See the spec issue in the comments for details. There are situations
where we will need to call this but don't have a CSSStyleSheet to pass
in, but we always have a Document, so use that where possible.
These actually always return a value, despite the `CSSStyleSheet*`
return type. So, make that clearer by returning `GC::Ref<CSSStyleSheet>`
instead. This also means we can remove some ad-hoc error-checking code.
The spec is unclear about when exactly we should parse the style sheet.
Previously we'd do so before calling this algorithm, which was
error-prone, as seen by the bug fixed by the previous commit. The spec
for step 1 of "create a CSS style sheet" says:
1. Create a new CSS style sheet object and set its properties as
specified.
The definitions linked are UA-defined enough that it seems reasonable to
put the parsing here. That simplifies the user code a little and makes
it harder to mess up. It does raise the question of what to do if
parsing fails. I've matched our previous behaviour by just logging and
returning in that case.
While I'm modifying this method, I've also converted the bool params to
enums so they're a little clearer to read.
Before this change, we assigned the style sheet's location *after* its
content rules were parsed and added to it. This meant any `@import`s
would try to fetch their style sheet before they knew the URL they
should fetch it relative to.
Previously if we encountered any attributes with a namespace other than
`xml` or `xmlns`, we treated it as a parse error. Now, allow it as long
as it's been declared in the current context.
We also handle errors more gracefully - instead of exploding if setting
the namespace fails, treat it as an error and carry on.
Names like ":hi", "wow:", or "a🅱️c" are invalid, so early-out instead
of searching our namespace stack for matching prefixes.
And also rename the function because it's relevant to attributes too.
With this change we ensure that Skia surfaces are allowed to be created
or destroyed only by one thread at a time. Not enforcing this before
resulted in "Single owner failure." assertion crashes in debug mode on
pages with canvas elements.
A couple of minor things I came across while debugging BYOB streams.
Adjust some spec text to match the latest spec, and use GC::Ref instead
of a raw pointer where applicable.
This adds support for async iterators of the form:
async iterable<value_type>;
async iterable<value_type>(/* arguments... */);
It does not yet support the value pairs of the form:
async iterable<key_type, value_type>;
async iterable<key_type, value_type>(/* arguments... */);
Async iterators have an optional `return` data property. There's not a
particularly good way to know what interfaces implement this property.
So this adds a new extended attribute, DefinesAsyncIteratorReturn, which
interfaces can use to declare their support.
I don't quite see what spec text requires this, but it is explicitly
checked by WPT. We used to pass this test, but that regressed after
commit 3c6010c663.
This required a bit of manual manipulation. These tests dynamically
fetch generated IDL files, e.g.:
https://github.com/web-platform-tests/wpt/blob/master/interfaces/streams.idl
Our WPT importer is not able to detect the IDL files that need to be
imported, so dom.idl and streams.idl was copied over manually. Further,
idlharness.js would create URLs of the form "file://interfaces/dom.idl".
So idlharness.js was adapted to create a URL relative to the test file.
If we don't do this, then we endlessly spin trying to read data which
ends up in a deadlock.
The description for SSL_ERROR_ZERO_RETURN states:
> The TLS/SSL connection has been closed. If the protocol version is SSL
> 3.0 or TLS 1.0, this result code is returned only if a closure alert
> has occurred in the protocol, i.e., if the connection has been closed
> cleanly. Note that in this case SSL_ERROR_ZERO_RETURN does not
> necessarily indicate that the underlying transport has been closed.
This widens the assertion from only checking if the WritableStream's
state is Errored or Erroring to asserting that the WritableStream is not
in a Writable state.
By the time we're executing bytecode, we know the the bytecode will be
flattened. This means we can use ReadonlySpan to look into it instead of
DisjointChunks::spans(), which allocates.
This removes another Match member that required destruction. The "API"
for accessing the strings is definitely a bit awkward. We'll think of
something nicer eventually.
Check if box has associated layout node is not mentioned in the spec,
but it is required to match behavior of other browsers that do not
invoke intersection observer steps for boxes without layout node.
This introduces a matrix for the js-benchmarks workflow and runs both
the Linux x86_64 and macOS arm64 JS repl builds against our benchmarks
repository.
The workflow-webhook action that was being used didn't work on macOS or
machines without Docker, so let's create the payload ourselves, sign it
and send it over using plain old `curl`.
The spec states:
Public API must not be used: while reading or writing, or performing
any of the operations below, the JavaScript-modifiable reader,
writer, and stream APIs (i.e. methods on the appropriate prototypes)
must not be used. Instead, the streams must be manipulated directly.
This migrates the default request request we were using to a custom read
request which does not involve extra promises.
I'm not sure about an analogous change with the way we write chunks to
the receiving end. There isn't a "WriteRequest" utility to be used here,
and no matter what AO we use, promises will be involved. Our current
implementation at least does not seem to affect any tests.
This change adds “default step” and “step scale factor” handling for all
remaining HTMLInputElement input types for which the spec defines such
and that we didn’t yet have handling for.