VerticalLine: {
if (absolute)
path.line_to(Gfx::FloatPoint { last_point.x(), data[0] });
else
path.line_to(Gfx::FloatPoint { last_point.x(), data[0] + last_point.y() });
break;
}
case PathInstructionType::EllipticalArc: {
double rx = data[0];
double ry = data[1];
double x_axis_rotation = AK::to_radians(static_cast<double>(data[2]));
double large_arc_flag = data[3];
double sweep_flag = data[4];
Gfx::FloatPoint next_point;
if (absolute)
next_point = { data[5], data[6] };
else
next_point = { data[5] + last_point.x(), data[6] + last_point.y() };
path.elliptical_arc_to(next_point, { rx, ry }, x_axis_rotation, large_arc_flag != 0, sweep_flag != 0);
break;
}
case PathInstructionType::QuadraticBezierCurve: {
clear_last_control_point = false;
Gfx::FloatPoint through = { data[0], data[1] };
Gfx::FloatPoint point = { data[2], data[3] };
if (absolute) {
path.quadratic_bezier_curve_to(through, point);
previous_control_point = through;
} else {
auto control_point = through + last_point;
path.quadratic_bezier_curve_to(control_point, point + last_point);
previous_control_point = control_point;
}
break;
}
case PathInstructionType::SmoothQuadraticBezierCurve: {
clear_last_control_point = false;
if (!previous_control_point.has_value()
|| ((last_instruction != PathInstructionType::QuadraticBezierCurve) && (last_instruction != PathInstructionType::SmoothQuadraticBezierCurve))) {
previous_control_point = last_point;
}
auto dx_end_control = last_point.dx_relative_to(previous_control_point.value());
auto dy_end_control = last_point.dy_relative_to(previous_control_point.value());
auto control_point = Gfx::FloatPoint { last_point.x() + dx_end_control, last_point.y() + dy_end_control };
Gfx::FloatPoint end_point = { data[0], data[1] };
if (absolute) {
path.quadratic_bezier_curve_to(control_point, end_point);
} else {
path.quadratic_bezier_curve_to(control_point, end_point + last_point);
}
previous_control_point = control_point;
break;
}
case PathInstructionType::Curve: {
clear_last_control_point = false;
Gfx::FloatPoint c1 = { data[0], data[1] };
Gfx::FloatPoint c2 = { data[2], data[3] };
Gfx::FloatPoint p2 = { data[4], data[5] };
if (!absolute) {
p2 += last_point;
c1 += last_point;
c2 += last_point;
}
path.cubic_bezier_curve_to(c1, c2, p2);
previous_control_point = c2;
break;
}
case PathInstructionType::SmoothCurve: {
clear_last_control_point = false;
if (!previous_control_point.has_value()
|| ((last_instruction != PathInstructionType::Curve) && (last_instruction != PathInstructionType::SmoothCurve))) {
previous_control_point = last_point;
}
// 9.5.2. Reflected control points https://svgwg.org/svg2-draft/paths.html#ReflectedControlPoints
// If the current point is (curx, cury) and the final control point of the previous path segment is (oldx2, oldy2),
// then the reflected point (i.e., (newx1, newy1), the first control point of the current path segment) is:
// (newx1, newy1) = (curx - (oldx2 - curx), cury - (oldy2 - cury))
auto reflected_previous_control_x = last_point.x() - previous_control_point.value().dx_relative_to(last_point);
auto reflected_previous_control_y = last_point.y() - previous_control_point.value().dy_relative_to(last_point);
Gfx::FloatPoint c1 = Gfx::FloatPoint { reflected_previous_control_x, reflected_previous_control_y };
Gfx::FloatPoint c2 = { data[0], data[1] };
Gfx::FloatPoint p2 = { data[2], data[3] };
if (!absolute) {
p2 += last_point;
c2 += last_point;
}
path.cubic_bezier_curve_to(c1, c2, p2);
previous_control_point = c2;
break;
}
case PathInstructionType::Invalid:
VERIFY_NOT_REACHED();
}
if (clear_last_control_point) {
previous_control_point = Gfx::FloatPoint {};
}
last_instruction = instruction.type;
}
return path;
}
String Path::serialize() const
{
StringBuilder builder;
bool first = true;
for (auto const& instruction : m_instructions) {
if (first) {
first = false;
} else {
builder.append(' ');
}
instruction.serialize(builder);
}
return builder.to_string_without_validation();
}
}